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RANKS OF PROPELINEAR PERFECT BINARY CODES

G.K. GUSKOV, I.YU. MOGILNYKH, F.I. SOLOV’EVA

Abstract. It is proven that for any numbers n = 2m − 1,m ≥ 4 and
r, such that n − log(n + 1) ≤ r ≤ n excluding n = r = 63, n = 127,
r ∈ {126, 127} and n = r = 2047 there exists a propelinear perfect binary
code of length n and rank r.
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1. Introduction

Denote by Fn a vector space of dimension n over the Galois field GF (2) with
respect to the Hamming distance d(·, ·), which is defined as the number of coordi-
nates in which vectors differ.

By an automorphism of Fn we mean a distance-preserving automorphism of the
corresponding vector space. It is known that the action of any automorphism of
Fn can be described using a translation v ∈ Fn and a permutation π from Sn (the
symmetric group of permutations of length n) in the following way:

(v, π)(x) = v + π(x)

for any x ∈ Fn. The set of all automorphisms Aut(Fn) of Fn:
Aut(Fn) = {(v, π) | v ∈ Fn, π ∈ Sn}

forms a group under the composition (u, π) ◦ (v, τ) = (u + π(v), πτ) for all (u, π),
(v, τ) ∈ Aut(Fn). Here, and throughout the entire paper, we use πτ(x) = π(τ(x))
for x ∈ Fn.

An arbitrary subset of Fn is called a binary code of length n. The minimum
distance of a code C is the minimum value of the Hamming distance between any
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two different codewords from C. Two codes C and D are said to be equivalent if
C = φ(D), for some automorphism φ of Fn. By Sym(C) we denote the group of
all coordinate permutations that fix the code C set-wise and call it the symmetry
group of C. By Aut(C) we denote the group of all automorphisms of Fn fixing the
code C set-wise, and we call it the automorphism group of C. Note that in literature
code automorphisms are sometimes defined as coordinate permutations fixing the
code set-wise.

A code C is called single-error-correcting perfect (or perfect, for the sake of
brevity) if for any vector x ∈ Fn there exists exactly one vector y ∈ C such that
d(x, y) ≤ 1. It is well known that such codes exist if and only if n = 2m− 1,m ≥ 1.
For any n = 2m − 1,m ≥ 1, there is exactly one, up to equivalence, linear perfect
code of length n and it is called the Hamming code.

Throughout the paper we assume that C ∈ Fn is a perfect code of length n
containing the all-zero vector 0n with n coordinates. For such a code C, its kernel
K is defined as the set of all codewords that leave C invariant under translation,
that is,

K = {x ∈ C | x+ C = C}.
The kernel K of C is a linear subspace of Fn and the code C is a union of cosets of
K. The rank rank(C) of a code C is the dimension of the linear span < C >. By
ei we denote the vector of weight 1 having unit in ith coordinate position.

Let Π be a mapping of the codewords from C into the admissible permutations:
x 7→ πx: (x, πx) ∈ Aut(C), such that π(x,πx)y = πxπy. Then we can define a group
operation on C:

x ? y = (x, πx)y.

The code equipped with the operation defined above is called a propelinear structure
on C and is denoted by (C,Π, ?) (simply (C, ?) if we do not need any information
on Π). A code is called propelinear if it has a propelinear structure.

It is easy to see that any propelinear code is transitive. Recall that a code C
is called transitive if Aut(C) acts transitively on C. Some transitive codes were
constructed and studied in [14, 15]. Propelinear codes were introduced in 1989
by Rifà et al. [10] and investigated further in [11, 2, 3]. It is proven that perfect
propelinear codes can be obtained by using the well known Vasil’ev construction,
see [12], and by the Mollard construction, see the proof in [2]. In [3] an exponential
number of nonequivalent propelinear perfect codes having small ranks is presented.

