AMENABILITY OF CLOSED SUBGROUPS
AND ORLICZ SPACES

YA.A. KOPYLOV

ABSTRACT. We prove that a closed subgroup H of a second countable locally compact group G is amenable if and only if its left regular representation on an Orlicz space $L^\Phi(G)$ for some Δ_2-regular N-function Φ almost has invariant vectors. We also show that a noncompact second countable locally compact group G is amenable if and only if the first cohomology space $H^1(G, L^\Phi(G))$ is non-Hausdorff for some Δ_2-regular N-function Φ.

Keywords: locally compact group, amenable group, second countable group, closed subgroup, N-function, Orlicz space, 1-cohomology.

1. Introduction

Throughout, we assume all topological groups separated.

A locally compact topological group is called amenable [7] if there exists a G-invariant mean on $L^\infty(G)$ or, equivalently, G possesses the fixed point property: for every action of G by continuous affine transformations on a nonempty convex compact subset Q of a locally convex space W, there is a fixed point in Q.

Let V be a Banach G-module, i.e., a real or complex Banach space endowed with a continuous linear representation $\alpha : G \to B(V)$. We say that V almost has invariant vectors if, for every compact subset $F \subset G$ and every $\varepsilon > 0$, there exists a unit vector $v \in V$ such that $\|\alpha(g)v - v\| \leq \varepsilon$ for all $g \in F$. Here $B(V)$ stands for the space of all bounded linear endomorphisms of a Banach space V.

Let V be a normed space of functions $f : G \to \mathbb{R}$ ($f : G \to \mathbb{C}$) such that if $f \in V$ then, for every $g \in G$, the function

$$\lambda_G(g)f(x) = f(g^{-1}x), \quad x \in G,$$

KOPYLOV Ya.A., AMENABILITY OF CLOSED SUBGROUPS AND ORLICZ SPACES.
© 2013 KOPYLOV Ya.A.

The author was partially supported by the Russian Foundation for Basic Research (Grant 12-01-00873-a), the State Maintenance Program for the Leading Scientific Schools and Junior Scientists of the Russian Federation (Grant NSh-921.2012.1), and the Integration Project 12-II-CO-01M-002 “Geometric Analysis of Actual Problems in Function Theory and Differential Equations” of the Siberian and Far-Eastern Branches of the Russian Academy of Sciences.

Received May, 28, 2013, published September, 27, 2013.
lies in V and $\|\lambda_G(g)f\|_V = \|f\|_V$. Then $\lambda_G : G \to B(V)$ is called the left regular representation of G in V.

Examples of such function spaces V are given by the space $L^p(G)$ of all real-valued functions on G integrable to the power p over G with respect to a left-invariant Haar measure μ_G. Instead of the L^p spaces, one can consider more general Orlicz spaces $L^\Phi(G)$ of real-valued functions on G with the finite “gauge” norm

$$\|f\|_\Phi = \inf \left\{ k > 0 : \int_G \Phi \left(\frac{f(x)}{k} \right) \, d\mu_G(x) \leq 1 \right\}.$$

for an N-function Φ (N-functions are defined in Section 2). Orlicz spaces on locally compact groups were considered in [5, 10] and more recently in [1, 2, 14, 15].

In [20] (see also [19, Theorem 8.3.2]), Stegeman proved that, for a locally compact group, the following conditions (for every compact set $F \subset G$ and every $\varepsilon > 0$, there exists a function $f \in L^\Phi(G)$ with $f \geq 0$ and $\|f\|_{L^\Phi(G)} = 1$ such that $\|\lambda_G(z)f - f\|_{L^\Phi(G)} < \varepsilon$ for all $z \in F$).

In [7] Eymard extended this equivalence to quotients G/H of locally compact groups by closed subgroups and proved that conditions (P_p) are equivalent to the amenability of G/H.

In [15, Proposition 2, pp. 387–389], Rao proved that a locally compact group G is amenable if and only if, given a Δ_2-regular N-function Φ, G satisfies the property (P_Φ) for every compact set $F \subset G$ and every $\varepsilon > 0$, there exists a function $f \in L^\Phi(G)$ with $f \geq 0$ and $\|f\|_{L^{\Phi(G)}} = 1$ such that $\|\lambda_G(z)f - f\|_{L^{\Phi(G)}} < \varepsilon$ for all $z \in F$.

