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Abstract. We define a class of algebras describing links of binary isola-
ting formulas on a set of realizations for a family of 1-types of a complete
theory. We prove that a set of labels for binary isolating formulas on a
set of realizations for a 1-type p forms a groupoid of a special form if
there is an atomic model over a realization of p. We describe the class of
these groupoids and consider features of these groupoids in a general case
and for special theories. A description of the class of partial groupoids
relative to families of 1-types is given.

Keywords: type, complete theory, groupoid of binary isolating formulas,
join of groupoids, deterministic structure.

In [29] (see also [24]–[30]), a series of constructions is introduced admitting to
realize key properties of countable theories and to obtain a classification of countable
models of small (in particular, of Ehrenfeucht) theories with respect to two basic
characteristics: Rudin–Keisler preorders and distribution functions for the numbers
of limit models. The construction of these theories is essentially based on the
definition of special directed graphs with colored vertices and arcs as well as on
the definition of (n + 1)-ary predicates that turn prime models over realizations
of n-types to prime models over realizations of 1-types and reducing links between
prime models over finite sets to links between prime models over elements such that
these links are defined by principal arcs and edges.

In the paper, we consider a general approach to description of binary links
between realizations of 1-types in terms of labels of pairwise non-equivalent isolating
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formulas, being represented implicitly or for some special cases in [18]–[20], [24]–
[31]. This approach is naturally interpretable in the class of relation partial algebras
[10, 14].

In Section 1, we define a class of algebras distributing binary isolating formulas
and introduce preliminary definitions, notations, and properties of algebras connect-
ed with relations of isolation and semi-isolation. In Sections 2, we describe some
basic examples for these algebras and for types basing these algebras. In Section
3, we define a groupoid Pν(p) of principal formulas on the set of all realizations of
a 1-type p (assuming that there is an atomic model over a realization of p) with
respect to a regular labelling function ν(p) for pairwise non-equivalent principal
formulas ϕ(a, y) for which ϕ(a, x) ` p(x) holds, |= p(a). In Section 4, we collect
the basic properties of groupoids Pν(p) and the significant subgroupoids of Pν(p).
In Section 5, using the successively-annihilating sums we construct two kinds of
monoids Pν(p) containing an arbitrary group. In Section 6, we produce a list of
properties characterizing the class of groupoids Pν(p). Features of these groupoids
for the class of special theories are exposed in Section 7. In Section 8, we define the
notion of join of groupoids and show the mechanism of extension of basic properties
of Pν(p) to the class of partial groupoids being joins of groupoids Pν(p). In final
Section 9, we produce a list of properties characterizing the class of partial groupoids
corresponding to algebras of distributions for binary isolating formulas on a family
of types.

We use the standard relation algebraic, model-theoretical, semigroup, and graph-
theoretic terminology [3]–[11], [13, 14, 17] as well as some notions, notations, and
constructions in [29].

1. Preliminary notions, notations, and properties

Definition 1.1 [1, 29, 30]. Let T be a complete theory, M |= T . Consider types
p(x), q(y) ∈ S(∅), realized in M, and all (p, q)-preserving formulas ϕ(x, y) of T ,
i. e., formulas for which there is a ∈ M such that |= p(a) and ϕ(a, y) ` q(y). Now,
for each such a formula ϕ(x, y), we define a binary relation Rp,ϕ,q 
 {(a, b) | M |=
p(a) ∧ ϕ(a, b)}. If (a, b) ∈ Rp,ϕ,q, then (a, b) is called a (p, ϕ, q)-arc. If ϕ(a, y) is
principal (over a), the (p, ϕ, q)-arc (a, b) is also principal. If, in addition, ϕ(x, b) is
principal (over b), the set [a, b] 
 {(a, b), (b, a)} is said to be a principal (p, ϕ, q)-
edge. (p, ϕ, q)-arcs and (p, ϕ, q)-edges are called arcs and edges respectively if we
say about fixed or some formula ϕ(x, y). If (a, b) is a principal arc and (b, a) is not
a principal arc (on any formula) then (a, b) is called irreversible.

For types p(x), q(y) ∈ S(∅), we denote by PF(p, q) the set

{ϕ(x, y) | ϕ(a, y) is a principal formula, ϕ(a, y) ` q(y), where |= p(a)}.

Let PE(p, q) be the set of all pairs of formulas (ϕ(x, y), ψ(x, y)) ∈ PF(p, q) such
that for any (some) realization a of p the sets of solutions for ϕ(a, y) and ψ(a, y)
coincide.

Clearly, PE(p, q) is an equivalence relation on the set PF(p, q). Notice that each
PE(p, q)-class E corresponds to either a principal edge or to an irreversible principal
arc connecting realizations of p and q by some (any) formula in E. Thus the quotient
PF(p, q)/PE(p, q) is represented as a disjoint union of sets PFS(p, q) and PFN(p, q),
where PFS(p, q) consists of PE(p, q)-classes corresponding to principal edges and
PFN(p, q) consists of PE(p, q)-classes corresponding to irreversible principal arcs.
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The sets PF(p, p), PE(p, p), PFS(p, p), and PFN(p, p) are denoted by PF(p),
PE(p), PFS(p), and PFN(p) respectively.

Let T be a complete theory without finite models, U = U− ∪̇ {0} ∪̇U+ be an
alphabet of cardinality ≥ |S(T )|, consisting of negative elements u− ∈ U−, positive
elements u+ ∈ U+, and zero 0. As usual, we write u < 0 for any u ∈ U− and u > 0
for any u ∈ U+.1 The set U− ∪ {0} is denoted by U≤0 and U+ ∪ {0} is denoted by
U≥0. Elements of U are called labels.

Let ν(p, q): PF(p, q)/PE(p, q) → U be an injective labelling functions, p(x),
q(y) ∈ S(∅), for which negative elements correspond to classes in PFN(p, q)/PE(p, q)
and non-negative elements correspond to classes in PFS(p, q)/PE(p, q) such that 0
is defined only for p = q and is represented by the formula (x ≈ y), ν(p)
 ν(p, p).
We additionally assume that ρν(p) ∩ ρν(q) = {0} for p 6= q (where, as usual, we
denote by ρf the image of the function f) and ρν(p,q) ∩ ρν(p′,q′) = ∅ if p 6= q and
(p, q) 6= (p′, q′). Labelling functions with the properties above as well families of
these functions are said to be regular. Below we shall consider only regular labelling
functions and their regular families.

We denote by θp,u,q(x, y) a formula in PF(p, q) with the label u ∈ ρν(p,q). If a
type p is fixed and p = q then a formula θp,u,q(x, y) is denoted by θu(x, y).

Note that if θp,u,q(x, y) and θq,v,p(x, y) are formulas witnessing that for realiz-
ations a and b of p and q respectively the pairs (a, b) and (b, a) are principal arcs
then the formula θp,u,q(x, y) ∧ θq,v,p(y, x) witnesses that [a, b] is a principal edge.
Moreover the (non-negative) label v corresponds uniquely to the invertible label u
and vice versa. The labels u and v are reciprocally inverse and are denoted by v−1
and u−1 respectively.

