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APPLICATIONS OF (PROXIMAL) TAIMANOV THEOREM
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Abstract. Let P ∗(X) be the algebra of bounded, real-valued proximally
continuous functions on an EF -proximity space (X, δ), where X is a
dense subspace of a Tychonoff topological space S. Mattson obtained
several conditions which are equivalent to the following property: every
member of P ∗(X) has a continuous extension to S. In this paper, we
generalize the above problem to L-proximity via proximal Taimanov
theorem when S is a T1 space.
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1. Introduction

A continuous extension of continuous functions from dense subspaces is an
important topic in topology/analysis and has a vast literature. Taimanov [11] proved
the following valuable result: “Let S be a T1-space, X a dense subspace of S, and Y
a compact Hausdorff space. A continuous function f on X to Y admits a continuous
extension over S if and only if for all disjoint closed subsets A,B of Y , the relation
(f−1(A))− ∩ (f−1(B))− = ∅. From this result, a theorem of Smirnov [10] is easily
proved, as well as a theorem of Vulih [12]. A final corollary is a special case of a
theorem of Katětov [3]” [2].

Proximal and nearness extensions of Taimanov theorem [1], [8] generalize many
special results showing thereby the beauty and importance of Taimanov theorem.

Let us see how Taimanov theorem is connected to proximity. Define fine Leader–
Lodato or L-proximity δ0 on S and its subspace proximity δ on subsets A,B of X
by:
Aδ B in X if and only if closures of A,B in S intersect.
Since Y is compact Hausdorff the fine proximity η0 on Y is EF or Efremovič.

Naimpally, S.A., Applications of (Proximal) Taimanov Theorem.
c© 2013 Naimpally S.A.
Received August, 26, 2013, published September, 3, 2013.

535



536 S.A. NAIMPALLY

[11] can now be expressed as:

(TT) Taimanov Theorem.
Let S be a T1-space, X a dense subspace of S, and Y a compact Hausdorff space.

Let X have L-proximity δ, which is the subspace proximity induced by δ0 on S. A
continuous function f on X to Y admits a continuous extension over S if and only
if f : (X, δ)→ (Y, η0) is proximally continuous.

By replacing the condition of compactness on Y by Tychonoff, we get the

(PTT) Proximal Taimanov Theorem. [1]
Let S be a T1-space, X a dense subspace of S, and Y a Tychonoff space with

EF -proximity η. Let X have an L-proximity δ induced by fine L-proximity δ0 on
S. Then a continuous function f on X to Y admits a continuous extension over
S to the Smirnov compactification Y ∗ of Y if and only if f : (X, δ) → (Y, η) is
proximally continuous.

Above result includes, as special cases, almost all results in extension of
continuous functions from dense subspaces [8].

2. Preliminaries

An L-proximity δ on a nonempty set X is defined as follows. For subsets A,B,C
of X and x, y ∈ X we have:

(a) Aδ B → B δ A, (symmetry)
(b) Aδ B → A 6= ∅ and B 6= ∅,
(c) A ∩ B 6= ∅ → Aδ B,
(d) Aδ (B ∪ C) ⇔ Aδ B or Aδ C, (union axiom)
(e) Aδ B and {b} δ C for each b ∈ B → Aδ C, (L-axiom)
(f) {x} δ {y} → x = y.

Every T1-space X has a compatible fine L-proximity δ0, defined by

Aδ0B ⇔ clA ∩ clB 6= ∅.
That is Aδ0B → Aδ B for any compatible L-proximity δ. Further in EF -

proximity, (e) is replaced by a stronger condition [9]:
(g) Aδ B ⇒ there is a C ⊂ X such that Aδ C and (X − C) δ B.

3. Extension of functions

Let P ∗(X) be the algebra of bounded, real-valued proximally continuous
functions on an L-proximity space (X, δ), where X is a dense subspace of a T1
topological space S. Let δ be induced by fine L-proximity δ0 on S. If f ∈ P ∗(X),
then the closure of f(X), being bounded, is compact in R. Hence by Taimanov
theorem (TT), f has an extension F ∈ P ∗(S). It is easy to see that the result
follows even if S has a proximity α which induces proximity on X finer than its
proximity δ. Hence we have the following result:

(3.1) Theorem.
Let P ∗(X) be the algebra of bounded, real-valued proximally continuous functions

on an L-proximity space (X, δ), where X is a dense subspace of a T1 topological
space S which has a compatible L-proximity α. Then the following are equivalent:

(i) every f ∈ P ∗(X) has an extension F ∈ P ∗(S);
(ii) α induces a finer proximity than δ on X;
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(iii) Aδ B in X implies closures of A,B in S are disjoint.
Now we generalize Mattson’s result. Let P (X) be the algebra of real-valued

proximally continuous functions on an L-proximity space (X, δ), where X is a dense
subspace of a T1 topological space S. Let δ be induced by fine L-proximity δ0 on
S. Then by proximal Taimanov theorem (PTT), each f ∈ P (X), has an extension
F : P (S) → R∗, the Stone-Čech compactification of R. As in (3.1) the result follows
even if S has a proximity α which induces proximity on X finer than its proximity
δ.

(3.2) Theorem.
Let P (X) be the algebra of real-valued proximally continuous functions on an

L-proximity space (X, δ), where X is a dense subspace of a T1 topological space
S which has a compatible L-proximity α. Then every f ∈ P (X) has an extension
F : P (S) → R∗, the Stone-Čech compactification of R if and only if α induces on
X a finer L-proximity than δ.
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