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SUBEXTENSIONS FOR A PERMUTATION PSL2(q)-MODULE

ANDREI V. ZAVARNITSINE

Abstract. Using cohomological methods, we solve the problem of em-
bedding SL2(q) into the permutation wreath product for the permutation
PSL2(q)-module in characteristic 2 that arises from the action on the
projective line. We also prove some useful auxiliary results.
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1. Introduction

We denote by Fq a finite field of order q and by Zn a cyclic group of order n.
Let q be an odd prime power and let G = PSL2(q). From the Universal Embed-

ding Theorem [4, Theorem 2.6.A], it follows that the regular wreath product Z2 oG
contains a subgroup isomorphic to SL2(q). It is of interest to know if the same is true
for a permutation wreath product that is not necessarily regular. In particular, let
ρ be the natural permutation representation of G of degree q + 1 on the projective
line over Fq. The following problem arose in the research [8].

Problem 1. Does the permutation wreath product Z2 oρ G contain a subgroup
isomorphic to SL2(q)?

Although stated in purely group-theoretic terms, this problem is cohomological in
nature. In the next section, we reformulate a generalized version of this question as
an assertion about a homomorphism between second cohomology groups of group
modules. We then apply some basic theory to obtain the following solution to
Problem 1.
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Theorem 1. In the above notation, SL2(q) is embedded into Z2 oρ G if q ≡ −1
(mod 4) and is not embedded if q ≡ 1 (mod 4).

The case q ≡ 1 (mod 4) of Problem 1 can also be treated without applying
cohomological methods. In the last section, we present an alternative proof which
was kindly provided by the anonymous referee.

2. Subextensions for group modules

Let G be a group and let L,M be right G-modules. Let

(1) 0→ L→M

and
1→M → E

π→ G→ 1

be exact sequences of modules and groups, where the conjugation action of E onM
agrees with the G-module structure, i. e. me = m · π(e) for all m ∈ M and e ∈ E,
and we identify M with its image in E. Then we call E an extension of M by G.
It is natural to ask if there is a subgroup S 6 E such that

(2) S ∩M = L, SM = E,

where we implicitly identify L with its image in M . A subgroup S with these
properties is itself an extension of L by G, and will thus be called a subextension of E
that corresponds to the embedding (1). The classification of all such subextensions
of E (whenever they exist) up to equivalence is also of interest.

Recall that extensions S1, S2 of L by G are equivalent if there is a homomorphism
α that makes the diagram

S1

α

��

  
L

>>

  

G

S2

>>

commutative. It is known [6] that the equivalence classes of such extensions are
in a one-to-one correspondence with (thus are defined by) the elements of the
second cohomology group H2(G,L). Furthermore, the sequence (1) gives rise to
a homomorphism

(3) H2(G,L)
ϕ→ H2(G,M).

The following assertion is nothing more than an interpretation of this homomor-
phism in group-theoretic terms.

Lemma 2. Let L,M be G-modules and E an extension as specified above. Let
γ̄ ∈ H2(G,M) be the element that defines E. Then the set of elements of H2(G,L)
that define the subextensions S of E corresponding to the embedding (1) coincides
with ϕ−1(γ̄), where ϕ is the induced homomorphism (3). In particular, E has such
a subextension S if and only if γ̄ ∈ Imϕ.

Proof . Let S be a required subextension of E. Choose a transversal τ : G→ S of L
in S. Then, for all g1, g2 ∈ G, we have τ(g1)τ(g2) = τ(g1g2)β(g1, g2) for a 2-cocycle
β ∈ Z2(G,L) and the element β̄ = β + B2(G,L) of H2(G,L) defines S. Let γ be
the composition of β with the embedding (1). Then γ ∈ Z2(G,M) arises from the
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same transversal τ (composed with the embedding S → E), hence γ+B2(G,M) is
the element of H2(G,M) that defines E which is γ̄. Therefore, ϕ(β̄) = γ̄.

Conversely, let ϕ(β̄) = γ̄ for some β̄ ∈ H2(G,L). Then there is a representative
2-cocycle γ ∈ Z2(G,M) whose values lie in L and which, when viewed as a map
G×G→ L, is a 2-cocycle β ∈ Z2(G,L) representative for β̄. Now E can be identified
with the set of pairs (g,m) with g ∈ G, m ∈M subject to the multiplication

(g1,m1)(g2,m2) = (g1g2,m1 · g2 +m2 + β(g1, g2))

and, if we set S = {(g,m) | g ∈ G,m ∈ L}, then S is clearly a subextension of E
defined by β̄. �

It is known that the zero element of H2(G,M) defines the split extension (which
fact is also a particular case of Lemma 2 with L = 0). Therefore, we have

Corollary 3. Let L,M be G-modules as above and let E be the split extension of
M by G. Then the following holds.

(i) The subextensions of E that correspond to the embedding (1) are defined by
the elements of Kerϕ, where ϕ is the induced homomorphism (3).

(ii) If H2(G,M) = 0 then every extension of L by G is a subextension of E.