For types p1, p2, . . . , pk+1 ∈ S1(∅) and sets X1, X2, . . . , Xk ⊆ U of labels we
denote by

P (p1, X1, p2, X2, . . . , pk, Xk, pk+1)

the set of all labels u ∈ ρν(p1,pk+1) corresponding to formulas θp1,u,pk+1
(x, y) satisfy-

ing, for realizations a of p1 and some u1 ∈ X1 ∩ ρν(p1,p2), . . . , uk ∈ Xk ∩ ρν(pk,pk+1),
the following condition:

θp1,u,pk+1
(a, y) ` θp1,u1,p2,u2,...,pk,uk,pk+1

(a, y),

where
θp1,u1,p2,u2,...,pk,uk,pk+1

(x, y)



 ∃x2, x3, . . . , xk(θp1,u1,p2(x, x2) ∧ θp2,u2,p3(x2, x3) ∧ . . .
. . . ∧ θpk−1,uk−1,pk(xk−1, xk) ∧ θpk,uk,pk+1

(xk, y)).

Thus the Boolean P(U) of U is the universe of an algebra of distributions of
binary isolating formulas with k-ary operations

P (p1, ·, p2, ·, . . . , pk, ·, pk+1),

where p1, . . . , pk+1 ∈ S1(∅). This algebra has a natural restriction to any family
R ⊆ S1(∅).

Clearly, replacing the set of labels bijectively we get an isomorphic algebra. In
particular, there is a canonical algebra, where labels are presented by elements⋃

p,q

PF(p, q)/PE(p, q).

1If U is at most countable, we assume that U is a subset of the set Z of integers.
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Nevertheless, we shall use an abstract set U of labels reflecting their signs and
clarifying algebraic properties for operations on P(U).2

Note that if some set Xi is disjoint with ρν(pi,pi+1), in particular, if it is empty
then

P (p1, X1, p2, X2, . . . , pk, Xk, pk+1) = ∅.
Note also that if Xi 6⊆ ρν(pi,pi+1) for some i then

P (p1, X1, p2, X2, . . . , pk, Xk, pk+1) =

= P (p1, X1 ∩ ρν(p1,p2), p2, X2 ∩ ρν(p1,p2), . . . , pk, Xk ∩ ρν(pk,pk+1), pk+1).

In view of the previous equality, it is enough to assume Xi ⊆ ρν(pi,pi+1), i =
1, . . . , k, for the values P (p1, X1, p2, X2, . . . , pk, Xk, pk+1).

If each set Xi is a singleton consisting of an element ui then we use ui instead
of Xi in P (p1, X1, p2, X2, . . . , pk, Xk, pk+1) and write

P (p1, u1, p2, u2, . . . , pk, uk, pk+1).

By the definition the following equality holds:

P (p1, X1, p2, X2, . . . , pk, Xk, pk+1) =

= ∪{P (p1, u1, p2, u2, . . . , pk, uk, pk+1) | u1 ∈ X1, . . . , uk ∈ Xk}.
Hence the specification of P (p1, X1, p2, X2, . . . , pk, Xk, pk+1) is reduced to the
specifications of P (p1, u1, p2, u2, . . . , pk, uk, pk+1). Note also that P (p,X, q) = X
for any X ⊆ ρν(p,q).

Clearly, if ui = 0 then pi = pi+1 for nonempty sets

P (p1, u1, p2, u2, . . . , pi, 0, pi+1, . . . , pk, uk, pk+1)

and the following conditions hold:

P (p1, 0, p1) = {0},
P (p1, u1, p2, u2, . . . , pi, 0, pi+1, ui+1, pi+2, . . . , pk, uk, pk+1) =

= P (p1, u1, p2, u2, . . . , pi, ui+1, pi+2, . . . , pk, uk, pk+1).

If all types pi equal to a type p then we write Pp(X1, X2, . . . , Xk) and
Pp(u1, u2, . . . , uk) as well as bX1, X2, . . . , Xkcp and bu1, u2, . . . , ukcp instead of

P (p1, X1, p2, X2, . . . , pk, Xk, pk+1)

and
P (p1, u1, p2, u2, . . . , pk, uk, pk+1)

respectively. We omit the index ·p if the type p is fixed. In this case, we write
θu1,u2,...,uk

(x, y) instead of θp,u1,p,u2,...,p,uk,p(x, y).

Definition 1.2 [15]. LetM be a model of a theory T , ā and b̄ be tuples inM, A
be a subset ofM . The tuple ā semi-isolates the tuple b̄ over the set A if there exists
a formula ϕ(ā, ȳ) ∈ tp(b̄/Aā) for which ϕ(ā, ȳ) ` tp(b̄/A) holds. In this case we say

2Considering formulas instead of labels, the value P (p1, X1, p2, X2, . . . , pk, Xk, pk+1) depends
on the choice of formulas θ and same formulas can be used for distinct tuples of types. We can
assume that for (p1, pk+1) 6= (p′1, p

′
k+1), θp1,u,pk+1 (x, y) and θp′1,u

′,p′
k+1

(x, y) are separated by

some ψ1(x) ∈ p1(x) \ p′1(x) (with ∃yθp1,u,pk+1 (x, y) ` ψ1(x) and ∃yθp′1,u′,p′k+1
(x, y) ` ¬ψ1(x))

and ψk+1(y) ∈ pk+1(y) \ p′k+1(y) (with ∃xθp1,u,pk+1 (x, y) ` ψk+1(y) and ∃xθp′1,u′,p′k+1
(x, y) `

¬ψk+1(y)). At the same time for infinite families of types this procedure may fail. For these
algebras, we put the difference into consideration and essentially use labels instead sets of formulas.
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that the formula ϕ(ā, ȳ) (with parameters in A) witnesses that b̄ is semi-isolated
over ā with respect to A.

Similarly, a tuple ā isolates a tuple b̄ over A if there exists a formula ϕ(ā, ȳ) ∈
tp(b̄/Aā) for which ϕ(ā, ȳ) ` tp(b̄/A) and ϕ(ā, ȳ) is a principal (i. e., isolating)
formula. In this case we say that the formula ϕ(ā, ȳ) (with parameters in A)
witnesses that b̄ is isolated over ā with respect to A.

If ā (semi-)isolates b̄ over ∅, we simply say that ā (semi-)isolates b̄; and if a
formula ϕ(ā, ȳ) witnesses that ā (semi-)isolates b̄ over ∅ then we say that ϕ(ā, ȳ)
witnesses that ā (semi-)isolates b̄.

If q ∈ S(T ) then SIq (in the model M) denotes the relation of semi-isolation
(over ∅) on the set of all realizations of q:

SIq 
 {(ā, b̄) | M |= q(ā) ∧ q(b̄) and ā semi-isolates b̄}.

Similarly, we denote by Iq (in the model M) the relation of isolation (over ∅)
on the set of all realizations of q:

Ip 
 {(ā, b̄) | M |= q(ā) ∧ q(b̄) and ā isolates b̄}.

For a family R ⊂ S(T ) of 1-types we denote by IR (in the modelM) the set

{(a, b) | tp(a), tp(b) ∈ R and a isolates b}

and by SIR (inM) the set

{(a, b) | tp(a), tp(b) ∈ R and a semi-isolates b}.

Clearly, IR ⊆ SIR and, for any set of realizations of types in R, the relations
IR and SIR are reflexive. As shown in [15], the relation of semi-isolation on the set
of tuples in an arbitrary model is transitive and, in particular, any relation SIR is
transitive.

