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A CHARACTERIZATION OF THE SIMPLE SPORADIC GROUPS

A.K. ASBOEI

Abstract. Let G be a finite group, np(G) be the number of Sylow
p−subgroup of G and t(2, G) be the maximal number of vertices in
cocliques of the prime graph of G containing 2. In this paper we prove
that if G is a centerless group with t(2, G) ≥ 2 and np(G)=np(S) for
every prime p ∈ π(G), where S is the sporadic simple groups, then
S ≤ G ≤Aut(S).
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1. Introduction

Let G be a finite group, let π(G) be the set of prime divisors of its order, and
let πe(G) be the set of the element orders of G. We construct the prime graph of
G, which is denoted by GK(G), as follows: the vertex set is π(G) and two distinct
vertices p and p′ are joined by an edge if and only if G has an element of order
pp′ ( we write p ∼ p′). Gruenberg and Kegel introduced this graph (which is also
called the Gruenberg–Kegel graph) in the mid–1970s and gave a characterization of
finite groups with disconnected prime graph (we denote the number of connected
components of GK(G) by s(G)). This deep result, together with classification of
finite simple groups with s(G) > 1, obtained by Williams and Kondratiev (see
[9, 4]), implied a series of important corollaries. Denote by t(G) the maximal
number of primes in π(G) pairwise nonadjacent in GK(G). In other words, t(G)
is the maximal number of vertices in the cocliques, i.e., the independent sets of
GK(G). This number is usually called the independence number of G. We denote
by t(r,G) the maximal number of vertices in cocliques of GK(G) containing r. We
call this the r-independence number. In [6] there was given a characterization of
finite groups G with t(G) ≥ 3 and t(2, G) ≥ 2, and in [5] it was proved that all
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finite non-abelian simple groups except the alternating permutation groups satisfy
the condition t(2, G) ≥ 2.

Throughout this paper, we denote by np(G) the number of Sylow p−subgroup
of G, that is, np(G) = |Sylp(G)|, all other notations are standard and we refer to
[8], for example.

In [1, 2] it is proved that if G is a finite centerless group and np(G) = np(L2(q))
for every prime p ∈ π(G), where 5 ≤ q ≤ 25 and is prime power, then L2(q) ≤
G ≤Aut(L2(q)). Also in [3] it is proved that if G is a finite centerless group and
np(G) = np(M), where M denotes either of the Mathieu groups M11 or M12 for
every prime p ∈ π(G), then M ≤ G ≤Aut(M). We note that if S is one of the
sporadic simple group except M12, M22, J2, J3, HS, Suz, McL, He, O

′
N , Fi22 ,

Fi
′

24 and HN , then Aut(S) = S.
Suppose G1 and G2 are two finite groups. If np(G1) = np(G2) for every prime

p, then we say G1 and G2 are Sylow equivalent. In this paper, we prove that a
finite centerless group G with t(2, G) ≥ 2 is Sylow equivalent with S, where S is
the sporadic simple groups. Also if S is one of the groups: M12, M22, J2, J3, HS,
Suz, McL, He, O

′
N , Fi22 , Fi

′

24 or HN , then S ≤ G ≤Aut(S). In fact the main
theorem of our paper is as follows:

Main Theorem : Let G be a finite centerless group with t(2, G) ≥ 2 such that
np(G) = np(S) for every prime p ∈ π(G), where S is the sporadic simple groups,
then S ≤ G ≤Aut(S).

2. Preliminary Results

In this section we bring some preliminary lemmas to be used in the proof of the
main theorem.
Lemma 2.1. [6] Let G be a finite group satisfying the two conditions:
(a) there exist three primes in π(G) pairwise nonadjacent in GK(G); i.e., t(G) ≥ 3;
(b) there exists an odd prime in π(G) nonadjacent in GK(G) to the prime 2; i.e.,
t(2, G) ≥ 2. Then there is a finite non-abelian simple group S such that S ≤ G =
G/K ≤Aut(S) for the maximal normal soluble subgroup K of G. Furthermore,
t(S) ≥ t(G)− 1, and one of the following statements holds:
(1) S ' Alt7 or L2(q) for some odd q, and t(S) = t(2, S) = 3.
(2) For every prime p ∈ π(G) nonadjacent to 2 in GK(G) a Sylow p-subgroup of
G is isomorphic to a Sylow p-subgroup of S. In particular, t(2, S) ≥ t(2, G).