3. Notation and auxiliary results

Basic facts of homological algebra can be found in [6, 10]. For abelian groups A
and B, we denote Hom(A,B) = HomZ(A,B) and Ext(A,B) = Ext1Z(A,B).

Lemma 4 (The Universal Coefficient Theorem for Cohomology, [6, Theorem 3]).
For all i > 1 and every trivial G-module A,

Hi(G,A) ∼= Hom(Hi(G,Z), A)⊕ Ext(Hi−1(G,Z), A).

The following corollary to Lemma 4 can also be proved independently.

Lemma 5. For a trivial G-module A, we have H1(G,A) ∼= Hom(G,A).

Lemma 6 (Shapiro’s lemma, [10, §6.3]). Let H 6 G with |G : H| finite. If V is
an H-module and i > 0 then Hi(G,V G) ∼= Hi(H,V ), where V G is the induced
G-module.

Given a group G, we denote by M(G) the Schur multiplier of G. If A is a finite
abelian group and p a prime then A(p) denotes the p-primary component of A.

Lemma 7. [7, Theorem 25.1] Let G be a finite group, p a prime, and let P ∈
Sylp(G). Then M(G)(p) is isomorphic to a subgroup of M(P ).

Lemma 8. [1, Proposition III.10.1] Let G be a finite group and let M be finite
G-module such that (|G|, |M |) = 1. Then Hi(G,M) = 0 for all i > 1.

4. Projective action of PSL2(q)

We denote G = PSL2(q) for q odd. Let P be the projective line over Fq and let V
be the permutation F2G-module that corresponds to the natural action of G on P.
The sum of the basis vectors of V , which are permuted by G, spans a 1-dimensional
submodule I, and we have the exact sequence

(4) 0→ I → V →W → 0,

where W ∼= V/I. The following result clarifies the composition structure of the
module V . Let k = F2 be the algebraic closure of F2.
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Lemma 9. [2, Lemma 1.6] In the notation above, I is the unique minimal submodule
of V and W has a unique maximal submodule U such that

(5) 0→ U →W → I → 0

is a nonsplit short exact sequence. Moreover, U ⊗ k = U+ ⊕ U−, where U+ and
U− are the two nontrivial absolutely irreducible kG-modules in the principal 2-block
of G.

Using the knowledge of the Schur multiplier of G we can determine H2(G, I).

Lemma 10. Let q be an odd prime power. For PSL2(q) acting trivially on Z2, we
have

H2(PSL2(q),Z2) ∼= Z2.

Proof . Applying Lemma 4 for the trivial action of G = PSL2(q) on Z2, we have

(6) H2(G,Z2) ∼= Hom(H2(G,Z),Z2)⊕ Ext(H1(G,Z),Z2).

Since H2(G,Z) = M(G), according to [7, Theorem 25.7], we have

H2(G,Z) =

{
Z2, q 6= 9,
Z6, q = 9.

It follows that Hom(H2(G,Z),Z2) ∼= Z2. Since the first integral homology group
H1(G,Z) is isomorphic to the abelianization G/G′, we have

H1(G,Z) =

{
0, q 6= 3,

Z3, q = 3.

Therefore, we always have Ext(H1(G,Z),Z2) = 0, and the claim follows. �

We now determine the group H2(G,V ).

Lemma 11. Let V be the above-defined permutation module. Then we have

H2(G,V ) ∼=
{

0, q ≡ −1 (mod 4),
Z2, q ≡ 1 (mod 4).

Proof . Since the action of G on P is transitive, we have V ∼= TG, where T is the
principal F2H-module for a point stabilizer H 6 G. By Lemma 6, H2(G,V ) ∼=
H2(H,T ). We have H ∼= Fq h Z(q−1)/2, a Frobenius group. If q ≡ −1 (mod 4), the
order |H| is odd. By Lemma 8, H2(H,T ) = 0. Suppose that q ≡ 1 (mod 4). Let
P ∈ Syl2(H). Lemma 7 implies that H2(H,Z)(2) is a subgroup of H2(P,Z) which
is 0, since cyclic groups have trivial Schur multiplier. Therefore,

Hom(H2(H,Z),Z2) = Hom(H2(H,Z)(2),Z2) = 0.

Note also that H1(H,Z) = Z(q−1)/2. Now, H acts trivially on T ∼= Z2, so we can
use again the universal coefficient formula (6) to obtain

H2(H,T ) = Ext(Z(q−1)/2,Z2) ∼= Z2,

since (q − 1)/2 is even by assumption. This completes the proof. �
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5. The case q ≡ −1 (mod 4)

We begin the proof of Theorem 1. Given a permutation representation ρ of
G = PSL2(q) as in the introduction, observe that the permutation wreath product
E = Z2 oρ G is isomorphic to the split extension of the permutation F2G-module
V by G. Since SL2(q) is an extension of the principal F2G module I by G, and I
is the trivial submodule of V by Lemma 6 with i = 0, it follows that Problem 1 is
equivalent to the question of whether SL2(q) is a subextension of E that corresponds
to the embedding I → V . Corollary 3(i) implies that such subextensions are defined
by the elements of Kerϕ, where ϕ is the induced homomorphism

(7) H2(G, I)
ϕ→ H2(G,V ).