Lemma 1.3 [1, 2, 12, 33, 34]. (1) If a tuple ā isolates a tuple b̄, whereas b̄ does not
isolate ā, then b̄ does not semi-isolate ā.

(2) If (a, b) ∈ IR and (b, a) ∈ SIR then (b, a) ∈ IR.

Proof. (1) Suppose that ϕ(ā, ȳ) isolates tp(b̄/ā). Assume the contrary (i. e., b̄ semi-
isolates ā) and take a formula ψ(x̄, b̄) witnessing that b̄ semi-isolates ā. Now as
tp(ā/b̄) is non-isolated, there exists a formula χ(x̄, ȳ) such that ϕ(x̄, b̄) ∧ ψ(x̄, b̄) ∧
χ(x̄, b̄) and ϕ(x̄, b̄)∧ψ(x̄, b̄)∧¬χ(x̄, b̄) are both consistent. Moreover both formulas
imply tp(ā). Hence ϕ(ā, ȳ)∧χ(ā, ȳ) and ϕ(ā, ȳ)∧¬χ(ā, ȳ) are both consistent. This
contradicts the fact that ϕ(ā, ȳ) is a principal formula.

(2) follows immediately from (1). �

Proposition 1.4. (1) If p, q ∈ R are principal types then ρν(p,q) ∪ ρν(q,p) ⊆ U≥0.
(2) If p, q ∈ R, p is a principal type and q is a non-principal type then ρν(p,q) = ∅

and ρν(q,p) ⊆ U−.

Proof is obvious. �

Corollary 1.5. If p(x) is a principal type then ρν(p) ⊆ U≥0.

Proposition 1.6. Let p1, p2, . . . , pk+1 be types in S1(∅). The following assertions
hold.

(1) If ui ∈ ρν(pi,pi+1), i = 1, . . . , k, and some ui is negative then

P (p1, u1, p2, u2, . . . , pk, uk, pk+1) ⊆ U−.
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(2) If ui ∈ ρν(pi,pi+1), i = 1, . . . , k, and all elements ui are not negative then

P (p1, u1, p2, u2, . . . , pk, uk, pk+1) ⊆ U≥0.
(3) If ui ∈ ρν(pi,pi+1), i = 1, . . . , k, and all elements ui are non-negative, then all

elements of the set

X 
 P (p1, u1, p2, u2, . . . , pk, uk, pk+1)

are invertible and the set X−1 
 {v−1 | v ∈ X} coincides with the set

P (pk+1, u
−1
k , pk, u

−1
k−1, . . . , p2, u

−1
1 , p1).

Proof. (1) Let v be a label in P (p1, u1, p2, u2, . . . , pk, uk, pk+1). Consider realizations
ai of pi such that

|= θpi,ui,pi+1(ai, ai+1), i = 1, . . . , k, |= θp1,v,pk+1
(a1, ak+1).

For the family R = {p1, p2, . . . , pk+1} we have (a1, ak+1) ∈ IR, (ai, ai+1) ∈ IR,
i = 1, . . . , k, and so (ai, aj) ∈ SIR for i ≤ j. If ui < 0 then (ai+1, ai) /∈ IR
and then, by Lemma 1.3, (ai+1, ai) /∈ SIR. If v ≥ 0 then (ak+1, a1) ∈ IR and, by
transitivity of SIR and (ai+1, ak+1), (ak+1, a1), (a1, ai) ∈ SIR we get (ai+1, ai) ∈ SIR
that is impossible. Since the element v ∈ P (p1, u1, p2, u2, . . . , pk, uk, pk+1) is taken
arbitrarily the set P (p1, u1, p2, u2, . . . , pk, uk, pk+1) consists of negative elements.

(2) Take again elements v, a1, a2, . . . , ak+1 as for (1). If ui ≥ 0 then (ai+1, ai) ∈
IR, i = 1, . . . , k. By transitivity of the relation SIR, the element ak+1 semi-isolates
the element a1. In view of (a1, ak+1) ∈ IR, by Lemma 1.3, we have (ak+1, a1) ∈ IR
and so v ≥ 0. Since the element

v ∈ P (p1, u1, p2, u2, . . . , pk, uk, pk+1)

is taken arbitrarily the set P (p1, u1, p2, u2, . . . , pk, uk, pk+1) consists of non-negative
elements.

(3) follows immediately from (2). �

Corollary 1.7. Restrictions of U to the sets U≤0 and U≥0 form subalgebras of the
algebra of distributions of binary isolating formulas. Each element of the restriction
to U≥0 has a unique inverse element. The operation of inversion is coordinated with
the operations of the algebra.

2. Examples

Consider some examples for distributions of labels of binary isolating formulas
on sets of realizations of types p(x) ∈ S(∅) for countable theories T .

I. If |ρν(p)| = 1 then (x ≈ y) is the unique principal formula up to equivalence.
It is possible only in the following cases:

(1) T is small (i. e., with countable S(∅)) and satisfies some of the following
condition:

(a) p(x) is a principal type with a unique realization;
(b) p(x) is a non-principal type such that if a set {ϕ(a, y) ∧ ¬(a ≈ y)} ∪ p(y) is

consistent, where ϕ(x, y) is a formula of T , |= p(a), then ϕ(a, y) 6` p(y);
(2) T is a theory with continuum many types and for any formula ϕ(x, y) of T

and for a realization a of p(x) if the set {ϕ(a, y) ∧ ¬(a ≈ y)} ∪ p(y) is consistent
and ϕ(a, y) ` p(y) then there are no isolating formulas ψ(a, y) such that ψ(a, y) `
ϕ(a, y) ∧ ¬(a ≈ y).
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The case 1,a is represented by a type being realized by a constant; the cases 1,b
and 2 are represented by theories of unary predicates with non-principal types p(x)
and having countably many and continuum many types respectively.

II. Let ρν(p) = {0, 1}. Then 1−1 = 1 and any realization a of p is linked with
a unique realization b of p for which |= θ1(a, b) and, moreover, |= θ1(b, a). Then
the set of realizations of p splits on two-element equivalence classes consisting of
θ1-edges. If p is a principal type of a small theory then a θ1-edge is unique, and
if p is non-principal, then the number of these edges can vary from 1 to infinity
depending on a model of a theory.

III. Let ρν(p) = {−1, 0} be a set for a small theory T . By Corollary 1.5, the type
p(x) is non-principal and the formula θ−1(x, y) witnesses that SIp is non-symmetric.
The formula θ−1,−1(x, y) 
 ∃z(θ−1(x, z) ∧ θ−1(z, y)) is also witnessing that SIp is
non-symmetric. By assumption the formula θ−1,−1(a, y) is equivalent to the formula
θ−1(a, y). It means that, on the set of all realizations of p, the relation described
by the formula θ−1(x, y) ∨ (x ≈ y) is an infinite partial order. This partial order
is dense since if an element a has a covering element then the formula θ−1(a, y)
is equivalent to the disjunction of consistent formulas θ−1(a, y) ∧ θ−1,−1(a, y) and
θ−1(a, y) ∧ ¬θ−1,−1(a, y), but it is impossible for the principal formula θ−1(a, y).