Here $\| \cdot \|_{L^{\Phi(G)}}$ stands for the gauge norm in the space $L^\Phi(G)$.

In 2005, Bourdon, Martin, and Valette established the following [4, Lemma 2]:

Theorem A. Suppose that $p \geq 1$. Let X be a countable set on which a countable group H acts freely. The following are equivalent:

(i) The natural “permutation” representation λ_X of H on $L^p(X)$ almost has invariant vectors;

(ii) H is amenable.

In [11], in an attempt to generalize this assertion, we proved:

Theorem B. Assume that $p \geq 1$. Let G be a second countable locally compact group and let H be a closed subgroup in G. The following are equivalent:

(i) The left regular representation of H on $L^p(G)$ almost has invariant vectors;

(ii) H is amenable.

The paper is organized as follows: In Section 2, we recall some basic notions concerning N-functions and Orlicz spaces. Section 3 contains some necessary information on integration on locally compact groups and homogeneous spaces. In Section 4, we prove a generalization of Theorem B, where $L^p(G)$ is replaced by the Orlicz space $L^\Phi(G)$ for any Δ_2-regular N-function Φ (Theorem 1). In Section 5, using the equivalence of amenability and the fulfillment of the above condition (P_Φ) and a general result by Guichardet, we deduce that the nonreduced and reduced first cohomology of a noncompact second countable locally compact group coincide if and only if it is not amenable.

2. **N-FUNCTIONS AND ORLICZ FUNCTION SPACES**

Definition 1. A function $\Phi : \mathbb{R} \to \mathbb{R}$ is called an N-function if

(i) Φ is even and convex;

(ii) $\Phi(x) = 0 \iff x = 0$.
(iii) $\lim_{x \to 0} \frac{\Phi(x)}{x} = 0$; $\lim_{x \to \infty} \frac{\Phi(x)}{x} = \infty$.

An N-function Φ has left and right derivatives (which can differ only on an at most countable set, see, for instance, [17, Theorem 1, p. 7]). The left derivative φ of Φ (we write $\varphi = \Phi'$ below) is left continuous, nondecreasing on $(0, \infty)$, and such that $0 < \varphi(t) < \infty$ for $t > 0$, $\varphi(0) = 0$, $\lim_{t \to \infty} \varphi(t) = \infty$. The function
$$\psi(s) = \inf\{t > 0 : \varphi(t) > s\}, \quad s > 0,$$
is called the left inverse of φ.

The functions Φ, ψ given by
$$\Phi(x) = \int_0^{|x|} \varphi(t)dt, \quad \Psi(x) = \int_0^{|x|} \psi(t)dt$$
are called complementary N-functions.

The N-function Ψ complementary to an N-function Φ can also be expressed as
$$\Psi(y) = \sup\{x|y| - \Phi(x) : x \geq 0\}, \quad y \in \mathbb{R}.$$

N-functions are classified in accordance with their growth rates as follows:

Definition 2. An N-function Φ is said to satisfy the Δ_2-condition for large x (for small x, for all x), which is written as $\Phi \in \Delta_2(\infty)$ ($\Phi \in \Delta_2(0)$, or $\Phi \in \Delta_2$), if there exist constants $x_0 > 0$, $K > 2$ such that $\Phi(2x) \leq K\varphi(x)$ for $x \geq x_0$ (for $0 \leq x \leq x_0$, or for all $x \geq 0$); and it satisfies the ∇_2-condition for large x (for small x, or for all x), denoted symbolically as $\Phi \in \nabla_2(\infty)$ ($\Phi \in \nabla_2(0)$, or $\Phi \in \nabla_2$) if there are constants $x_0 > 0$ and $c > 1$ such that $\Phi(x) \leq \frac{1}{2c}\Phi(cx)$ for $x \geq x_0$ (for $0 \leq x \leq x_0$, or for all $x \geq 0$).