For q ≡ −1 (mod 4), we have H2(G,V ) = 0 by Lemma 11. Consequently, SL2(q),
which is an extension of I by G, is a subextension of E by Corollary 3(ii).

6. The case q ≡ 1 (mod 4)

The above argument does not clarify what Kerϕ is if q ≡ 1 (mod 4), because in
this case the homomorphism (7) becomes

Z2
ϕ→ Z2

by Lemmas 10 and 11. (Of course, the fact that H2(G, I) is nonzero also follows
from the existence of groups SL2(q).)

We will consider the long sequence

(8) H1(G, I)→ H1(G,V )→ H1(G,W )
δ→ H2(G, I)

ϕ→ H2(G,V )

induced by (4). Since this sequence is exact, it follows that Im δ = Kerϕ, and we
might as well study the connecting homomorphism δ.

Lemma 12. In the above notation, we have
(i) H1(G, I) = 0;

(ii) H1(G,V ) ∼=
{

0, q ≡ −1 (mod 4),
Z2, q ≡ 1 (mod 4).

Proof . (i) This holds, since H1(G, I) ∼= Hom(G, I) = {0} by Lemma 5.
(ii) We again use the fact that V ∼= TG as in the proof of Lemma 11, where T

is the principal F2H-module for the Borel subgroup H 6 G. We have

H1(G,V ) ∼= H1(H,T ) ∼= Hom(H,T )

by Lemmas 5 and 6. Assume that q ≡ −1 (mod 4). (Although we have covered
this case in the previous sections, we still consider it for the sake of completeness.)
Then |H| is odd, and so |Hom(H,T )| = {0}. Let q ≡ 1 (mod 4). Then

Hom(H,T ) = Hom(Z(q−1)/2,Z2) = Z2,

since (q − 1)/2 is even by assumption. The claim follows. �

Lemma 12 implies that

(9) Im δ ∼= H1(G,W )/H1(G,V )

and so it remains to determine H1(G,W ). To this end, we consider the long exact
sequence

(10) H0(G,W )→ H0(G, I)→ H1(G,U)→ H1(G,W )→ H1(G, I)
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induced by (5). We have H1(G, I) = 0 by Lemma 12 and H0(G,W ) = 0 by
Lemma 9. Therefore,

(11) H1(G,W ) ∼= H1(G,U)/H0(G, I),

and, since H0(G, I) = Z2 is known, in view of Lemma 9 it remains to determine
H1(G,U). Observe that H1(G,U) ∼= Zm2 for some m > 0.

The first cohomology groups H1(G,U±), where the modules U± are as defined
in Lemma 9, can be calculated using the structure of the principal indecomposable
modules in the principal 2-block of G described in [5]. This was done in [9]. Other
calculations are announced in [3]. All these sources imply the following

Lemma 13. dimkH
1(G,U±) = 1.

Consequently, we have

H1(G,U)⊗ k ∼= H1(G,U ⊗ k) ∼= H1(G,U+ ⊕ U−) ∼= k ⊕ k,

which yields H1(G,U) ∼= Z2
2. Hence, H1(G,W ) ∼= Z2 by (11) and Im δ = 0 by (9).

We see that ϕ is an isomorphism in this case and the nonzero element of H2(G, I)
which defines SL2(q) does not lie in Kerϕ. Therefore, SL2(q) is not a subextension
of V hG by Corollary 3(i). The proof of Theorem 1 is complete.

7. Another proof

Here we present an alternative beautiful proof in the case q ≡ 1 (mod 4) which
was kindly proposed by the referee and is included here with his/her permission.

We preserve the above notation. Elements of the permutation F2G-module V
will be written as

∑
x∈P axx, where ax ∈ F2. In particular, we have I = 〈t〉, where

t =
∑
x∈P x.

Suppose that S = SL2(q) is a subextension of V h G corresponding to the
embedding I → V . Then Z(S) = I and t is the (unique) involution of S. Let s ∈ S
be of order q − 1. We have s(q−1)/2 = t, because q ≡ 1 (mod 4). Since s ∈ V hG,
there are v ∈ V and g ∈ G such that s = gv. Note that |g| = (q − 1)/2 and
t = s(q−1)/2 = vh, where

h = 1 + g + . . .+ g|g|−1.

Let x ∈ P be a fixed point of ρ(g). (It is readily checked that ρ(g) has precisely two
fixed points.) We can write v = axx+ w, where w =

∑
y∈P\{x} ayy. Clearly, wh is

a linear combination of elements of P \ {x} and

(axx)h = ax(xh) = ax
q − 1

2
x = 0.

Hence, the coefficient of x in t = vh is zero, a contradiction.
Acknowledgement. The author is thankful to the anonymous referee who made
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D. Revin who drew attention to Problem 1 and discussed the content of this paper.
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