We consider, as a theory with ρν(p) = {−1, 0}, the Ehrenfeucht’s theory T , i. e.
the theory of a structureM, formed from the structure 〈Q;<〉 by adding constants
ck, ck < ck+1, k ∈ ω, such that lim

k→∞
ck = ∞. The type p(x), isolated by the

set of formulas ck < x, k ∈ ω, has exactly two non-equivalent isolating formulas:
θ−1(a, y) = (a < y) and θ0(a, y) = (a ≈ y), where |= p(a).

IV. Let ρν(p) = {−1, 0, 1}. Realizing this equality, we consider the Ehrenfeucht’s
example, where each element a is replaced by an <-antichain consisting of two
elements a′ and a′′ such that |= θ1(a′, a′′) ∧ θ1(a′′, a′). Then we have the following
equalities for the type p(x) isolated by the set of formulas c′k < x, k ∈ ω:

Pp(−1,−1) = Pp(−1, 1) = Pp(1,−1) = {−1}, Pp(1, 1) = {0}.

V. The equality ρν(p) = {−2,−1, 0} with Pp(−2,−2) = {−2} and

Pp(−2,−1) = Pp(−1,−2) = Pp(−1,−1) = {−1}
can be fulfilled by two dense strict orders <1 and <2 on the set of all realizations
of a non-principal type such that <1 immerses <2: <1 ◦ <2 = <2 ◦ <1 = <1.

VI. Consider a dense linearly ordered set M = 〈Q;<〉, T = Th(M), and the
unique 1-type p of T . Define a labelling function ν(p), for which 0 corresponds to
the formula (x ≈ y), 1 to (x < y), and 2 to (y < x). We have ρν(p) = {0, 1, 2},
Pp(1, 2) = Pp(2, 1) = ρν(p), Pp(1, 1) = {1}, Pp(2, 2) = {2}.

VII. Take a group 〈G; ∗〉 and define on the set G binary predicates Qg, g ∈ G,
by the following rule:

Qg = {(a, b) ∈ G2 | a ∗ g = b}.
If p(x) is a type (of a theory T ) realized in any modelM |= T containing G exactly
by elements in G connected by definable relations Qg, then the type p is isolated, the
set G is finite, and ρν(p) consists of non-negative elements bijective with elements
in G. If ρν(p) consists of non-negative elements, is bijective with G, and the set of
realizations of a principal type p is not fixed, then, assuming the smallness of the
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theory, the set G is infinite and the number of connected components with respect
to the relation Q 


⋃
g∈G

Qg is not bounded. At last if the type p is not isolated

then the number of Q-components on sets of realizations of p is also unbounded
although the set G can be finite.

The Cayley table of the group 〈G; ∗〉 defines operations Pp(·, . . . , ·) on the set
ρν(p) in accordance with links between the relations Qg.

VIII. Applying to a concrete group we consider the structureM
 〈Z; s(1)〉 with
the unary successor function s: Z↔ Z, where s(n) = n+ 1 for each n ∈ Z. For the
unique 1-type p of the theory Th(M), the set of pairwise non-equivalent formulas
θu(x, y) is exhausted by the list: y ≈ s . . . s︸ ︷︷ ︸

n times

(x) and x ≈ s . . . s︸ ︷︷ ︸
n times

(y), n ∈ ω. The set

ρν(p) consists of non-negative elements linked by the additive group of integers.

3. Algebra of distributions of binary isolating formulas on a set of
realizations of a type

We consider a complete theory T , a type p(x) ∈ S(T ), a regular labelling function
ν(p): PF(p)/PE(p) → U , and a family of sets Pp(u1, . . . , uk), u1, . . . , uk ∈ ρν(p),
k ∈ ω, of labels for binary isolating formulas.

We denote byMp and byM(a) an atomic model over a realization a of p.
Below we prove some basic properties for sets

bu1, . . . , ukc
 Pp(u1, . . . , uk).

Proposition 3.1. 1. For any u1, u2, u3 ∈ ρν(p) the following inclusions are satisfied:

bbu1, u2c, u3c ⊆ bu1, u2, u3c,

bu1, bu2, u3cc ⊆ bu1, u2, u3c.
2. (Left semi-associativity) If a modelMp exists then, for any u1, u2, u3 ∈ ρν(p),

bbu1, u2c, u3c = bu1, u2, u3c.

3. (Criterion for right semi-associativity) If the modelM(a) exists, where |= p(a),
then for any u1, u2, u3 ∈ ρν(p) the equality

bu1, bu2, u3cc = bu1, u2, u3c

holds if and only if for any v ∈ bu1, u2, u3c the formula θu1
(a, y1) ∧ θu2,u3

(y1, y) ∧
θv(a, y) is realized inM(a) by a principal arc (b, c).

4. ((≥ 0)-associativity) If the model M(a) exists, where |= p(a), then for any
u1, u2, u3 ∈ ρν(p), where u1 ≥ 0,

bbu1, u2c, u3c = bu1, u2, u3c = bu1, bu2, u3cc.

Proof. 1. For the proof of bbu1, u2c, u3c ⊆ bu1, u2, u3c, we take an arbitrary element
v ∈ bbu1, u2c, u3c. Then v ∈ bv′, u3c for some v′ ∈ bu1, u2c, and for any realization
a of p we have

(1) θv′(a, x2) ` θu1,u2
(a, x2),

(2) θv(a, y) ` θv′,u3
(a, y).
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By (1), we obtain

(3) θv′,u3(a, y) ` θu1,u2,u3(a, y).

Thus, (2) and (3) imply
θv(a, y) ` θu1,u2,u3

(a, y),

and, consequently, v ∈ bu1, u2, u3c.
Now we prove the inclusion bu1, bu2, u3cc ⊆ bu1, u2, u3c. Take an arbitrary

element v ∈ bu1, bu2, u3cc. Then v ∈ bu1, v′c for some v′ ∈ bu2, u3c, and for any
realization a of p we have

(4) θv′(a, y) ` θu2,u3
(a, y),

(5) θv(a, y) ` θu1,v′(a, y).

By (4), we obtain

(6) θu1,v′(a, y) ` θu1,u2,u3
(a, y).

Thus, (5) and (6) imply
θv(a, y) ` θu1,u2,u3(a, y),

and, consequently, v ∈ bu1, u2, u3c.
2. Take a realization a of p and an element v ∈ bu1, u2, u3c. Then, for the principal

formula θv(a, y), we have θv(a, y) ` θu1,u2,u3(a, y) and so

M(a) |= θu1(a, b1) ∧ θu2(b1, b2) ∧ θu3(b2, c) ∧ θv(a, c)
for some realizations b1, b2, and c of p. Since the modelM(a) is atomic over a we
have θv′(a, x2) ` θu1,u2(a, x2) and M(a) |= θv′(a, b2) for some v′ ∈ bu1, u2c. Then
θv(a, y) ` θv′,u3(a, y) and hence v ∈ bv′, u3c. Since the element v ∈ bu1, u2, u3c is
chosen arbitrarily, we obtain bu1, u2, u3c ⊆ bbu1, u2c, u3c that implies, by 1, the
equality bbu1, u2c, u3c = bu1, u2, u3c.