By the rank or kernel spectrum of a perfect code we mean the set of all possible
values of one of these characteristics for codes of the fixed length n. In 1994 Etzion
and Vardy [4] solved the rank problem of perfect binary codes for any length n ≥ 15
using switchings of minimal i-components. They showed that the rank spectrum is
{n− log(n+ 1), . . . , n}, where n− log(n+ 1) is the rank of the Hamming code and
n is the so-called full rank. The same approach was used by Phelps and LeVan [9]
in 1995 to solve the kernel problem of perfect codes of length n with n ≥ 15. The
kernel spectrum is {1, 2, . . . , n − m − 2, n − m}, notice that there are no perfect
binary codes of length n with the kernel dimension n−m− 1. The rank and kernel
problem can be formulated as following: find the spectrum of pairs (r, k) that are
attainable as the rank r and the kernel dimension k of some propelinear perfect
code of length n. The rank and kernel problem for perfect binary codes was solved
in [1] with the exception of one case of full rank perfect codes of length n = 31 with
kernel dimension 21 which was covered by Heden later in [6].
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In this paper we solve the rank problem for propelinear perfect codes: we show
that the rank spectra of perfect codes and propelinear perfect codes coincide, except,
possibly, full ranks for lengths 63, 127, 2047 and the rank 126 for codes of length
127.

2. Propelinear full rank perfect codes of lengths 15 and 31

Let us recall the Vasil’ev construction [16]. Let C be a perfect binary code of
length (n − 1)/2. Let λ be any mapping from C into the set {0, 1} and |x| =
x1 + · · ·+ xn−1

2
, where x = (x1, . . . , xn−1

2
), xi ∈ {0, 1}. The code

(1) Cn = {(x+ y, |x|+ λ(y), x) | x ∈ F(n−1)/2, y ∈ C}

of length n is perfect and called Vasil’ev code.
Let (C, ?) be a propelinear structure on C, then a homomorphism λ from (C, ?)

into Z2 is called a propelinear homomorphism (or propelinear function).

Theorem 1. (See [12]) Let (C, ?) be a propelinear structure on a perfect binary
code C of length (n− 1)/2, let λ be a propelinear function from the code C into Z2.
Then the Vasil’ev code Cn is propelinear perfect.

In general, the problem of checking the propelinearity of a given code seems to
be rather hard. In order to avoid the issue, the concept of a normalized propelinear
code was introduced in [2]. Recall that a propelinear structure (C,Π, ?) is called
normalized propelinear if the same permutation is assigned to the codewords from
the same coset by kernel: |{πx : x ∈ K + u}| = 1, for any u ∈ C.

Computer search for a propelinear structure in [2] was carried out in a way that
the number of possible candidates for propelinear structures increases exponentially
as the dimension of the kernel decreases by unity, meaning that full rank codes seem
to be out of a computational reach (as they have relatively small kernels). To solve
this problem, we require codes to have trivial symmetry groups. In this case, there
is just one opportunity for an assignment of permutations, in other words, Aut(C)
is acting regularly on codewords of C, which implies propelinearity of C (see [13]).

Lemma 1. A transitive code with trivial symmetry group is normalized propelinear.

Among perfect codes of length 15 from the database [8], we found 44 transitive
codes with trivial symmetry groups, 39 of them having full rank and 5 having rank
14. Note that the existence of propelinear perfect codes of length 15 of all possible
ranks, with the exception of a full rank code, was previously shown in [2].

Lemma 2. The rank spectra of perfect codes and propelinear perfect codes of length
15 coincide.

We give two more lemmas concerning the Vasil’ev codes. Note that for a given
propelinear code of length n the set of the assigned permutations Π(C) = {πx : x ∈
C} forms a subgroup of Sn, see [2]. Some of the propelinear homomorphisms of C
into Z2 can be described using those of the group Π(C).

Lemma 3. Let (C,Π, ?) be a propelinear code. Any group homomorphism λ′ of
(Π(C), ◦) into Z2 yields a propelinear homomorphism λ of (C,Π, ?) defined in the
following way: λ(x) := λ′(πx), x ∈ C.
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Proof. The structure-preserving property follows immediately from the defi-
nition of a propelinear code:

λ(x ? y) = λ′(πx?y) = λ′(π(x,πx)y) = λ′(πxπy) = λ′(πx) + λ′(πy) = λ(x) + λ(y).

