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ON THE GODSIL – HIGMAN NECESSARY CONDITION FOR
EQUITABLE PARTITIONS OF ASSOCIATION SCHEMES

A.L. GAVRILYUK, I.YU. MOGILNYKH

Abstract. In his monograph ’Association schemes’, C. Godsil derived
a necessary condition for equitable partitions of association schemes and
noticed that it could be used to show that certain equitable partitions
do not exist. In this short note, we show that, in fact, this condition is
not stronger than the well-known Lloyd theorem.
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1. Introduction

Equitable partitions of association schemes are often related to important and
interesting combinatorial and geometric objects such as combinatorial designs,
orthogonal arrays and Cameron – Liebler line classes in projective geometries.
Thereby the question of existence of these structures in association schemes is very
difficult in general.

In this short note, we show that a necessary condition for equitable partitions
recently proposed by C. Godsil in his monograph [6] is not stronger than the
well-known Lloyd theorem (see Theorem 1 in Section 2). In the next section, we
recall some basic definitions and notions. Section 3 contains the proof of our result
(Theorem 2).
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2. Association schemes and their equitable partitions

Let V be a finite set of size v and CV×V be the set of matrices over C with
rows and columns indexed by V . Let R = {R0, R1, . . . , Rd} be a set of non-empty
subsets of V × V . For i = 0, . . . , d, let Ai ∈ CV×V be the adjacency matrix of
the graph (V,Ri). The pair A = (V,R) is said to be an association scheme with d
classes and vertex set V if the following properties hold:

(1) A0 = I, the identity matrix,
(2)

∑d
i=0Ai = J , where J is the all ones matrix,

(3) AT
i ∈ {A0, . . . , Ad}, for every i = 0, . . . , d,

(4) AiAj is a linear combination of A0, . . . , Ad, for all i, j = 0, . . . , d.

The matrix algebra C[A] over C generated by A0, . . . , Ad is called the Bose –
Mesner algebra of A. It now follows from properties (1)-(4) that C[A] has a basis
consisting of the matrices A0, . . . , Ad and its dimension is d+ 1. We say that A is
commutative if C[A] is commutative, and that A is symmetric if the matrices Ai
are symmetric. Clearly, a symmetric association scheme is commutative.

In the paper, we assume that A is a symmetric association scheme with d classes.
Since A is commutative, it follows that the matrices A0, A1, . . ., Ad are

simultaneously diagonalized by an appropriate unitary matrix. This means that CV

is decomposed as an orthogonal direct sum of d+ 1 maximal common eigenspaces
of A0, A1, . . ., Ad:

(1) CV = W0 ⊕W1 ⊕ . . .Wd.

For every 0 ≤ j ≤ d, define Ej ∈ CV×V to be the orthogonal projection onto Wj .
Note [2] that the matrices Ej form another basis for A consisting of the primitive

idempotents of A, i.e., EiEj = δijEi and
∑d
j=0Ej = I.

For the two basises A0, . . . , Ad and E0, . . . , Ed of C[A], the change-of-basis
matrices P and Q are defined by

Ai =

d∑
j=0

PjiEj , Ei =
1

v

d∑
j=0

QjiAj ,

where, in fact, Pji is an eigenvalue of Ai on the eigenspace Wj . It now follows that

PQ = vI.

The numbers vi = P0i, 0 ≤ i ≤ d, are called the valencies of the scheme. The
numbers fj = tr(Ej) = rank(Ej) = dim(Wj), 0 ≤ j ≤ d, are called themultiplicities
of the scheme. By [2, Lemma 2.2.1(iv)] the following relation holds:

(2)
Qij
fj

=
Pji
vi
.

The distance-regular graphs provide important but not only examples of
symmetric association schemes. For more results and background on distance-
regular graphs and association schemes, we refer the reader to [1], [2], [5].

Let π be a partition of V with t cells C1, C2, . . . , Ct. The characteristic matrix
H of π is the v × t-matrix whose columns are the characteristic vectors of CV of
the cells of π.
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Define the quotient matrix N of A ∈ C[A] with respect to π to be equal to

Nk,j =
∑

x∈Ck,y∈Cj

Ax,y/|Ck|.

We say that a partition π of A is equitable [6] if the column space of H is C[A]-
invariant, i.e., for every A ∈ C[A], there exists a t× t-matrix N such that

AH = HN.

One can easily see that N is the quotient matrix of A with respect to π.
One can give the following equivalent combinatorial definition of equitable

partition: π is equitable if, for all 0 ≤ i ≤ d, 1 ≤ j, k ≤ t and every vertex x ∈ Ck,
there exist exactly nkij vertices y ∈ Cj such that (x, y) ∈ Ri. The t× t-matrices Ni,
0 ≤ i ≤ d, such that

(Ni)k,j = nkij ,

are, again, the quotient matrices of Ai with respect to π, i.e., AiH = HNi.