3. It is clear in view of 1.
4. By 1 and 2, it suffices to prove bu1, u2, u3c ⊆ bu1, bu2, u3cc for any u1, u2, u3 ∈

ρν(p), where u1 ≥ 0. Let v be an arbitrary element in bu1, u2, u3c. Since u1 ≥ 0

there is the label u−11 and, inM(a), there are realizations b1, b2, c of p such that

M(a) |= θu−1
1

(a, b1) ∧ θu2
(a, b2) ∧ θu2,u3

(a, c) ∧ θv(b1, c).

Since the type tp(c/a) is principal, we haveM(a) |= θv′(a, c) for some label v′. As
v′ ∈ bu2, u3c and v ∈ bu1, v′c we obtain v ∈ bu1, bu2, u3cc.

If u2 ≥ 0 and u3 ≥ 0 we also have the required inclusion by the following
arguments. Since v ≥ 0 by Proposition 1.6 (2), and there is a non-negative element
v−1 ∈ bu−13 , u−12 , u−11 c, then, by 2, we have v−1 ∈ bbu−13 , u−12 c, u

−1
1 c. Applying

Proposition 1.6 (3), we obtain v ∈ bu1, bu2, u3cc. �
Proposition 3.1 implies

Corollary 3.2. If there is a model M(a), where |= p(a), then the following
conditions hold:

1. For any u1, u2, u3 ∈ ρν(p), the equalities

bbu1, u2c, u3c = bu1, u2, u3c ⊇ bu1, bu2, u3cc
are satisfied.

2. (Criterion of associativity) For any u1, u2, u3 ∈ ρν(p), the equality

bbu1, u2c, u3c = bu1, bu2, u3cc
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hold if and only if u1 ≥ 0 or, for any v ∈ bu1, u2, u3c, the formula θu1(a, y1) ∧
θu2,u3

(y1, y) ∧ θv(a, y) is realized inM(a) by a principal arc (b, c).

Note that ifMp does not exist the associativity (as well as semi-associativities)
can be failed. For instance, if bu1, u2c = ∅ then bbu1, u2c, u3c is also empty although
bu1, bu2, u3cc 6= ∅ is admissible.

By Proposition 3.1, havingMp the associativity can be failed only by some labels
u1, u2, u3 with u1 < 0. By Proposition 1.6 (1), in this case any label v ∈ bu1, u2, u3c
is also negative. The mechanism presented in the following example shows that the
fault of right semi-associativity is admitted for any distribution of signs for nonzero
labels u2, u3: there are small theories with

(7) bu1, u2, u3c 6= bu1, bu2, u3cc.

Example 3.3. Obtaining (7) with u1 < 0, u2, u3 6= 0, and a label v ∈ bu1, u2, u3c \
bu1, bu2, u3cc (i. e., by Proposition 3.1 (3), for the non-realizability of the formula
ϕ(a, y1, y2)
 θu1

(a, y1)∧θu2,u3
(y1, y2)∧θv(a, y2) by principal arcs) we consider the

schema of the realization of a non-p-principal (2, p)-type in a model Mp of small
theory presented in [29, Example 1.3.1] (see also [22]). Defining the type p(x) we
introduce a Qu1- and Qv-ordered (for binary predicates Qu1 and Qv corresponding
to the labels u1 and v) coloring Col: M0 → ω ∪ {∞} of some graph Γ producing
unary predicates Coln = {a ∈M0 | Col(a) = n}, n ∈ ω, such that:

(a) for any m ≤ n < ω and α = u1, v, there are elements a, b ∈ M0 for which
|= Colm(a) ∧ Coln(b) ∧Qα(a, b);

(b) if m < n < ω then there are no elements c, d ∈ M0 for which |= Colm(c) ∧
Coln(d) ∧Qα(d, c).

Moreover, using a generic construction [29, Chapter 2] for Γ we obtain the unique
non-principal 1-type p(x) and it is isolated by the set {¬Coln(x) | n ∈ ω}.

For each label ui, i ∈ {2, 3}, depending on its label, we define a binary predicate
Qui

linking only elements of the same color if ui is positive, and with the Qui
-

ordering of Col if ui < 0. Now we introduce labels v′n, n ∈ ω, being negative if
u2 < 0 or u3 < 0 and positive otherwise, such that bu2, u3c = {v′n | n ∈ ω}. We
define pairwise disjoint predicates Qv′n linking only elements of the same color if
v′n > 0, and linking with the Qv′n -ordering of Col if v′n < 0. Moreover, we require
the following condition: for any element ak of the color k the formula ϕ(ak, y1, y2)
is realized by principal Qv′n -arcs exactly with n ≥ k. It means that, for |= p(a), the
formula ϕ(a, y1, y2) is not realized by principal arcs, since this formula witnesses
that the non-p-principal (2, p)-type q(y1, y2) 
 p(y1) ∪ p(y2) ∪ {θu2,u3

(y1, y2)} ∪
{¬θv′n(y1, y2) | n ∈ ω} is realized inMp. �

If the model Mp exists then, using the left semi-associativity, by induction on
the number of brackets one prove that all operations b·, ·, . . . , ·c acting on sets in
P(ρν(p))\{∅} are generated by the binary operation b·, ·c on the set P(ρν(p))\{∅}. If
we have the right semi-associativity, the values bX1, X2, . . . , Xkc, X1, X2, . . . , Xk ⊆
ρν(p), do not depend on sequences of placements of brackets for

Xi,i+1,...,i+m+n 
 bXi,i+1,...,i+m, Xi+m+1,i+m+2,...,i+m+nc,
where X1,2,...,k = bX1, X2, . . . , Xkc.

Thus, having Mp, the groupoid Pν(p) 
 〈P(ρν(p)) \ {∅}; b·, ·c〉, being a (left)
semi-associative algebra, admits to represent all operations b·, ·, . . . , ·c by terms of
the language b·, ·c. Below the operation b·, ·c will be also denoted by · and we shall
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write uv instead of u · v. If the right semi-associativity fails we shall assume, for
u1u2 . . . uk, the following distribution of parentheses: (((u1 · u2) · . . .) · uk).

Since by the choice of the label 0 for the formula (x ≈ y) the equalitiesX·{0} = X
and {0} ·X = X are true for any X ⊆ ρν(p), the groupoid Pν(p) has the unit {0},
and it is a monoid if the algebra is right semi-associative. We have

Y · Z =
⋃
{yz | y ∈ Y, z ∈ Z}

for any sets Y, Z ∈ P(ρν(p)) \ {∅} in this structure.
Thus the following proposition holds.

Proposition 3.4. For any complete theory T , any type p ∈ S1(T ) having the model
Mp, and the regular labelling function ν(p), any operation Pp(·, ·, . . . , ·) on the set
P(ρν(p)) \ {∅} is interpretable by a term of the groupoid Pν(p).

The groupoid Pν(p) is called the groupoid of binary isolating formulas over the
labelling function ν(p) or the Iν(p)-groupoid.

Propositions 1.6 and 3.1 imply

Proposition 3.5. For any complete theory T , any type p ∈ S1(T ) having the model
Mp, and the regular labelling function ν(p), the restriction of the groupoid Pν(p)

to the set of non-positive (respectively non-negative) labels is a semi-associative
subalgebra of Pν(p) with the unit {0} (and, moreover, it is a monoid).