Henceforth, let Φ be an N-function and let (Ω, Σ, μ) be a measure space.

Definition 3. The set $L^\Phi = \tilde{L}^\Phi(\Omega) = L^\Phi(\Omega, \Sigma, \mu)$ is defined to be the set of measurable functions $f : \Omega \to \mathbb{R}$ such that
$$\rho_\Phi(f) := \int_\Omega \Phi(f)d\mu < \infty.$$

Proposition 1. [18] The set \tilde{L}^Φ is a vector space in the following cases:
(i) $\mu(\Omega) < \infty$, $\Phi \in \Delta_2(\infty)$;
(ii) $\mu(\Omega) = \infty$, $\Phi \in \Delta_2$;
(iii) Ω is countable, μ is the counting measure on Ω, $\Phi \in \Delta_2(0)$.

Definition 4. The linear space
$L^\Phi = L^\Phi(\Omega) = L^\Phi(\Omega, \Sigma, \mu) = \{f : \Omega \to \mathbb{R} \text{ measurable} : \rho_\Phi(af) < \infty \text{ for some } a > 0\}$
is called an Orlicz space on (Ω, Σ, μ).

For an Orlicz space $L^\Phi = L^\Phi(\Omega, \Sigma, \mu)$, the N-function Φ is called Δ_2-regular if $\Phi \in \Delta_2(\infty)$ when $\mu(\Omega) < \infty$ or $\Phi \in \Delta_2$ when $\mu(\Omega) = \infty$ or $\Phi \in \Delta_2(0)$ for μ a counting measure.

Let Ψ be the complementary N-function to Φ.

Below we use a usual identify two functions equal on a set of measure zero.

If $f \in L^\Phi$ then the functional $\| \cdot \|_\Phi$ (called the Orlicz norm) defined by
$$\|f\|_\Phi = \|f\|_{L^\Phi(\Omega)} = \sup\left\{ \left(\int_\Omega |fg|d\mu : \rho_\Psi(g) \leq 1 \right) \right\}$$
is a seminorm. It becomes a norm if \(\mu \) satisfies the finite subset property (see [17, p. 59]); if \(A \in \Sigma \) and \(\mu(A) > 0 \) then there exists \(B \in \Sigma, B \subset A \), such that \(0 < \mu(B) < \infty \).

The gauge (or Luxembury) norm of a function \(f \in L^\Phi \) is defined by the formula

\[
\|f\|_\Phi = \|f\|_{L^\Phi(\Omega)} = \inf \left\{ k > 0 : \rho_\Phi \left(\frac{|f|}{k} \right) \leq 1 \right\}.
\]

This is a norm without any constraint on the measure \(\mu \) (see [17, p. 54, Theorem 3]).

Suppose that the measure \(\mu \) satisfies the finite subset property. As is proved in [16, Chapter 10], a left-invariant Haar measure on a locally compact group has this property.

It is well known that the Orlicz and gauge norms are equivalent, namely (see, for example, [17, pp. 61–62]):

\[
\|f\|_\Phi \leq \|f\|_\Psi \leq 2\|f\|_\Phi.
\]

We will need the following version of Hölder’s inequality for Orlicz spaces [17, p. 62]:

Hölder’s Inequality. If \(\Phi \) and \(\Psi \) are two complementary \(N \)-functions then \(fg \in L^1 \) and

\[
\|fg\|_1 \leq \|f\|_{\Phi} \|g\|_{\Psi} \quad (\|fg\|_1 \leq \|f\|_{\Psi} \|g\|_{\Phi}).
\]

3. Integration on Locally Compact Groups and Borel Sections

Recall some basic facts and definitions from the theory of integration on locally compact groups.

Let \(G \) be a locally compact group and let \(H \) be a closed subgroup in \(G \). Denote by \(\mu_G \) and \(\mu_H \) left-invariant Haar measures on \(G \) and \(H \) respectively and denote by \(\pi \) the projection \(G \to G/H \).

Denote by \(\Delta_K \) the modulus of a locally compact group \(K \).

