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SPECIAL CASE OF THE CAHN-HILLIARD EQUATION
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Abstract. A qualitative behaviour of the Cauchy problem solution for

the Cahn-Hilliard kind equation is analyzed. The sufficient condition of

the global solution existence and its collapse for a finite time for the

periodic function has been formulated. The examples of the stationary,

self-similar and collapsing solutions are constructed.
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1. Introduction

In this paper, we study the qualitative properties of the solutions of Cahn-Hilliard
kind equation

(1) ut +∆2u+∆(u2 − βu) = 0; u = u0(x, y), t = 0,

where β is a constant.
The equation (1) has arisen from analysis of the thermocapillary flow in the

thin layer of viscous liquid with a free surface at non-monotonic dependence of the
surface tension σ on the temperature θ [1]. The dependence of interfacial tension
of liquids on temperature is very important in applications such as thermoca-
pillary or Marangoni convection. It is known that for a pure liquid the surface
tension is a monotonically decreasing function of temperature. This dependence is
typical for a large class of fluids like water, silicone oil, water-benzene solutions,
etc. It is also known that the surface tension coefficient of the melts of some alloys
increases together with the temperature. Anomalous Marangoni effect in two-layer
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system was investigated on the basis of the full Navier-Stokes equations in [2].
However, some solutions, molten steel and alloys have a surface tension which
is not nonmonotonic function with a minimum at some temperature θ∗ [3]. The
interfacial tension dependence on the temperature is approximated by a quadratic
function. This dependence is well described by the relation σ = σ0 + σθ(θ − θ∗)

2

with appropriate positive constants σ0, σθ, θ∗. The influence of the surface tension
minimum on thermocapillary flows in such solutions has been investigated both
experimentally and theoretically by means of numerical and analytical methods.

The equation (1) arises also in the study of the phase dynamics in the reaction-
diffusion systems, the nonlinear cross-field instability in a weakly ionized plasma
[4, 5], morphological instability of a planar crystal-melt interface [6]. Equation (1)
is close to the Sivashinsky equation [7] that governs the weakly nonlinear evolution
of the long-scale morphological instability in the modeling of an alloy solidification
problem.

The classical Cahn-Hilliard equation contains the term u3 and has both stable
and unstable stationary solutions. Previously, the initial boundary value problem
for the family of fourth order equations, including Cahn-Hilliard equation, in a
bounded domain with the Dirichlet condition on a boundary was considered in [8].
The global existence and blow up in the one-dimensional Cahn-Hilliard equation
were proved in [9]. The blow up problem in the Cahn-Hilliard type equations in
both one and two dimensions was discussed in [10]. The asymptotic behavior of
classes of global and blow up solutions of a semilinear parabolic equation of the
“limit” Cahn-Hilliard kind with bounded integrable initial data have been studied
in [11]. An asymptotics for collapsing solution in 1D space periodic case has been
derived in [12].

The goal of the present work is the investigation of the Benard-Marangoni
problem with the condition θ = θ∗ on the free surface in the thin layer approximation.
Here θ∗ is the equilibrium temperature at the nondeformable free surface.

2. Statement of the problem

It is supposed that the characteristic disturbance amplitude of the free surface
u(x, y, t) is much less than the average layer thickness h. In this case the evolution
of the non-dimensional deviation of a free boundary from a horizontal equilibrium
state can be described in terms of Cauchy problem solutions for the equation (1),
and β = ρgh2/σ0 is the Bond number, ρ is the liquid density, g is the magnitude
of the gravity acceleration, β ≥ 0. The function u0(x, y) is assumed to be periodic
function on both variables or rapidly decreasing at x, y → ∞.

The “mass” conservation law takes place for Cauchy problem (1)

(2)

∫∫

R2

u dx dy =

∫∫

R2

u0dxdy = c,

quotes are caused by that the value c can be negative.
Let u0 ∈ H2

0 (Π) and ||u0||H2 ≤ ǫ, where H2
0 (Π) is the subspace of Sobolev space

formed by the periodic functions, Π = {x, y : 0 < x < 2π, 0 < y < 2πκ−1}, κ ≥ 1,
ǫ = ǫ(β, κ) is a sufficient small positive number. If β > −1, Cauchy problem (1) has
a unique generalized solution u(x, y, t) ∈ L2(0,∞;H2

0 (Π)). There exist constants
γ ∈ (0, 1+ β) and C > 0 independent of t such that the estimate eγt||u||L2 ≤ Cǫ is
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true for any fixed t > 0. One should note that the condition of smallness of ||u0||H2

is essential for the global existence of the problem solution (1). Solutions having a
“large” initial norm can be destroyed in finite time.