Lemma 4. Let Cn be a code given by the Vasil’ev construction (1) with the function
λ. Then
rank(Cn) = rank({(y, λ(y)) : y ∈ C}) + (n− 1)/2 and
rank(C) + (n− 1)/2 ≤ rank(Cn) ≤ rank(C) + (n+ 1)/2.

Proof. The basis of the linear span of Cn can be chosen in such way that it
contains vectors: (xi, |xi|, xi), for vectors {xi : i ∈ {1, . . . , (n− 1)/2}} being a basis
of F (n−1)/2. Obviously, the rank of {(y, λ(y),0(n−1)/2) : y ∈ C} is equal to that of
{(y, λ(y)) : y ∈ C}.

Depending on the function λ the rank of the code Cn is equal to rank(C) + (n+
1)/2 if the vector en+1

2
belongs to its span, otherwise it is equal to rank(C) + (n−

1)/2.

Theorem 2. There exists a full rank normalized propelinear perfect binary code of
length 31.

Proof. Lemma 2 implies the existence of propelinear perfect codes of length
15 of full rank. In order to construct a perfect code of length 31 of full rank,
another computer search was carried out. As mentioned before, there are exactly
39 propelinear full rank perfect codes of length 15 with trivial symmetry group. For
each of the codes we considered propelinear homomorphisms of special type, i.e.,
satisfying Lemma 3 and looked at the sizes of the ranks of the Vasil’ev codes of
length 31 using Lemma 4. Only three of 39 codes (the numbers of these codes are
5584, 5844, 5823 from the database [8]) produce full rank Vasil’ev codes of length
31. An interesting fact is that the symmetry groups of the Steiner triple systems of
the obtained codes of length 31 are trivial, so the codes inherit the trivial symmetry
group property.

3. Rank problem

In this section we solve the rank problem for propelinear perfect codes using the
results of the previous section as well as the Vasil’ev and the Mollard constructions.
Recall the Mollard construction for binary codes. Let Ct and Cm be any two perfect
codes of lengths t and m, respectively, containing all-zero vectors.

Let x = (x11, x12, . . . , x1m, x21, . . . , x2m, . . . , xt1, . . . , xtm) ∈ Ftm. The gene-
ralized parity-check functions p1(x) and p2(x) are defined as p1(x) = (σ1, σ2, . . . , σt)

∈ Ft, p2(x) = (σ′1, σ
′
2, . . . , σ

′
m) ∈ Fm, where σi =

∑m
j=1 xij and σ′j =

∑t
i=1 xij . Let

f be any function from Ct to Fm. The code

M(Ct, Cm) = {(x, y + p1(x), z + p2(x) + f(y))},

where x ∈ Ftm, y ∈ Ct, z ∈ Cm, is a perfect binary Mollard code of length n =
tm+ t+m, see [7]. The abbreviationM(Ct, Cm) indicates the initial codes Ct and
Cm and their lengths. It is clear that the codes of other lengths t′ and m′ can also
yield a perfect codeM(Ct

′
, Cm

′
) with the same parameters as the codeM(Ct, Cm).

The both Mollard codes could be equal, different, or even nonequivalent.
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Theorem 3. (See [2]) Let Ct and Cm be arbitrary propelinear perfect binary codes
of lengths t and m, respectively. Let f be a propelinear homomorphism from Ct

to Fm. Then the Mollard code M(Ct, Cm) is a propelinear perfect binary code of
length n = tm+ t+m, see [2].

Further we consider the Mollard codes with the function f ≡ 0m.

Lemma 5. (See [15]) The perfect binary Mollard code M(Ct, Cm) of length n =
tm+ t+m with f ≡ 0m has rank tm+ r(Ct) + r(Cm).