Given a function \(f \) and a class \(u \in G/H \), take an arbitrary representative \(x \) in \(u \) and consider the function \(\alpha : y \to f(xy) \) on \(H \). If \(\alpha \) is integrable over \(H \), the left invariance of \(\mu_H \) implies that \(\int_H f(xy) \, d\mu_H(y) \) is independent of the choice of \(x \) with \(\pi(x) = u \).

It is well known that the homogeneous space \(G/H \) admits a quasi-\(G \)-invariant measure \(\mu_{G/H} \) on \(H \) which is unique up to equivalence. Here the “quasi-\(G \)-invariance” means that all left translates of \(\mu_{G/H} \) by the elements of \(G \) are equivalent to \(\mu_{G/H} \). The measure \(\mu_{G/H} \) can be described as follows (see [3, Chapter VII, 2.5] or [7]).

(a) There exists a positive continuous function \(\rho \) on \(G \) such that \(\rho(xy) = \frac{\Delta_K(y)}{\Delta_G(y)} \rho(x) \) for all \(x \in G \) and \(y \in H \).

Put \(\mu_{G/H} = (\rho \mu_G)/\mu_H \) (see [3, Definition 1 in Chapter VII, 2.2]).

(b) If \(f \in L^1(G, \mu_G) \) then the set of \(\pi = \pi(x) \in G/H \) for which \(y \mapsto f(xy) \) is not \(\mu_H \)-integrable is \(\mu_{G/H} \)-negligible, the function \(\pi = \pi(x) \mapsto \int_H f(xy) \, d\mu_H(y) \) is \(\mu_{G/H} \)-integrable, and

\[
\int_G f(x) \rho(x) \, d\mu_G(x) = \int_{G/H} \mu_{G/H}([\pi]) \int_H f(xy) \, d\mu_H(y).
\]

(c) There exists a nonnegative continuous function \(h \) on \(G \) with \(\int_H h(xy) \, dy = 1 \) for all \(x \in G \) such that a function \(w \) on \(G/H \) is \(\mu_{G/H} \)-measurable (\(\mu_{G/H} \)-integrable).
if and only if \(h(w \circ \pi) \) is \(\rho \mu_G \)-measurable (\(\rho \mu_G \)-integrable). If \(w \in L^1(G/H, \mu_{G/H}) \) then
\[
\int_{G/H} w(x) \, d\mu_{G/H}(x) = \int_G h(w(\pi(x))) \rho(x) \, d\mu_G(x).
\]

Note that a second countable locally compact space is Polish (polonais) (see [3]). As follows from Dixmier’s lemma (see [6]), if \(G \) is a Polish group and \(H \) is a closed subgroup in \(G \) then there exists a Borel section \(\sigma : G/H \to G \) (in particular, \(\pi \circ \sigma = \text{id}_{G/H} \)). We will need the following technical assertion (see [11] for a proof):

Lemma 1. Suppose that \(G \) is a second countable locally compact group, \(H \) is a closed subgroup in \(G \), \(\sigma : G/H \to G \) is a Borel section, and \(f \in L^1(G, \rho \mu_G) \). Then, in the above notations,
\[
\int_G f(x) \rho(x) \, d\mu_G(x) = \int_H d\mu_H(y) \int_{G/H} f(\sigma(x)y) \, d\mu_{G/H}(x).
\]

4. Amenability of Closed Subgroups

The main result of this section is as follows:

Theorem 1. Assume that \(\Phi \) is a \(\Delta_2 \)-regular \(N \)-function. Let \(G \) be a second countable locally compact group and let \(H \) be a closed subgroup in \(G \). The following are equivalent:

(i) The left regular representation of \(H \) on \(L^\Phi(G) \) almost has invariant vectors;

(ii) \(H \) is amenable.

Proof. Put \(\Phi' = \varphi \) and let \(\Psi \) be the complementary \(N \)-function to \(\Phi \).