Space-periodic solutions of Cauchy problem and rapidly decreasing solutions at
infinity are studied.

3. Lyapunov functional

Let consider Eq. (1). The following identity is valid

(3)
dS(u)

dt
=

∫∫

Π

|∇(∆u+ (u − β/2)2)|2 dx dy.

Here S(u) is the Lyapunov functional that is defined by the equality

(4) S(u) =

∫∫

Π

(

1

3

(

u− β

2

)3

− 1

2
|∇u|2

)

dx dy,

where u is an arbitrary solution of (1), which satisfies the condition of periodicity
and has the zero mean value on Π. The first variation of S(u) is

(5) δS =

∫∫

Π

(∆u+ u2 − βu)δu dx dy.

It allows one to write the equation (1) in the form

(6) ut = gradH−2S(u).

The gradient form (6) of the equation (1) is useful for the investigation of qualitative
properties of solutions of the Cauchy problem (1).

Each stationary space periodic solution us of equation (1) is the extremal point
for the functional S(u). According to (5), the second variation of this functional
has the form

(7) δ2S(us) =

∫∫

Π

(−|∇δu|2 + (2us − β)(δu)2) dx dy.

It follows from (7) that the function S has no local minima. This functional is not
bounded below or above according to definition (4). The inequality 2us < 1 + β is
the sufficient condition for a stability of the stationary solution us. In this case, the
functional S(u) has local maximum at the point us. If last inequality is not fulfilled
at some points of the domain Π, the form δ2S(us) is indefinite, and the instability
of the stationary solution is expected.

4. Stationary solutions

Equation (1) has numerous stationary solutions us (see also [6]). A special place is
occupied by solutions, which depend only on one variable. In this case the equation is
integrated in the form of the elliptic functions, the corresponding periodic solutions
are the well-known cnoidal waves. Another interesting set of stationary solutions
consists of solutions rapidly decreasing when one or both variables tend to infinity.
The Korteweg and de Vries soliton, us = 3β/(2 cosh2(x

√
β/2)), is the example of

such solution. The existence of axially symmetric soliton, us = g(r), where r =
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Fig 1. Axially symmetric soliton for various values of the
parameter β: β = 0.05 (solid line), β = 0.2 (dashed line), β = 0.4
(dash-dotted line).

√

x2 + y2 was proved in [13]. The function g is the solution of the boundary value
problem

(8)
d2g

dr2
+

1

r

dg

dr
+ g2 − βg = 0, r > 0,

(9) |g| < ∞ at r → 0, g → 0 at r → ∞.

The profiles of the solution (8), (9) are illustrated in Fig. 1 for various values of
the parameter β.

Note that there is no nontrivial solutions in the form of travelling waves, u =
q(x−ct), which are defined and bounded at all values of its arguments. The periodic
travelling waves do not exist also.

In the periodic problem depending on the initial data, there were either a stabili-
zation to the stationary solution (in particular, to the trivial solution), or a collapse
in finite time (see Section 6). Besides the trivial solutions, there are the periodic
solutions that can be obtained by a branching from the trivial solution. Among
these solutions, there are the stable solutions as the following example shows. Let
us consider the trivial steady-state solution of the Eq. (1) u = β. We obtain two
families 2π-periodic stationary solutions corresponding to the value β = 1+ǫ, where
ǫ > 0. The solution at ǫ → 0 can be presented in the form

u = 1 + ǫ1/2k cos 2x+ ǫ

(

−k2

2
+

k2

6
cos 2x

)

+ ǫ3/2
k3

48
cos 3x+O(ǫ2),

where k = ±
√

6/5. These solutions exist in a supercritical domain, and they are
expected to be stable.

5. Self-similar solutions

The equation (1) is reduced to the case β = 0 by substitution u = v+β/2. In this
case the equation (1) has self-similar solutions. We consider the Cauchy problem

(10) vt +∆2v +∆(v2) = 0; v = v0(x, y), t = 0.

Equation (10) is invariant with respect to scaling transformation x̄ = ax, ȳ =
ay, t̄ = a4t, v̄ = a−2v (a = const), and this equation is also invariant with respect
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to the rotation in (x, y)-plane. This makes it possible to look for the self-similar
solutions in the form

v = t−1/2f(ξ), ξ = t−1/4(x2 + y2)1/2.