4. Characterization for transitivity of the relation Ip.
Deterministic, almost deterministic Iν(p)-groupoids and elements

The following assertion gives a characterization of transitivity of the relation Ip.
For simplicity we formulate and prove it for a 1-type p although the proof implies
the validity for any complete type r of a theory with a modelMr.

Proposition 4.1. Let p(x) be a complete type of a complete theory T having a
model Mp, and ν(p) be a regular labelling function. The following conditions are
equivalent:

(1) the relation Ip (on a set of realizations of p in a modelM |= T ) is transitive;
(2) for any labels u1, u2 ∈ ρν(p), the set Pp(u1, u2) is finite.

Proof. Let a, b, c be realizations of p such that (a, b) ∈ Ip and (b, c) ∈ Ip witnessed by
isolating formulas θu1

(a, y) and θu2
(b, y). If the set Pp(u1, u2) is finite and consists

of labels v1, . . . , vk then, by existence ofMp, the formula θu1,u2
(a, y) is equivalent

to the formula
k∨
i=1

θvi(a, y). Since |= θu1,u2(a, c) we have |=
k∨
i=1

θvi(a, c) and hence

|= θvi(a, c) for some i. Thus, (a, c) ∈ Ip and it is witnessed by the formula θvi(x, y).
In view of arbitrary choice of elements a, b, c the implication (2)⇒ (1) is true.

Now, we assume that, for some u1, u2 ∈ ρν(p), the set Pp(u1, u2) is infinite. Then
by compactness, for a realization a of p, the set

q(a, y)
 {θu1,u2
(a, y)} ∪ {¬θv(a, y) | v ∈ Pp(u1, u2)}

is consistent. Consider realizations b and c of p such that |= θu1(a, b)∧ θu2(b, c) and
|= q(a, c). We have (a, b) ∈ Ip, (b, c) ∈ Ip, and (a, c) /∈ Ip by the construction of q.
Thus the relation Ip is not transitive and we obtain (1)⇒ (2). �

Definition 4.2. A structure Pν(p) is called (almost) deterministic if the set bu1, u2c
is a singleton (is nonempty and finite) for any u1, u2 ∈ ρν(p).
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Example 4.3. By the definition any polygonometrical theory Th(pm(G1, G2,P))
(see [23, 32]) has a unique 1-type p(x) ∈ S(∅) and, thus, the structure Pν(p) is a
monoid with non-negative labels. The determinacy of Pν(p) means that the group
G1 of sides is unit and there are at most two points in P, or the group G2 of angles is
unit and either Pν(p) contains unique line or G1 is infinite. The almost determinacy
of Pν(p) means that the group G2 is finite. �

Proposition 4.4. If there is a modelMp and the structure Pν(p) is almost deter-
ministic then Pν(p) is a monoid.

Proof. As noticed in Proposition 3.1, the unique obstacle, for Pν(p) to be a monoid,
can be only the existence of labels u1, u2, u3, v, u1 < 0, v < 0, for which v ∈
bu1, u2, u3c and there are no v′ ∈ bu2, u3c with v ∈ bu1, v′c. But, by the hypothesis,
the set bu2, u3c consists of finitely many labels v1, . . . , vk. Now we take in M(a),
where |= p(a), elements b, c, d such that

M(a) |= θu1
(a, b) ∧ θu2

(b, c) ∧ θu3
(c, d) ∧ θv(a, d).

Since the formula θu2,u3
(b, y) is equivalent to the formula

k∨
i=1

θvi(b, y), there is a

required label v′ = vi such thatM(a) |= θv′(b, d). �

Any deterministic structure Pν(p) is a monoid (being almost deterministic). It is
generated by the monoid P′ν(p) = 〈ρν(p); �〉, where bu, vc = {u�v} for u, v ∈ ρν(p).

Thus, the deterministic monoids can be defined by usual Cayley tables for
monoids on a set of labels in U while the almost deterministic monoids are represen-
ted by one-to-finite functions with two arguments, i. e., by ternary predicates with
finitely many third coordinates for fixed first and second coordinates.

Considering deterministic structures P, being restrictions of the monoid Pν(p)

to some subalphabets U0 of the alphabet U , we denote by P′ the generating monoid
〈U0; �〉 such that bu, vc ∩ U0 = {u� v} for u, v ∈ U0.

The following proposition is a reformulation of Proposition 4.1.

Proposition 4.5. Let p(x) be a complete type of a theory T having a model Mp,
ν(p) be a regular labelling function. The following conditions are equivalent:

(1) the relation Ip (on a set of realizations of p in a modelM |= T ) is transitive;
(2) the structure Pν(p) is an almost deterministic monoid.

Note that there are no principal edges linking distinct realizations of p if and
only if the relation Ip is antisymmetric. Since Ip is reflexive, the definition of ν(p)
and Propositions 1.6, 4.5 imply

Corollary 4.6. Let p(x) be a complete type of a theory T having a modelMp, ν(p)
be a regular labelling function. The following conditions are equivalent:

(1) the relation Ip (on the set of realizations of p in any model M |= T ) is a
partial order;

(2) the structure Pν(p) is an almost deterministic monoid and ρν(p) ⊆ U≤0.
This partial order Ip is identical if and only if ρν(p) = {0}. If Ip is not identical,

it has infinite chains.

Definition 4.7 [1, 24, 29, 30]. A countable modelM of theory T is limit (according-
ly limit over a type p ∈ S(T )) ifM is not prime over tuples andM =

⋃
n∈ω
M(ān),
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where (M(ān))n∈ω is an elementary chain of prime models over tuples ān (and
M |= p(ān)), n ∈ ω.

A characterization for the (non-)symmetry of a relation Iq for the class of small
theories is obtained in [1]:

Theorem 4.8. Let q(x̄) be a complete type of a small theory T . The following
conditions are equivalent:

(1) there exists a limit model over q;
(2) the relation Iq of isolation on the set of realizations of q in a (any) model

M |= T realizing q is non-symmetric;
(3) in some (any) model M |= T realizing q, there exist realizations ā and b̄

of q such that the type tp(b̄/ā) is principal and b̄ does not semi-isolate ā and, in
particular, SIq is non-symmetric onM.

Proposition 4.5 and Theorem 4.8 imply

Corollary 4.9. Let p(x) be a complete type of a small theory T , ν(p) be a regular
labelling function. The following conditions are equivalent:

(1) Ip (on the set of realizations of p in any model M |= T ) is an equivalence
relation;

(2) the structure Pν(p) is an almost deterministic monoid and there are no limit
models over p;

(3) the structure Pν(p) is an almost deterministic monoid and consists of non-
negative labels.

In Corollary 4.9, the equivalence of (1) and (3) is implied by the existence ofMp

without the assumption of smallness of T .

Definition 4.10. An element u ∈ ρν(p) is called (almost) deterministic if for
any/some realization a of p the formula θu(a, y) has unique solution (has finitely
many solutions).