Let C be a subset of the vertex set of a graph Γ. The covering radius ρC of
C is defined to be ρC := max{d(x,C) | x ∈ Γ}, where d(x,C) := min{d(x, y) |
y ∈ C}, and d(x, y) is the usual graph distance. For i = 0, . . . , ρC , define
Γi(C) to be the set of vertices that are at distance i from C. The partition
{C = Γ0(C),Γ1(C), . . . ,ΓρC (C)} is referred to as the distance partition of the
vertex set of Γ with respect to C.

For an association scheme A = (V,R), assume that a graph Γ = (V,Ri) is
distance-regular for some i. An important type of equitable partitions is provided
by completely regular codes. A vertex subset C of Γ is called a completely regular
code if the distance partition with respect to C is equitable. Clearly, a single vertex
of the graph Γ is a completely regular code.

For instance, the completely regular codes of the Hamming graphs give rise to
orthogonal arrays, of the Johnson graphs — to combinatorial designs [4], [9], and
of the Grassmann graphs of diameter 2 — to Cameron – Liebler line classes in the
projective geometry of dimension 3 [10].

Another interesting type of equitable partitions is provided by the partition of
the vertex set of antipodal distance-regular graphs into antipodal classes [9].

The following result is well known in Algebraic Combinatorics and is sometimes
referred to as Lloyd’s theorem [5].

Theorem 1. If π is an equitable partition of symmetric association scheme A,
then, for any matrix A ∈ A, the characteristic polynomial of its quotient matrix B
divides the characteristic polynomial of A.

In other words, Theorem 1 states that every eigenvalue of the quotient matrix B
is an eigenvalue of A, and its multiplicity as an eigenvalue of B is not greater than
its multiplicity as an eigenvalue of A.

3. Main result

Following Godsil [6], let us define a complex inner product on CV×V by

〈M,N〉 = tr(M∗N) = sum(M ◦N),

where sum(M) denotes the sum of the entries of M , and ◦ denotes the Schur
multiplication of matrices. Then the basis A0, A1, . . . , Ad of the Bose – Mesner
algebra C[A] is orthogonal with respect to the inner product.
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Further, for a matrix M ∈ CV×V , let M̂ denote its orthogonal projection onto
C[A], i.e.,

M̂ =

d∑
i=0

〈Ai,M〉
〈Ai, Ai〉

Ai =

d∑
j=0

〈Ej ,M〉
〈Ej , Ej〉

Ej .

It follows from [6, Theorem 3.2.1] that

(3) M̂ =

d∑
i=0

〈Ai,M〉
vvi

Ai =

d∑
j=0

〈Ej ,M〉
fj

Ej .

Let F be a v × v permutation matrix. Then F is an automorphism of A if it
commutes with each matrix of C[A]. G. Higman derived the following necessary
condition for F to be an automorphism of A, see also [3].

Let F be an automorphism of A and σ denote the corresponding permutation
associated with F . Define αi(σ) to be the number of vertices x of the vertex set of
A such that (x, σ(x)) ∈ Ri. Note that αi(σ) = 〈Ai, F 〉. Then using equality (3):

F̂ =

d∑
i=0

αi(σ)

vvi
Ai =

d∑
i=0

〈F,Ei〉
fi

Ei,

and, further, exploiting this equation, one can show (see [6]) that a number

〈F,Ej〉 =
fj
v

d∑
i=0

Fji
vi
αi(σ)

must be an algebraic integer.
This condition is widely used in a study of feasible automorphisms of distance-

regular graphs [8].
Now let F be a projection matrix (i.e., F 2 = F ) that commutes with C[A]. In

his monograph [6], C. Godsil noticed that the arguments that prove the Higman
condition also yield that

(4) 〈F,Ej〉 =
fj
v

d∑
i=0

Pji
vi
〈F,Ai〉

must be a non-negative integer and this observation “could be used to show that
certain equitable partitions do not exist”.

Let us define the projection matrix associated to an equitable partition. Let π
be a partition of A with characteristic matrix H and the cells C1, . . . , Ct. Then
D = HTH is the diagonal matrix such that Di,i = |Ci|. Now the matrix

F = HD−1HT

represents the orthogonal projection onto the column space of H. We call F the
projection matrix of equitable partition π.

