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Abstract. In this paper we study a combinatorial analogue of the
Slepian-Wolf coding. We consider communication protocols with three
parties (Alice, Bob, and Charlie). Alice and Bob hold binary strings X
and Y respectively, of the same length n, with the Hamming distance
between X and Y bounded by some threshold c. Alice and Bob send
some messages to Charlie, and then Charlie should reconstruct both X
and Y . The aim is to optimize communication complexity of a protocol,
i.e., to minimize the lengths of messages sent by Alice and Bob.

We show that simple and most natural lower bounds for this problem
give in fact the right answer – these bounds can be achieved by some
(nontrivial) communication protocols. We consider two principal settings:
(i) the Hamming distance between X and Y is an absolute constant c,
and (ii) the Hamming distance between these strings is αn for some
constant fraction α. In the first setting we propose a very simple lower
bound and a deterministic, polynomial-time for all three participants
communication protocol that asymptotically achieves this bound. This
protocol is based on the checksums obtained from syndromes of the
BCH codes. In the second setting we prove a nontrivial lower bounds for
deterministic protocols. But the lower bounds for probabilistic protocols
remain very simple, and we construct a protocol that asympotically
achieves these simple lower bounds. In this probabilistic protocol we
combine the technique of syndromes of linear codes with list-decoding
and random hash-functions.
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1. Introduction

We consider the following communication problem with three participants: Alice,
Bob and Charlie. Assume that Alice is given a binary string X and Bob is given a
binary string Y of the same length n, and strings X and Y differ from each other in
c = c(n) positions. All three participants know the parameters n and c. Alice and
Bob should send to Charlie some messages so that he can reconstruct both strings
X and Y . No communication is possible between Alice and Bob, and no feedback
can be sent from Charlie to Alice and Bob.

We study communication complexity of this problem. We say that this
communication problem can be solved with messages of length rA and rB if there
exists a communication protocol where Alice and Bob send to Charlie rA and rB
bits respectively, and then Charlie reconstructs X and Y . The question is for which
pairs (rA, rB) such a protocol exists. This problem is a combinatorial analogue of the
classic Slepian-Wolf problem [1], which is widely investigated in the probabilistic
setting. Let us note that a very special case of this problem for rB = ∞ is well
studied in communication complexity for deterministic as well as for probabilistic
communication protocols, see [2] and a survey [3].

In this paper we focus on two main cases of the problem: (i) the distance between
two strings c is an absolute constant that does not depend on n, and (ii) c = αn is
a constant fraction of the length of strings. In both cases we prove very close upper
and lower bounds for the set of implementable pairs (rA, rB):

• Case c = const, deterministic protocols
(1) Lower bound: for every communication protocol

(a) rA + rB ≥ n+ log2(
∑c
k=0 C

k
n) and

(b) rA, rB ≥ log2(
∑c
k=0 C

k
n).

(2) Upper bound: if for some rA, rB
(a) rA + rB = n+ log2(

∑c
k=0 C

k
n) + d and

(b) rA, rB ≥ log2(
∑c
k=0 C

k
n),

(where d is some constant depends on c) then the problem can be
solved with messages of length rA, rB .

To prove the upper bound above we use the similar method as was used
in [4] and [5] for the problem in probabilistic formulation. For the sake of
self-containedness we detail the construction in the Section 2.2 and prove
the bound in Theorem 2.
• Case c = const, probabilistic protocols

(1) Lower bound: for every ε < 1/2 every probabilistic protocol satisfies
(a) rA + rB ≥ n+ log2(

∑c
k=0 C

k
n)− 1 and

(b) rA, rB ≥ log2(
∑c
k=0 C

k
n).

• Case c = αn, deterministic protocols
(1) A simple lower bound for the general case: for every communication

protocol
(a) rA + rB ≥ (1 + h(α))n− o(n) and
(b) rA, rB ≥ h(α)n− o(n),

where h(α) = α log2
1
α + (1− α) log2

1
1−α .

(2) A nontrivial lower bound for a special case: for every communication
protocol
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∀α ∈ (0, 1/4) ∃β > 0 : rA = n → rB ≥ (1 + β)h(α)n + o(n). It was
proved by Orlitsky in [3].

• Case c = αn, probabilistic protocols
(1) Lower bound: for every ε < 1/2 a communication protocol satisfies

(a) rA + rB ≥ (1 + h(α))n− o(n) and
(b) rA, rB ≥ h(α)n− o(n).