Observe first that (ii) implies (i) by the equivalence of amenability and the fulfillment of the Rao–Reiter condition (\(P_\Phi \)), established by Rao in [15, Proposition 2, pp. 387–389]:

(\(P_\Phi \)) For every compact set \(F \) and every \(\varepsilon > 0 \), there exists a function \(f \in L^\Phi(H) \) with \(f \geq 0 \) and \(\| f \|_{L^\Phi(H)} = 1 \) such that \(\| \lambda_H(z)f - f \|_{L^\Phi(H)} < \varepsilon \) for all \(z \in F \).

Now, prove (i) \(\Rightarrow \) (ii). Suppose that \(L^\Phi(G) \) almost has invariant vectors for \(H \) and deduce from this that \(H \) meets Reiter’s condition (\(P_1 \)).

By the \(\Delta_2 \)-regularity of \(\Phi \), we conclude from [17, Proposition 8, p. 79] that
\[
S := \sup \{ \rho\Phi(\varphi \circ |v|) : v \in L^\Phi(G), \| v \|_{L^{\Phi(G)}} \leq 1 \} < \infty.
\]

Take \(\varepsilon > 0 \) and a compact set \(F \subset H \); choose \(f \in L^\Phi(G), \| f \|_{L^{\Phi(G)}} = 1 \), such that
\[
\| \lambda_G(z)f - f \|_{L^{\Phi(G)}} \leq \frac{\varepsilon}{2(S + 1)} \tag{2}
\]
for all \(z \in F \). Assume without loss of generality that \(f \geq 0 \) (taking \(|f| \) instead of \(f \) if necessary).

Note that
\[
|\Phi(a) - \Phi(b)| \leq |a - b| (\varphi(a) + \varphi(b)), \quad a, b \geq 0, \tag{3}
\]
because \(\varphi \) is monotone and nonnegative (cf. [15, p. 388]).

Put \(u = \Phi \circ f \). Since \(\Phi \) is \(\Delta_2 \)-regular, we have (cf. [12, p. 78]):
\[
\int_G u(x) \, d\mu_G(x) = \int_G \Phi(f(x)) \, d\mu_G(x) = \| f \|_{L^{\Phi(G)}} = 1.
\]

For \(z \in F \), using (3), Hölder’s inequality (1), (2), and the inequality
\[
\| v \|_{L^{\Phi(G)}} \leq \rho\Phi(v) + 1,
\]
we infer
\[\|\lambda_G(z)u - u\|_{L^1(G)} = \int_G |\Phi(f(z^{-1}x)) - \Phi(f(x))| \, d\mu_G(x) \]
\[\leq \int_G |f(z^{-1}x) - f(x)| \|\varphi(f(z^{-1}x)) + \varphi(f(x))\| \, d\mu_G(x) \]
\[\leq \|\lambda_G(z)f - f\|_{L^1(G)} \|\varphi \circ \lambda_G(z)f + \varphi \circ f\|_{L^1(G)} \]
\[\leq \|\lambda_G(z)f - f\|_{L^1(G)} (\|\varphi \circ \lambda_G(z)f\|_{L^1(G)} + \|\varphi \circ f\|_{L^1(G)}) \]
\[= 2\|\varphi \circ f\|_{L^1(G)} \|\lambda_G(z)f - f\|_{L^1(G)} \leq 2(\rho_\varphi(\varphi \circ f) + 1) \|\lambda_G(z)f - f\|_{L^1(G)} \]
\[\leq 2(S + 1) \|\lambda_G(z)f - f\|_{L^1(G)} < \varepsilon. \]

Now, let \(\sigma : G/H \to G \) be a Borel section. Consider the function
\[U(y) = \int_{G/H} \frac{u(y\sigma(\overline{x}))}{\rho(\sigma(\overline{x}))} \, d\mu_{G/H}(\overline{x}), \quad y \in H, \]
where \(\rho \) is the function described in Section 3. By Lemma 1, since \(u \) is nonnegative, we have
\[\|U\|_{L^1(H)} = \int_G u(x) \, d\mu_G(x) = 1. \]