One can see that Fx,y is equal to 1/|Ci| if x and y are both in Ci and zero
otherwise. So, for an appropriate ordering of X, F has the following block form:

F =


1
|C1|J|C1| O|C1|×|C2| . . . O|C1|×|Ct|
O|C2|×|C1|

1
|C2|J|C2| . . . O|C2|×|Ct|

. . . . . . . . . . . .
O|Ct|×|C1| . . . O|Ct|×|Ct−1|

1
|Ct|J|Ct|

 ,
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where J is the all ones square matrix of proper order. Note that π is equitable if
and only if F commutes with C[A] [7].

Theorem 2. (Godsil condition for equitable partitions) Let π be an equitable
partition of a symmetric association scheme A with the projection matrix F . Then

〈F,Ej〉 =
fj
v

d∑
i=0

Pji
vi
〈F,Ai〉

is a nonegative integer for any j ∈ {0, . . . , d}.

First of all, we note that the quotient matrices of Ai share the same eigenspaces,
that implies the following fact on their eigenvalues. By mi we denote the dimension
of the space WiH, where Wi is the eigenspace of A, see (1).

Lemma 1. Let π be an equitable partition of a symmetric association scheme A
with the charachteristic matrix H:

AiH = HNi,

mi = dim(WiH) for any i ∈ {0, . . . , d}. Then for any i ∈ {0, . . . , d} the spectrum
of Ni consists of numbers P0i, . . . , Pdi with multiplicities m0, . . . ,md respectively.

Proof. For a left eigenvector w of Ai with eigenvalue Pji we have wAiH = PjiwH =
wHNi so that wH is a left eigenvector of Ni with the same eigenvalue Pji iff
wH 6= 0. Thus, if the space WjH is non-zero then it is a subspace of an eigenspace
of Ni.

Note that H has rank t, so ∪j∈{0,...,d}WjH is the whole eigenspace of Ni. Since
the considerations above do not depend on the choice of i, we get the desired
property.

Theorem 3. Let π be an equitable partition of a symmetric association scheme A
with the projection matrix F . Then the following equality holds:

〈F,Ej〉 = mj ,

where mj is the multiplicity of the eigenvalue Pji as an eigenvalue of Ni on the
eigenspace WjH, for every 0 ≤ i ≤ d.

Proof. First of all, we note that, for 0 ≤ i ≤ d,
〈F,Ai〉 = tr(FAi) = n1i1 + n2i2 + . . .+ ntit = tr(Ni),

and therefore 〈F,Ai〉 is equal to the sum of all eigenvalues of Ni.
We now have

〈F,Ej〉 =
fj
v

d∑
i=0

Pji
vi
〈F,Ai〉 =

fj
v

d∑
i=0

Pji
vi

tr(Ni) =
fj
v

d∑
i=0

Pji
vi

d∑
k=0

mkPki.

Using equality (2), we obtain

〈F,Ej〉 =
1

v

d∑
i=0

Qij

d∑
k=0

Pkimk =

d∑
k=0

mk

d∑
i=0

QijPki
v

=

d∑
k=0

mkδj,k = mj ,

which proves the theorem.

Therefore it follows from Theorem 2 that, for a putative equitable partition of
association scheme, condition (4) cannot say more than Theorem 1. Moreover, the
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following example shows that the condition may be even weaker than an obvious
condition of integrality of the elements of the quotient matrix.

Consider a perfect matching M = {(i, i′) : i ∈ {0, . . . , 4}}. Let C be a
labeled cycle with vertex set {0, . . . , 4}, and C ′ be its complement with vertex
set {0′, . . . , 4′} so that i′ ∼C′ j′ if and only if i 6∼C j.

Define a graph Γ with vertex set {i : i ∈ {0, . . . , 4}} ∪ {i′ : i ∈ {0, . . . , 4}} and
edge set consisting of edges C, C ′, and M . It is easy to see that Γ is the Petersen
graph, which is known to be distance-regular with diameter 2, i.e., the distance
relations on its vertex set form an association scheme with two classes.

Let us consider a 5-partition consisting of a cell with a pair of adjacent vertices
Γ (say, C1 = {0, 0′}) and of four cells of pairs of non-adjacent vertices (say, C2 =
{1, 2′}, C3 = {2, 1′}, C4 = {3, 4′}, C5 = {4, 3′}). Clearly, the partition is not
equitable, because, for example, the vertex 2′ has a neighbour in C4, whereas the
vertex 1 does not. In terms of the quotient matrices this is equivalent to the fact
that the quotient matrix B of A1 has a noninteger entry B2,4 = 1/2.

However, the partition is feasible with respect to (4). It is easy to see that
〈F,A0〉 is always the number of cells in the partition, i.e. 〈F,A0〉 = 5, and, further,
〈F,A1〉 = 1, 〈F,A2〉 = 4.

Using equality (4), we obtain:
〈F,E0〉 = 1, 〈F,E1〉 = 2, 〈F,E2〉 = 2,

which completes our example.
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