(2) Upper bound: ∀ε > 0 there exists a probabilistic protocol for our
problem with an error less than ε and
(a) rA + rB = (1 + h(α))n+ o(n) and
(b) rA, rB ≥ h(α)n+ o(n).

The last upper bound is the main result in this paper and it is formulated
in Section 3.3. It combines the upgrading of the method (that is used in
the upper bound for c = const) for the list-decoding codes and random
hashing.

2. The distance between the strings is a constant

2.1. Lower bound for deterministic protocols. First of all, we formulate
simple necessary conditions (i.e., a lower bound for the set of all implementable
pairs (rA, rB)).

Theorem 1. For every protocol where Alice sends rA bits and Bob sends rB bits,
the following three inequalities are satisfied

(1) rA + rB ≥ n+ log2(
∑c
k=0 C

k
n),

(2) rA, rB ≥ log2(
∑c
k=0 C

k
n).

Proof. Let us introduce some notation. Let us fix some communication protocol for
the problem under consideration. We assume that Alice and Bob send to Charlie
messages FA(X) and FB(Y ) respectively using some “coding"algorithms

FA : {0, 1}n → {0, 1}rA , FB : {0, 1}n → {0, 1}rB ,

and Charlie “decodes"the received messages using some “decoding"algorithm

FC : {0, 1}rB × {0, 1}rA → {0, 1}n × {0, 1}n .

Let S be a set of n-bits strings (x, y) with Hamming distance at most c:

S = {(x, y) ∈ {0, 1}n × {0, 1}n | d(x, y) ≤ c} .

Then |S| = 2n
∑c
k=0 C

k
n.

To be able to restore uniquely the initial pair (X,Y ) from two messages rA and
rB , the number of all possible pairs of messages must be at least |S|:

2rA2rB ≥ 2n
c∑

k=0

Ckn,

i.e.

rA + rB ≥ n+ log2(

c∑
k=0

Ckn).
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Further, for every Alice’s string X Bob can be given one of
∑c
k=0 C

k
n possible

strings Y (any string at the distance at most c from X). Hence,

rB ≥ log2(

c∑
k=0

Ckn).

Similarly,

rA ≥ log2(

c∑
k=0

Ckn).

�

2.2. Upper bound: a deterministic protocol. It turns out that the simple
lower bound formulated above is very close to an upper bound, i.e., to the sufficient
conditions for (rA, rB), which guarantee that the required communication protocol
exists:

Theorem 2. For every c there exists a constant d = d(c) such that our
communication problem can be solved for all pairs (rA, rB) satisfying inequalities

rA + rB = n+ log2(
∑c
k=0 C

k
n) + d,

rA ≥ log2(
∑c
k=0 C

k
n),

rB ≥ log2(
∑c
k=0 C

k
n).

Moreover, there exists a communication protocol with effective (deterministic,
polynomial in time) algorithms for all three participants.

Let us sketch the construction of the protocol for Theorem 2. Alice and Bob send
to Charlie some (clever chosen) bits of their strings X and Y , and in addition the
syndromes of strings X and Y in a suitable linear error correcting code. We take the
Hamming code for c = 1 and the BCH codes that correct c errors for c > 1 (standart
information about coding theory can be found, e.g., in [7]). For c = 1 we achieve
parameters that exactly match the lower bound from Theorem 1, so we obtain the
complete solution of the problem (the necessary and sufficient conditions coincide).
For c > 1 the gap between the bounds proven in Theorem 1 and Theorem 2 is only
O(1).

Proof. Let rA, rB be numbers that satisfy the conditions of the theorem (three
linear inequalities). In what follows we describe the communication protocol. First
we define the encoding rules for Alice and Bob, and then explain how Charlie can
decode (X,Y ) from the received messages.

We denote by H the parity-check matrix of the [n, k, 2c+ 1] BCH code.

Alice
(1) Sends the first l (some integer from [0, k] chosen by participants in advance)

characters of the string X to Charlie (denote them X l
1):

X1X2 . . . Xl︸ ︷︷ ︸
Xl

1

Xl+1 . . . Xn

(2) Computes the syndrome of string X in the BCH codes

hA = H · (X1 . . . Xn)T

and sends the result to Charlie.
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Bob
(1) Transmits k − l characters of the string Y starting with (l+1)-th to k-th

(denote these bits Y kl+1):

Y1Y2 . . . Yl Yl+1Yl+2 . . . Yk︸ ︷︷ ︸
Y k
l+1

Yk+1 . . . Yn.