Remark 2.2. Note that condition (a) in Lemma 2.1, implies an insolubility of G
(see Proposition 1 in [6]), and so by the Feit–Thompson theorem it is not necessary
to assume in the hypotheses of the theorem that G is of even order. Moreover, it
turns out that condition (a) can be replaced by a weaker condition of insolubility
of G without any modification in the claim of the theorem (see Proposition 2 in [6]).

Lemma 2.3. [10] Let G be a finite group and M be a normal subgroup of G.
Then both the Sylow p−number np(M) and the Sylow p−number np(G/M) of
the quotient G/M divide the Sylow p−number np(G) of G and moreover np(M)
np(G/M) | np(G).

Lemma 2.4. [11, Theorem 9.3.1] Let G be a finite soluble group and |G| = m · n,
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where m = pα1
1 ...pαr

r , (m,n) = 1. Let π = {p1, ..., pr} and hm be the number of
π−Hall subgroups of G. Then hm = qβ1

1 ...qβs
s satisfies the following conditions for

all i ∈ {1, 2, ..., s}:
(1) qβi

i ≡ 1 (mod pj), for some pj.
(2) The order of some chief factor of G is divisible by qβi

i .

3. Proof of the Main Theorem

By [3] it is proved that if G is a finite centerless group and np(G) = np(M), where
M denotes either of the Mathieu groupsM11 orM12 for every prime p ∈ π(G), then
M ≤ G ≤Aut(M). Now let G be a finite centerless group with t(2, G) ≥ 2 such that
np(G)=np(S) for every prime p ∈ π(G), where S 6= M11 and M12 is the sporadic
simple groups. The following Lemmas reduce the problem to a study of groups with
Sylow equivalent with S.

Lemma 3.1. There is a finite non-abelian simple group L such that L ≤ G =
G/K ≤Aut(L) for the maximal normal soluble subgroup K of G.
Proof. First we prove that G is insoluble group. Let G be soluble group. By
assumption np(G) = np(S) for every prime p ∈ π(G). On the other hand, by Lemma
2.4 if np(G) = qβ1

1 ...qβs
s then, qβi

i ≡ 1 (mod p). For every S, it is easy to check that
this gives a contradiction. So G is not soluble group. Therefore by using Remark
2.2, there is a finite non-abelian simple group L such that L ≤ G = G/K ≤Aut(L)
for the maximal normal soluble subgroup K of G. �

Lemma 3.2. L is isomorphic to S.
Proof. Let r be the greatest prime in π(G). First we show that if G/K = L, then
r ∈ π(L) and L is isomorphic to S. Let r /∈ π(L). Then r ∈ π(K) and the order of
a Sylow r-subgroup in G and K are equal. As K is normal in G thus the number
of Sylow r-subgroups of G and K are equal. Therefore nr(G) = nr(K). Since K is
soluble group it is easy to check that this gives a contradiction by Lemma 2.4.

Let G/K = L. By [7] (Table 1), we can find all simple groups L such that
r ∈ π(L). On the other hand, by Lemma 2.3, np(L) | np(G) for every prime p. Thus
for every S, it is easy to find all simple groups L such that np(L) | np(S) for every
prime p.

Also if G/K = L, then π(G) = π(L). If there exists a prime t ∈ π(G) such that
t /∈ π(L), then nt(G) = nt(K) and we can get a contradiction with solubility of K.
Thus for every S it is easy to check, except S there is not simple group L such that
np(L) | np(S) for every prime p and π(G) = π(L). Therefore L is isomorphic to S.

Arguing as above if L � G = G/K ≤Aut(L), then we can prove r ∈ π(G/K) and
π(G) = π(G/K). If r ∈ π(L), then similar to the above discussion L is isomorphic
to S. But if r /∈ π(L), then there exists s ∈ π(G)\{r} such that s is the greatest
prime in π(L). We can find all simple groups L such that s ∈ π(L) by [7] (Table
1). It is easy to check that there is not simple group L such that r ∈ π(Aut(L)),
π(L) ⊆ π(G)\{r}, np(L) | np(S) for every prime p and s is the greatest prime in
π(L). �

Lemma 3.3. If G/K = S, then K = 1 and G ∼= S.
Proof. By Lemma 2.3, np(K)np(S) | np(G) for every prime p. Hence np(K) = 1
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for every prime p, and so K is nilpotent subgroup of G. Let Q be a Sylow q−
subgroup of K, since K is nilpotent, Q is normal in G. If P ∈Sylp(G), then Q
normalizes P and so if p 6= q, then P ≤ NG(Q) = G. Also we note that KP/K is
a Sylow p-subgroup of G/K. On the other hand, if R/K = NG/K( KP/K), then
R = NG(P )K. We know that np(G) = np(G/K), so |G : R| = |G : NG(P )|. Thus
R = NG(P ) and therefore K ≤ NG(P ). Because K is nilpotent, so P normalizes Q
and Q ≤ NG(P ). Since P ≤ NG(Q) and Q ≤ NG(P ), this implies that [P,Q] ≤ P
and [P,Q] ≤ Q. Then [P,Q] ≤ P ∩Q = 1, so P ≤ CG(Q) and Q ≤ CG(P ). In other
words, P and Q centralize each other.

Let C = CG(Q), then C contains a full Sylow p−subgroup of G for all primes p
different from q, and thus |G : C| is a power of q. Now let T be a Sylow q−subgroup
of G. Then G = CT . Also if Q > 1, then CQ(T ) is nontrivial, and CQ(T ) ≤ Z(G).
Since by assumption Z(G) = 1, it follows that Q = 1. Since q is arbitrary, K = 1.
Therefore G ∼= S. �

Lemma 3.4. If S is one of the groups: M12, M22, J2, J3, HS, Suz, McL, He,
O

′
N , Fi22 , Fi

′

24 or HN , then S ≤ G ≤Aut(S).
Proof. By Lemma 3.3, if G/K = S, then K = 1 and G ∼= S. Let S � G =
G/K ≤Aut(S). Since np(S) | np(Aut(S)) for every p, similar to the proof of
Lemma 3.3, K is nilpotent subgroup of G, so K = 1 and G ∼=Aut(S). Therefore
S ≤ G ≤Aut(S). �
The proof of the main theorem is now complete.
As an example, we illustrate this method for the Mathieu group of degree 24.
First we prove that G is insoluble group. Let G be soluble group. By assumption
n3(G) = n3(M22) = 6160 = 24 · 5 · 7 · 11. By Lemma 2.4, 5 ≡ 1 (mod 3), which is a
contradiction. So G is not soluble group. Therefore by Remark 2.2, there is a finite
non-abelian simple group L such that L ≤ G = G/K ≤Aut(L) for the maximal
normal soluble subgroup K of G. Now let G/K = L, we show that 11 ∈ π(L) and
L is isomorphic to M22. If G/K = L and 11 /∈ π(L), then 11 ∈ π(K) and the
order of a Sylow 11-subgroup in G and K are equal. As K is normal in G thus the
number of Sylow 11-subgroups of G and K are equal. Thus the number of Sylow
11-subgroups of K is 8064 = 24 · 32 · 7. Since K is soluble group, 7 ≡ 1 (mod 11)
by Lemma 2.4, a contradiction.

Suppose that G/K = L. By [7] (Table 1) L is isomorphic to one of the groups:
L2(11),M11,M12, U5(2), A11,McL, HS, A12, U6(2) orM22. We know that np(L) |
np(G) for every prime p. It is easy to check that L is not isomorphic to M12,
U5(2), A11, McL, HS, A12 or U6(2). If L is isomorphic to L2(11) and M11, then
7 /∈ π(L) and similar to the above discussion we get a contradiction. Therefore L is
isomorphic to M22. By Lemma 2.3, np(K)np(S) | np(G) for every prime p. Hence
np(K) = 1 for every prime p, and so K is nilpotent subgroup of G. Similar to the
proof of Lemma 3.3, K = 1. Therefore G ∼=M22.

Arguing as above if L � G = G/K ≤Aut(L), then 11 ∈ π(G/K) and π(G) =
π(G/K). If 11 ∈ π(L), then similar to the above discussion L is isomorphic to M22

and similar to the proof of Lemma 3.4, M22 ≤ G ≤Aut(M22). But if 11 /∈ π(L),
then 7 or 5 is the greatest prime in π(L). By [7] (Table 1) we can find all simple
groups L such that 7 or 5 ∈ π(L), π(L) ⊆ π(G)\{11} and np(L) | np(S) for every
prime p. It is easy to check that 11 /∈ π(Aut(L)), a contradiction.
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