Note that there is no negative almost deterministic element u for a theory T
having an atomic model and finitely many non-principal 1-types in S(T ).3 Indeed,
otherwise the presence of a negative element u implies that the type p(x) is non-
principal and the relation SIp is not symmetric, that is witnessed by the formula
θu(x, y). Since for |= p(a) the isolating formula θu(a, y) has k solutions for some
k ∈ ω \ {0}, there exists a formula ϕ(x) ∈ p(x) such that for any realization b of
ϕ(x) there are exactly k solutions of the formula θu(b, y). Moreover, since there
are finitely many non-principal types we may assume that ϕ(x) is not consistent
with each non-principal type q(x) 6= p(x). Let |= θu(a, d) for some a and d realizing
the type p. By non-symmetry of the relation SIp the formula ϕ(x) ∧ θu(x, d) has
a solution c which does not realize p and any other non-principal 1-type. So c
realizes some principal type, which is isolated by a formula ψ(x). Since θu(c, y)
has finitely many solutions there is a formula µ(y) such that |= θu(c, d) ∧ µ(d) and
θu(c, y) ∧ µ(y) ` p(y). Then the formula ∃x(ψ(x) ∧ µ(y) ∧ θu(x, y)) isolates the
non-principal type p, for a contradiction.

At the same time, Example 1.4.3 in [29] illustrates that there are theories T
with even deterministic negative elements u, where there are infinitely many non-
principal 1-types in S(T ).

3The following arguments, in fact, are identical to the remark after the proof of [29, Proposition
1.4.2].
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Proposition 4.11. If elements u and v are (almost) deterministic then any element
v′ in u · v is (almost) deterministic.

Proof. Consider formulas θu(a, y), θv(a, y), and θu,v(a, y), where |= p(a). If u and
v are deterministic then all these formulas have unique solutions, so the element
v′ ∈ u · v is unique, and the formulas θu,v(a, y) and θv′(a, y) are equivalent.

If u and v are almost deterministic then the formulas θu(a, y), θv(a, y), and
θu,v(a, y) have finitely many solutions. It implies that the set u ·v is finite and there
are finitely many solutions for the formulas θv′(a, y), v′ ∈ u · v. �

Proposition 4.11 immediately implies

Corollary 4.12. For any groupoid Pν(p) its restriction Pν(p),d (respectively
Pν(p),ad) to the set of (almost) deterministic elements is a monoid.

The following proposition presents a characterization for determinacy of non-
negative elements in Pν(p) assuming existence of the modelMp.

Proposition 4.13. If the model Mp exists then an element u ≥ 0 in Pν(p) is
deterministic if and only if u−1 · u = {0}.

Proof. Let an element u be deterministic, i. e., θu(a,Mp) = {b} for some realizations
a and b of p inMp. Then θu−1,u(b,Mp) = {b}, i. e., u−1 · u = {0}.

We assume now that u−1 · u = {0} and prove that the formula θu(a, y), where
|= p(a), has the unique solution. Assume on the contrary that there are at least
two solutions b1 and b2. Then we have |= θu−1(b1, a) ∧ θu(a, b2). Since 0 ∈ u−1 ·
u, θ0(b1, y) = (b1 ≈ y), and θ0(b1, y) ` θu−1,u(b1, y) then the consistency of the
formula θu−1,u(b1, y) ∧ ¬θ0(b1, y) and the existence of Mp imply that there is an
isolating formula θv(b1, y), v 6= 0, such that θv(b1, y) ` θu−1,u(b1, y). It contradicts
the condition u−1 · u = {0}. �

Unlike the determinacy there are no similar characterizations for the almost
determinacy.

Example 4.14. If Γ = 〈M ;R〉 is an acyclic undirected graph consisting of vertices
of fixed positive degree υ then for the unique 1-type p(x) ∈ S(Th(Γ)), for the
principal formulas θn(x, y), where |= θn(a, b) ⇔ ρ(a, b) = n, n ∈ ω, and for the
monoid Pν(p) over the alphabet ω we have m · n = {m+ n, |m− n|}. In particular,
n = n−1 and n · n = {0, 2n}. At the same time, the monoid Pν(p) does not depend
on υ ∈ (ω ∪ {∞}) \ {0}. �

Proposition 4.15. If Pν(p) is a deterministic monoid then the structure P′ν(p) is
a group if and only if ρν(p) consists of non-negative elements.

Proof. At first we observe that, by definition, if u ∈ ρν(p) is negative then there are
no labels v such that u� v = 0. Hence, if PFN(p) 6= ∅ then P′ν(p) is not a group.

Now we assume that ρν(p) ∩ U− = ∅ and prove that the structure P′ν(p) is a
group. Indeed, if PFN(p) = ∅ then for any element u ∈ ρν(p) there is the (unique)
inverse element v = u−1 such that 0 ∈ u · v. As the monoid Pν(p) is deterministic
we obtain u� v = 0. �

Corollary 4.16. If the model Mp exists, the monoid Pν(p) is deterministic, and
P′ν(p) is a group, then all elements in P′ν(p) are deterministic.
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Proof. Since by Proposition 4.15 the set ρν(p) consists of non-negative elements
then, as the monoid Pν(p) is deterministic, by Proposition 4.13 each element in
P′ν(p) is deterministic. �

Proposition 4.17. If the model Mp exists then the set ρ≥0ν(p),d of all non-negative
deterministic elements u in ρν(p), for which elements u−1 are also deterministic,
forms a deterministic submonoid Gν(p) of the monoid Pν(p),d, consisting of deter-
ministic elements of Pν(p), and such that (Gν(p))

′ is a group.

Proof. Since for any u ∈ ρ≥0ν(p),d the element u−1 satisfying u · u−1 = u−1 · u = {0}
belongs to ρ≥0ν(p),d it suffices to observe that if u, v ∈ ρ≥0ν(p),d then u · v contains a
unique element v′ and this element is deterministic by Proposition 4.11. �

A Hasse diagram is presented in Figure 1 illustrating the links of the structure
Pν(p) with structures above, being restrictions of Pν(p) to subalphabets of U . Here
the superscripts ·≤0 and ·≥0 point out on restrictions of Pν(p) to the sets of non-
positive and non-negative elements respectively, the subscripts ·d and ·ad indicate
the sets of deterministic and almost deterministic elements. By Propositions 3.1
and 4.4, just Pν(p) and P≤0ν(p) may not be monoids.

The following proposition shows that for each label u ∈ ρν(p), the monoid Pν(p)

contains a monoid Pν(p),u with 0 being a restriction of a submonoid of Pν(p) and
consisting of all labels v ∈ ρν(p) for which u ∈ u · v.
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Proposition 4.18. If Pν(p) is a monoid and u ∈ (u · v) ∩ (u · w) for labels u, v, w
in Pν(p), then u ∈ (u · (v · w)).

Proof. Since u ∈ (u · v) ∩ (u · w), for formulas θu(x, y), θv(x, y), θw(x, y) and a
realization a of p, there are realizations b, c, d of p, for which

|= θu(a, b) ∧ θu(a, c) ∧ θu(a, d) ∧ θv(b, c) ∧ θw(c, d).