(2) Computes the syndrome of string Y in the BCH codes

hB = H · (Y1 . . . Yn)T

and sends the result to Charlie.
The total number of transmitted bits is

l + (n− k) + (k − l) + (n− k) = 2n− k = 2n− n+ c log2 n+ 1 = n+ c log2 n+ 1.

Furthemore, all the computations can be done by Alice and Bob in polynomial
time.

Now we explain the most involved part of the protocol, the decoding algorithm
for Charlie.
Charlie

(1) Receives two syndromes hA = HX, hB = HY and k bits X l
1, Y

k
l+1.

(2) Restores the error-pattern E = X ⊕ Y from the syndromes.
(3) Computes Xk

l+1 = Y kl+1 ⊕ Ekl+1.
(4) Computes Y l1 = X l

1 ⊕ El1.
(5) Reconstructs strings X and Y .

First we show how to get the error-pattern X ⊕ Y from HX and HY . Since
BCH code is a linear code, HX⊕HY = H(X⊕Y ) = HE. We can easily find some
word Z such that HZ = HE by solving a system of linear equations (note that
we find some Z, which can be different from E). Then, we apply to Z a standard
decoding procedure for the BCH code and find a codeword Ẑ (the unique codeword
in c-neighborhood of Z). Next claim follows from general properties of linear codes.

Claim 1. Ẑ ⊕ Z = E.

Proof. Suppose that Ẑ⊕Z = Ê 6= E. Then the weights (the number of 1’s) of both
words E and Ê are at most c. On the other hand,

HÊ = H(Ẑ ⊕ Z) = HẐ ⊕HZ = HZ = HE,

i.e., syndromes of E and Ê are equal to each other. It follows that

H(E ⊕ Ê) = 0.

That is, string E⊕ Ê is a codeword. But the weight of this string is at most 2c. We
get a contradiction with the assumption that this linear code corrects c errors. �

So, we have the error-pattern E. Now we explain how Charlie can recover X and
Y .

Charlie computes Y kl+1 ⊕ Ekl+1 and obtains Xk
l+1. Then, he concatenates it with

received bits X l
1 and gets Xk

1 .
W.l.o.g. we may assume that the first k symbols of codewords (of the BCH code)

are the information bits, and the last n − k symbols are the parity bits. So, given
a syndrome HX and Xk

1 , we can reconstruct the remaining bits of the word X by
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solving a system of linear equationsHX = hA. In a similar way Charlie reconstructs
Y .

Note that all computations can be done in polynomial time. The only
algorithmically nontrivial stage is decoding of the BCH code; but we can do it
by the standard Berlekamp-Welch algorithm.

It remains to estimate the number of bits communicated in the constructed
protocol. We need to show that the number of bits sent by Alice and Bob in this
protocol matches the the claim of the theorem.

Claim 2. c log2 n = log2(
∑c
k=0 C

k
n) + d(c) where d(c) is a constant depends on c.

Proof.

log2(

c∑
k=0

Ckn) ≥ log2(Ccn) ≥ log2

(n
c

)c
≥ c log2 n+ const(c)

log2(

c∑
k=0

Ckn) ≤ log2((c+ 1)Ccn) ≤ log2((c+ 1)
nc

c!
) ≤ c log2 n+ const(c)

�

�

Now we got an effective, asymptotically optimal deterministic communication
protocol. But if we allow randomness in protocols, can we improve our results by
some probabilistic protocol? Assume that now the participants can toss (privately)
random coins and use the randomness in the protocol; for all X and Y the result
should be correct with probability at least 1− ε, for a small enough ε.

2.3. Lower bound: probabilistic protocols. Actually, replacement of
deterministic protocols by probabilistic ones does not give us far better results:

Theorem 3. For every ε < 1/2 every probabilistic communication protocol satisfies
(1) rA + rB ≥ n+ log2(

∑c
k=0 C

k
n)− 1 and

(2) rA, rB ≥ log2(
∑c
k=0 C

k
n).

Proof. We can prove these lower bounds even for the model with common
randomness (when Alice and Bob have an access to a common source of random
bits, Charlie is deterministic). In this model we may think of a probabilistic protocol
as a probability distribution on a set P of deterministic protocols. Let us fix such
a probabilistic protocol (such a distribution on deterministic protocols) and prove
the lower bound for its communication complexity.

W.l.o.g. we assume that in all these protocols Alice and Bob send to Charlie rA
and rB bits of information (communication complexities of all these deterministic
protocols are the same, say, k). Let S be a set of all valid pairs of inputs:

S = {(x, y) ∈ {0, 1}n × {0, 1}n | d(x, y) ≤ c} .

|S| = 2n
c∑

k=0

Ckn.