These solutions satisfy the mass conservation law (2) which takes place for the
equation (10). To determine f(ξ), we have the fourth-order ordinary differential
equation that can be allowed one to decrease of equation order

(11) [ξ−1(ξf ′)′]′ − 1

4
ξf + 2ff ′ = Aξ−1,

where A is the arbitrary constant. A two-dimensional analog of the equation (11)
has been considered in [12]. The self-similar solutions of the Cahn-Hilliard type
equation (10) with the replacement of v2 by v3 were investigated in [11] for the
plane case also. The equation (11) has regular solutions at ξ → 0 only for A = 0.
The considered equation has two singular points: regular point ξ = 0 and irregular
point ξ = ∞. We seek non-trivial solutions that are defined for all ξ > 0, regular at
ξ → 0, and rapidly decreasing at ξ → ∞. Such solutions form the one-parameter
family with the parameter c, where

(12) c =

∫

∞

0

ξf dξ.

The function f = f(ξ) satisfies the problem:

(13) [ξ−1(ξf ′)′]′ − 1

4
ξf + 2ff ′ = 0,

(14) |f | < ∞ at ξ → 0, f → 0 at ξ → ∞,

and the condition (12). The function f(ξ) is the solution of the Cauchy problem
with the initial function v0 = 2πcδ(x)δ(y), where δ is the delta function. Preliminary
analysis of the problem (13), (14) was performed in [14].

Equations (13), (14), (12) have been solved using the Runge-Kutta method in
conjunction with the shooting technique. For that the relation 2f ′′(0) + f2(0) =
−c/4 was derived. Analytical and numerical researches show that axially symmetric
self-similar solutions exist at small values of |c|, and they do not exist for large and
positive c because of indefinitely increasing derivative dλ/dc at approach to a critical
value c∗ ≃ 0.8155, here λ = f(0). The curve λ as a double-valued function of the
parameter c is presented in Fig. 2. The stability of the lower branch of curve Γ can
be justified at least for small |c| following arguments [11]. On the analogy with [11],
it is natural to suppose that the upper branch of curve Γ is seemed to be unstable.
Figure 3(a) displays the dependence f(ξ) for a critical value c = c∗. For negative
values of c, there were found two branches of the self-similar solutions with various
qualitative behaviors. Figures 3(b), 3(c) illustrate the function f(ξ) for the same
value c = −6, and various values of λ. In Fig. 3(b), λ = 5.019 for the upper solution;
in Fig. 3(c), λ = −1.122 for the down solution. The function f(ξ) for c = 0 and
λ = 2.057 is depicted in Fig. 3(d).

The self-similar solutions of the plane problem satisfying the conservation law
exist only for c = 0. The solutions of the 1D analogue of (10) has the form

v = t−1/2φ(η), η = xt−1/4.
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Fig 2. Curve Γ is a double-valued function λ = f(0) of the
parameter c.

Fig 3. Self-similar solution of the axially symmetric problem for
(a) c = c∗ ≈ 0.8155, λ = 0.860; (b) c = −6, λ = 5.019; (c) c = −6,
λ = −1.122; (d) c = 0, λ = 2.057.

It is interesting to note that these solutions are not compatible with the mass
conservation law. The function φ(η) satisfies the ordinary differential equation

(15) φ′′′′ + (φ2)′′ − η

4
φ′ − 1

2
φ = 0,
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Fig 4. Self-similar solution of the 1D problem.

which is integrated using the boundary conditions

(16) φ′(0) = 0, φ → 0 at η → ∞.

In this case
∫

∞

−∞

φdη = 0.

Figure 4 shows the results of numerical simulation of the boundary-value problem
(15), (16). One can see that the function φ rapidly tends to zero at infinity.

6. Collapsing solutions

The behavior of the Cauchy problem solutions (1) is following: either u → us

when t → ∞, where us is some stationary solution, or its solution is destroyed
in finite or infinite time [13]. We formulate below sufficient conditions of collapse
existence.

Proposition. Let initial function u0 ∈ H2
0 (Π) in the condition (1) satisfy the

inequality

(17)

∫∫

Π

(

u3
0

3
− |∇u0|2

2

)

dx dy >
6

5
(1 + β2)

∫∫

Π

[(−∆)−1/2u0]
2dx dy.