Applying the results of the previous section, the Vasil’ev construction for small
n, by induction based on the Mollard construction starting with n = 28 − 1 we get
the following

Theorem 4. For any n = 2m−1,m ≥ 4 and arbitrary r, satisfying n−log(n+1) ≤
r ≤ n excluding the cases of n = r = 63; n = 127, r ∈ {126, 127} and n = r = 2047,
there exists a propelinear perfect binary code of length n and rank r.

Proof. The proof is provided by applying the Vasil’ev construction for small n
and by induction applying the Mollard construction beginning with n = 28 − 1. In
order to make the induction step working we need several initial steps.

By Lemma 2 for n = 15 we have propelinear perfect codes of length 15 of all
possible ranks.

Using these propelinear codes of length 15, Theorem 1 and Lemma 4 setting the
function λ ≡ 0 we obtain propelinear perfect codes of length 31 having all possible
ranks with the exception of full rank. The existence of a full-rank code of length 31
is proven in Theorem 2.

Applying the Vasil’ev construction with the function λ ≡ 0 further we obtain
propelinear perfect codes of all possible ranks for n = 63, except the full rank. For
n = 127 we start with the obtained Vasil’ev perfect codes of length 63 and again
by the Vasil’ev construction with λ ≡ 0 we obtain propelinear codes of length 127
for all possible ranks with the exception of codes of full rank and rank 126.

Let us consider the Mollard codes

(2) M(C24−1, C24−1),M(C24−1, C25−1),M(C25−1, C25−1)

of lengths 255, 511 and 1023 respectively. From Lemma 5 varying the propelinear
codes of different ranks of lengths 15 and 31, we get the propelinear Mollard codes
(2) for each possible rank.

In order to fulfill the case n = r = 211 − 1 = 2047 we have to construct the
Mollard code M(C24−1, C27−1) or M(C25−1, C26−1) from full rank propelinear
codes of length 63 or 127, which have not been discovered yet (or we have to use
another approach to construct such codes). But as we see below the open cases do
not affect the process of obtaining propelinear perfect codes of all possible ranks
and all admissible lengths n ≥ 212 − 1.

Let the theorem be true and the propelinear perfect codes do exist for any rank
and every length

24s − 1, 24s+1 − 1, 24s+2 − 1

for s ≥ 2.
Applying the Mollard construction to these propelinear codes and propelinear

perfect codes of length 15 or 31 of different ranks by Theorem 3 we obtain the
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following four perfect codes

(3) M(C24s−1, C24−1),M(C24s−1, C25−1),

M(C24s+1−1, C25−1),M(C24s+2−1, C25−1),

of lengths

(4) 24(s+1) − 1, 24s+5 − 1, 24s+6 − 1, 24s+7 − 1,

respectively. From Lemma 5 we see that varying the codes of different ranks in the
induction hypotheses, we obtain the Mollard codes (3) for every length (4) for each
possible rank, beginning with the rank of the Hamming code up to the full rank.
Since we did not use in the inductive step any propelinear codes of lengths 24s+3−1,
s ≥ 2 and in particular the propelinear codes of lengths 63, 127 and 211 − 1, this
completes the proof.

Remarks. In our opinion the open cases n = r = 63 and n = r = 127 can
be covered by the Vasil’ev construction applied to full-rank propelinear perfect
codes of lengths 31 and 63 using special propelinear functions. The last two open
cases n = 127, r = 126 and n = r = 211 − 1 could then be covered by the
Vasil’ev construction with the zero function λ and by the Mollard construction
M(C24−1, C27−1) orM(C25−1, C26−1) with the zero function f respectively.

The question of nontrivial lower and upper bounds on kernel dimension, as well
as the rank and kernel problem for propelinear perfect codes are still open.

All computer searches have been carried out using the Magma [17] software
package. Some properties of perfect transitive codes of length 15 and extended
perfect transitive codes of length 16 such as the rank, the dimension of the kernel,
order of the automorphism group can be found in [5].
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[10] J. Rifà, J. M. Basart, L. Huguet, On completely regular propelinear codes, Proc. 6th Int.
Conference, AAECC-6, 357 LNCS (1989), 341–355. MR1008511



RANKS OF PROPELINEAR PERFECT BINARY CODES 449
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