The error of a probabilistic protocol must be less than an ε < 1/2. Hence, for
every pair (X,Y ) a randomly chosen protocol with probability 1− ε > 1/2 contains
this pair as a possible answer.
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Hence, for a randomly chosen protocol P and a uniformly and randomly chosen
valid pair (X,Y ) with probability greater than 1/2 we get a protocol that contains
this pair of strings as a possible answer. It follows that some protocol in P contains
more than 1/2 valid pairs as answers, i.e. in that protocol there exist at least |S|/2
different possible answers. Obviously, in such a protocol Charlie can receive at least
|S|/2 different pairs of messages from Alice and Bob. Thus, for this protocol

rA + rB ≥ log2 k ≥ log2

|S|
2
≥ n+ log2(

c∑
k=0

Ckn)− 1.

A similar argument implies rA, rB ≥ log2(
∑c
k=0 C

k
n). �

3. The distance between the strings is a fraction of n

Now we assume that c = αn, for some fixed α ∈ (0, 1/2).

3.1. Lower bound for deterministic protocols. The bound from Theorem 1 is
still valid, and (1) and (2) can be reformulated as

Theorem 4. Let h(α) = α log2
1
α +(1−α) log2

1
1−α . For every protocol where Alice

sends rA bits and Bob sends rB bits, the following three inequalities are satisfied

(1′) rA + rB ≥ (1 + h(α))n− o(n),
(2′) rA, rB ≥ h(α)n− o(n).

Proof. If X and Y differ in αn positions, then, similarly to the proof of Theorem 1,
we can obtain

(1′) rA + rB ≥ n+ log2(
∑αn
k=0 C

k
n),

(2′) rA, rB ≥ log2(
∑αn
k=0 C

k
n).

But
∑αn
k=0 C

k
n = 2h(α)n+o(n) (this can be easily proved using Stirling’s

approximation). Hence,

(1′) rA + rB ≥ (1 + h(α))n− o(n),
(2′) rA, rB ≥ h(α)n− o(n),

�

In the contrast to the first case (when c is a constant), not all the points satisfying
these bounds can be achieved by some (deterministic) protocol. For instance, the
pair (rA, rB) = (n, h(α)n) is not achievable:

Proposition. For every α ∈ (0, 1/4) there exists a β > 0 such that for all
sufficiently large n and every deterministic communication protocol for our problem
with rA = n it holds that rB ≥ (1 + β)h(α)n.

(This proposition follows from a result of Orlitsky in [2], Theorem 2.)
Since deterministic protocols cannot achieve all pairs (rA, rB) that satisfy the

natural necessary conditions, we try probabilistic protocols.
In this case, on the one hand, randomness once again cannot help too much: a
counterpart of Theorem 1 is still valid, but on the other hand, the randomness is
somewhat useful: we construct a communication protocol with parameters that are
asymptoticly close to (1′) and (2′).
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3.2. Lower bound for probabilistic protocols.

Theorem 5. For randomized protocols communication complexity cannot be
far below the standard lower bounds. More precisely, for every ε < 1/2 the
communication complexity of a probabilistic protocol for the problem in case α ∈
(0, 1/2) satisfies the following three inequalities

(1′) rA + rB ≥ (1 + h(α))n− o(n),
(2′) rA, rB ≥ h(α)n− o(n),

Proof. Similarly to the proof of Theorem 3. �

3.3. Upper bound: a probabilistic protocol. First let us formulate the
following lemma (the proof can be found, e.g., in [3]):

Lemma 1. Let U = {1, ..., 2n} and S ⊆ U : |S| = k. Then for any a ∈ N there
exists a number A = ank2 log2(ank2)+o(ank2) such that a uniformly chosen prime
number q from [1, A] with probability 1− 1

a set the function fq : x→ x mod q with
no collisions on the S.

Moreover, it takes O(n2) to compute fq(x) and O( A
log2 log2(A) ) to chose a prime

number.

Theorem 6. For every ε > 0, for c = αn, and all pairs (rA, rB) satisfying
inequalities

rA + rB ≥ (1 + h(α))n+ o(n) and rA, rB ≥ h(α)n+ o(n),

there exists a probabilistic protocol for our problem (with probability of error 2ε−ε2).
The proof of this theorem is the most involved construction in this paper. It

combines the technique from Theorem 2 with the idea of list decoding and random
hashing, similar to [3]. Loosely speaking, now instead of codes correcting c errors
(the trick in Theorem 2) we take a code with list-decoding for radius c. Then, our
asymptotical bounds come from the list-decoding capacity theorem (see, e.g., [6]).
In the marginal case rA = n our construction coincides with the protocol proposed
by Chuklin in [3].