There exists such t∗ > 0 that for solution u of the Cauchy problem (1) we have

||(−∆)−1/2u||L2 → ∞ when t → t∗ − 0.

It should be emphasized that the inequality (17) cannot be fulfilled for “small”
values of u0, and also for odd function u0. Solutions having a “large” initial norm
can be destroyed in finite time. To illustrate this proposition, let us consider the
boundary-value problem (1) for the function u(x, t) with 2π-periodic initial function
u0(x). The collapse takes place for a simple example of an initial function u0(x) =
a1 cosx + a2 cos 2x of the Cauchy problem (1) with β = 0, where constants a1
and a2 satisfy inequalities |a1| > 2, a21 − (a41 − 16)1/2 < 2a2 < a21 + (a41 − 16)1/2.
The problem was solved using finite difference method. The calculations were made
for one thousand and two thousand nodes. The difference does not exceed 10−3.
The results of the numerical simulation are presented in Fig. 5 for the initial data
a1 = 2.3, a2 = 2. Figure 5(a) demonstrates the behaviour of the function u in
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Fig 5. (a) Collapsing solution of the periodic problem (1) for β = 0
and t = 0 (solid line), t = 0.4 (dashed line), t = 0.82 (dash-dotted
line). (b) The maximum amplitude Umax(t).

different time point. The maximum amplitude of the solution Umax(t) is shown in
Fig. 5(b). One can see that the solution destroys in finite time.

Let us consider now the problem (1), when u0 is an even aperiodic and rapidly
decreasing at infinity function. The approximate solution is looked for in the form

(18) u(N)(x, t) =

N
∑

n=0

un(t)Cn(x),

where the basis functions Cn(x) are [15]

Cn(x) =

√

2

π

∑n+1
k=1(−1)n+k+1

(

2n+1
2k−2

)

x2k−2

(x2 + 1)n+1
, n = 0, 1, 2, . . . .

The functions Cn(x) form the complete orthonormal family in the space L2(−∞,∞)
with the weight 1.

Equations set of functions un(t) in (18) is integrated for the various values of the
initial data

(19) un(0) = qn, n = 0, . . . , N.

Numerical calculations show that the solution of the non-periodic problem (18),
(19) collapses in finite time. Figure 6 illustrates the function u(8)(x, t) for β = 0.1
and t = 0, t = 10, t = 18 and t = 18.45. This function is depicted in Fig. 7 for
the same β and various values of x. The initial data were selected as following
q0 = 1, q1 = 1, q2 = −7/5, q3 = 3/7, qi = 0, i = 4, . . . , 8.

Unfortunately, we failed to prove that the solution with “small” initial norm
is stabilized to the stationary solution. However, the numerical calculations allow
to hope that our assumption is correct. As the Fig. 8 indicates, the solution is
stabilized to the soliton. The figure presents the function u(8)(x, t) for β = 0.1 and
q0 = 2, q1 = −4, q2 = 2, qi = 0, i = 3, . . . , 8, in various time moments. Eight
basis functions, used in the calculations, are enough to present the solution with a
satisfactory accuracy.
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Fig 6. Collapsing solution of the 1D non-periodic problem (1) for
β = 0.1 and (a) t = 0, (b) t = 10, (c) t = 18, (d) t = 18.45.
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Fig 7. Collapsing solution of the 1D non-periodic problem (1) for
β = 0.1 and (a) x = 0, (b) x = 4, (c) x = 8.

7. Conclusions

Space-periodic solutions of the Cauchy problem and rapidly decreasing solutions
at infinity are studied. The sufficient instability condition of the equilibrium has
been obtained in the framework of the long-wave approximation. The sufficient
condition of the global solution existence of problem (1) and its collapse for a
finite time for the periodic function has been formulated. The behaviour of the
Cauchy problem solutions (1) is following: either u → us, when t → ∞, where us

is some stationary solution, or its solution is destroyed in finite or infinite time.
The Korteweg and de Vries solitons, axially symmetric solitons and cnoidal waves
are stationary solutions of the problem. Besides, there is the one-parameter family
of self-similar axially symmetric solutions of the modified equation (10), which are
compatible with the mass conservation law for this equation.

The authors are extremely thankful to V.K. Kalantarov and A.L. Kupershtokh
for the recommendations, which enable to improve the text of the manuscript.
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Fig 8. Solution of the 1D non-periodic problem (1) for β = 0.1
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