Involving Lemma 1 again, we obtain the following estimates:
\[\|\lambda_H(z)U - U\|_{L^1(H)} = \int_H \left| \int_{G/H} \frac{u(z^{-1}y\sigma(\overline{x})) - u(y\sigma(\overline{x}))}{\rho(\sigma(\overline{x}))} \, d\mu_{G/H}(\overline{x}) \right| \, d\mu_H(y) \]
\[\leq \int_H \left| \int_{G/H} \frac{u(z^{-1}y\sigma(\overline{x})) - u(y\sigma(\overline{x}))}{\rho(\sigma(\overline{x}))} \, d\mu_{G/H}(\overline{x}) \right| \, d\mu_H(y) \]
\[\leq \int_G \frac{|u(z^{-1}x) - u(x)|}{\rho(x)} \, d\mu_G(x) = \int_G |u(z^{-1}x) - u(x)| \, d\mu_G(x) = \|\lambda_H(z)u - u\|_{L^1(G)}. \]

So, if \(x \in F \) then \(\|\lambda_H(z)U - U\|_{L^1(H)} < \varepsilon \). Thus, \(H \) has property \((P_1) \) and hence is amenable. Theorem 1 is proved. \(\square \)

Remark 1. Theorem 1 is informative only if \(H \) is noncompact since (i) and (ii) are both fulfilled when \(H \) is compact.

5. First Cohomology and Amenability

Let \(G \) be a topological group and let \(V \) be a topological \(G \)-module, i.e., a real or complex topological vector space endowed with a linear representation \(\pi : G \times V \to V \). The space \(V \) is called a *Banach \(G \)-module* if \(V \) is a Banach space and \(\pi \) is a representation of \(G \) by isometries of \(V \). Introduce the notation:
\[Z^1(G, V) := \{ b : B \to V \text{ continuous} \mid b(gh) = b(g) + \pi(g)b(h) \} \quad (1\text{-cocycles}); \]
\[B^1(G, V) = \{ b \in Z^1(G, V) \mid \exists v \in V \forall g \in G \ b(g) = \pi(g)v \} \quad (1\text{-coboundaries}); \]
\[H^1(G, V) = Z^1(G, V)/B^1(G, V) \quad (1\text{-cohomology with coefficients in} \ V). \]

Endow \(Z^1(G, V) \) with the topology of uniform convergence on compact subsets of \(G \) and denote by \(\overline{B}^1(G, V) \) the closure of \(B^1(G, V) \) in this topology. The quotient \(\overline{H}^1(G, V) = Z^1(G, V)/\overline{B}^1(G, V) \) is called the *reduced 1-cohomology* of \(G \) with coefficients in the \(G \)-module \(V \).

The following assertion was established by Guichardet (see [8, Théorème 1]):
Lemma 2. Let G be a locally compact second countable group and let V be a Banach module such that

$$V^G := \{ v \in V \mid \pi(g)v = v \text{ for all } g \in G \} = 0.$$

Then the following are equivalent:

(i) $H^1(G, V) = \overline{H}^1(G, V)$;

(ii) V does not almost have invariant vectors, that is, there exists a compact subset $F \subset G$ and $\varepsilon > 0$ such that $\sup_{g \in F} \| \pi(g)v - v \| \geq \varepsilon \| v \|$ for all $v \in V$.

As is well known, if a locally compact group G is noncompact then the Haar measure of the whole group is infinite [9, Theorem 15.9]. Hence, constant functions are not integrable over G. Therefore, $L^\Phi(G)^G = 0$. Thus, combining Lemma 2 with the Rao–Reiter condition (P_Φ), we obtain the following generalization of Corollary 2.4 in [13, p. 86] to coefficients in an Orlicz space:

Proposition 2. Suppose that Φ is a Δ_2-regular N-function. If G is a noncompact second countable locally compact group then the following are equivalent:

(i) $H^1(G, L^\Phi(G)) = \overline{H}^1(G, L^\Phi(G))$;

(ii) G is not amenable.

The author is indebted to the referee for valuable remarks.

References

Yaroslav A. Kopylov
Sobolev Institute of Mathematics,
Prosp. Akad. Koptyuga 4,
630090, Novosibirsk, Russia

and
Novosibirsk State University
ul. Pirogova 2
630090, Novosibirsk, Russia

E-mail address: yakop@math.nsc.ru