Proof. According to the list-decoding capacity theorem, there exists a linear
(α,L ≥ 1)-list decodable code C ⊆ Σn, if its rate R = k

n = 1 − h(α) − 1/L, where
by k we denote the number of information symbols in codewords from C. Let us fix
such a code and its parity-check matrix H.

New probabilistic protocol is like the old deterministic one that we used in
Theorem 2, but it includes some extra operations:
Alice

(1) Sends the first l (once again some chosen in advance by Alice, Bob and
Charlie integer from [0, k]) characters of the string X to Charlie (denote
them X l

1):
X1X2 . . . Xl︸ ︷︷ ︸

Xl
1

Xl+1 . . . Xn

(2) Computes the syndrome of the string X in C
hA = H · (X1 . . . Xn)T

and sends the result to Charlie.
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(3) Uniformly choses some random prime number q1 from a segment [1, D] (an
integer D participants chose in advance according to ε: D = nL2

ε log2
nL2

ε +

o(nL
2

ε )) and sends it to Charlie.
(4) Sends to Charlie the result of hashing fq1 [X] = X mod q1.

Bob
(1) Transmits k − l characters of the string Y starting with (l+1)-th to k-th

(denote these bits Y kl+1):

Y1Y2 . . . Yl Yl+1Yl+2 . . . Yk︸ ︷︷ ︸
Y k
l+1

Yk+1 . . . Yn.

(2) Computes the syndrome of the string Y in in C

hB = H · (Y1 . . . Yn)T

and sends the result to Charlie.
(3) Uniformly choses some random prime number q2 from a segment [1, D] and

sends it to Charlie.
(4) Sends to Charlie the result of hashing fq2 [Y ] = Y mod q2.

The total number of transmitted bits is:

l + (1−R)n+ 2 log2

nL2

ε
+ (k − l) + (1−R)n+ 2 log2

nL2

ε
+ o(n) =

= 2(1−R)n+Rn = (1 + h(α))n+
1

L
+ o(n) = (1 + h(α))n+ o(n).

Charlie
(1) Receives two syndromes hA = HX, hB = HY , k bits X l

1, Y
k
l+1, two primes

q1, q2 and hash sums fq1 [X] and fq2 [Y ].
(2) Restores the error-pattern E = X ⊕ Y .
(3) Computes Xk

l+1 = Y kl+1 ⊕ Ekl+1.
(4) Computes Y l1 = X l

1 ⊕ El1.
(5) Reconstructs strings X and Y .

Now Charlie uses the same algorithm of getting the error-pattern E = X⊕Y , but in
this protocol due to using list-decodable linear code as a base code, he will get a list
of L candidates, containing the correct one. Then for every Ê from that list Charlie
reconstructs a pair of strings (X̂, Ŷ ) and add it to a new list of pairs-candidates.
At the end he gaines a list of L pairs-condidates, containing a correct pair (X,Y ).
Next Charlie applies hash-functions f (based on q1 and q2) to every pair (X ′, Y ′)
from the second list, getting the third list – a list of pairs (fq1 [X ′], fq2 [Y ′]) and
mathes each element with the recieved pair of hashes (fq1 [X], fq2 [Y ]). When some
pair from that list mathes the recieved one, Charlie takes the corresponding pair
from the second list (pairs-candidates) as the answer. According to Lemma 1 the
probability of an error is 2ε− ε2, i.e., with probability (1− ε)2 the uniformly chosen
q1 and q2 set non-collision hash-functions fq1 and fq2 and Charlie is able to uniquely
restore the correct pair (X,Y ).

�
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The disadvantage of this protocol is that the participants need to perform
exponentially long computations (there is no explicit constructions of codes
achieving the list-decoding capacity).

4. Open questions

(1) Can we generalize Proposition and prove the following statement: For
every α ∈ (0, 1/4) there exists a β > 0 such that for every deterministic
communication protocol for our problem it holds rA + rB ≥ n + (1 +
β)h(α)n+ o(n).

(2) Can we achieve the communication complexities from Theorem 6 with an
effective (randomized) protocol, where Alice, Bob and Charlie need only
polynomial time computations?
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