Then u ∈ bu, v, wc. As Pν(p) is a monoid, there is v′ ∈ (v · w) for which u ∈ u · v′.
Hence u ∈ (u · (v · w)). �

5. Graph compositions and monoid compositions

Recall [9] that the composition Γ1[Γ2] of graphs Γ1 = 〈X1;R1〉 and Γ2 = 〈X2;R2〉
is the graph 〈X1 ×X2;R〉, where ((a1, b1), (a2, b2)) ∈ R if and only if some of the
following conditions is met:

1) (a1, a2) ∈ R1;
2) a1 = a2 and (b1, b2) ∈ R2.
Similarly we define the notion of monoid composition.
Let S1 and S2 be monoids, for which 0 is the unit, S1 ⊆ U≤0, and S2 ⊆ U≥0. The

composition, or the sequentially-annihilating band (see [8, 13]), S1[S2] of monoids
S1 and S2 is the algebra 〈S1 ∪S2; �〉, where 〈S1 ∪S2; �〉 � Si = Si for i = 1, 2, and
u� v = v � u = u for u < 0 and v > 0.

Proposition 5.1 [13]. Any sequentially-annihilating band S1[S2] is a monoid.

Proof is obvious. �

Theorem 5.2. For any group 〈G; ∗〉, where the universe consists of non-negative
elements and 0 denotes the group unit, and for the monoid 〈{−1, 0}; +〉 with the
zero element 0 and the idempotent element −1, there is a theory T with a type
p ∈ S(T ) and a regular labelling function ν(p) such that the monoid P′ν(p) coincides
with the monoid 〈{−1, 0}; +〉[〈G; ∗〉].

Proof. We construct a structure M such that its theory T = Th(M) has a type
p(x) ∈ S(T ) and a regular labelling function ν(p) withP′ν(p) = 〈{−1, 0}; +〉[〈G; ∗〉].
For this aim we consider the Ehrenfeucht’s example 〈Q;<, ck〉k∈ω, ck < ck+1, k ∈ ω,
such that each element a is replaced by a <-antichain consisting of |G| elements and
forming a free 1-generated polygon over the group 〈G; ∗〉 isomorphic to the structure
G = 〈G;Qg〉g∈G, where Qg = {(a, b) ∈ G2 | a ∗ g = b}, g ∈ G. Here we replace each
constant ck by a unary predicate Rk consisting of elements of a copy of G. Thus we
form the composition 〈Q;<〉[G] of graphs expanded by relations Rk, k ∈ ω, (x < y),
¬(x < y) ∧ ¬(y < x), Qg, g ∈ G. The unique non-principal 1-type p(x) is isolated
by set of formulas ∃y(Rk(y) ∧ (y < x)), k ∈ ω. For any realization a of p the list of
pairwise non-equivalent isolating formulas ϕ(a, y) with ϕ(a, y) ` p(y) is exhausted
by the formulas (a < y) and Qg(a, y), g ∈ G. We define a regular labelling function
ν(p) such that the formula (a < y) has the label −1 and the formulas Qg(a, y) have
non-negative labels g. Since < ◦ < = <, < ◦ Qg = Qg ◦ < = <, g ∈ G, and the
links between elements of ρ≥0ν(p) are defined by the group 〈G; ∗〉, the monoid P′ν(p)
coincides with the monoid 〈{−1, 0}; +〉[〈G; ∗〉]. �

Theorem 5.3. For any group 〈G; ∗〉 consisting of non-negative elements with the
unit element 0 and for the monoid 〈ω∗; +〉 of non-positive integers, there exists a
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theory T with a type p ∈ S(T ) and a regular labelling function ν(p) such that the
monoid P′ν(p) coincides with the monoid 〈ω∗; +〉[〈G; ∗〉].

Proof. We construct a structure M such that its theory T = Th(M) has a type
p(x) ∈ S(T ) and a regular labelling function ν(p) with P′ν(p) = 〈ω∗; +〉[〈G; ∗〉].

The language of M consists of unary predicate symbols Coln, n ∈ ω (forming
a coloring of the set M), of binary predicate symbol Q, and of binary predicate
symbols Qg, g ∈ G.

We consider a connected acyclic directed graph Γ = 〈M0;Q〉, where each element
has infinitely many images and infinitely many preimages, i. e., Γ forms a free
directed pseudoplane [16, 21, 29].

We define an 1-inessential Q-ordered coloring (see [29]) Col: M0 → ω ∪ {∞} of
Γ producing unary predicates Coln = {a ∈M0 | Col(a) = n}, n ∈ ω.

For the graph Γ we define, by induction, relations Qn, n ∈ Z: Q0 
 idM0
,

Qn+1 
 Qn ◦Q, Q−n 
 (Qn)−1, n ∈ ω.
Note that for the (unique) non-principal type p(x), isolated by the set

{¬Colm(x) | m < ω} of formulas, and for any realizations a and b of p, the pair
(a, b) is a principal arc if and only if |= Qn(a, b) for some n ∈ ω.

We assume that the formula Qn(x, y) has the label −n ∈ U≤0, n ∈ ω. Since
for any m,n ∈ ω the formula ∃z(Qm(x, z) ∧Qn(z, y)) is equivalent to the formula
Qm+n(x, y), then for the Q-structure on a set of realizations of p the structure P′ν(p)
coincides with 〈ω∗; +〉.

Now we consider the group 〈G; ∗〉 and define on the set G binary predicates Qg,
g ∈ G, by the rule: Qg = {(a, b) ∈ G2 | a ∗ g = b}. As in the proof of Theorem
5.2, the structure G = 〈G;Qg〉g∈G forms a free 1-generated polygon over the group
〈G; ∗〉.

We define a model of a required theory T as the composition Γ[G] of graphs
with colored vertices and arcs such that each vertex a of Γ is replaced by a copy of
structure G, for which all elements have the color Col(a). The relations Qg, for Γ[G],
are composed as the unions of corresponding relations in the copies of G, and the
relation Q, in Γ[G], consists of all pairs (a′, b′), where a′ ∈ Ca, b′ ∈ Cb, (a, b) ∈ Q
in Γ, and Ca, Cb are copies of G replacing vertices a, b ∈ M0. The composition
preserves the uniqueness of the non-principal 1-type p(x).

It remains to note that for any realization a of p the list of pairwise non-equivalent
isolating formulas ϕ(a, y) with ϕ(a, y) ` p(y) is exhausted by the formulas Qn(a, y),
n ∈ ω, Qg(a, y), g ∈ G, and we have P′ν(p) � ω

∗ = 〈ω∗; +〉, P′ν(p) � G = 〈G; ∗〉 and
Qn ◦Qg = Qg ◦Qn = Qn for n > 0, g ∈ G. �

6. I-groupoids

In this section, we collect basic structural properties of Pν(p)-groupoids and
prove that any groupoid P satisfying that list of properties coincides with some
groupoid Pν(p).

Let U = U− ∪̇ {0} ∪̇U+ be an alphabet consisting of a set U− of negative
elements, a set U+ of positive elements, and zero 0. As above we write u < 0
for any element u ∈ U−, u > 0 for any element u ∈ U+, and u · v instead of
{u} · {v} considering an operation · on the set P(U) \ {∅}.

A groupoid P = 〈P(U)\{∅}; ·〉 is called an I-groupoid if it satisfies the following
conditions:
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• the set {0} is the unit of the groupoid P;

• the operation · of the groupoid P is generated by the function · on elements
in U such that every elements u, v ∈ U define a nonempty set (u · v) ⊆ U : for any
sets X,Y ∈ P(U) \ {∅} the following equality holds:

X · Y =
⋃
{x · y | x ∈ X, y ∈ Y };

• if u < 0 then the sets u · v and v · u consist of negative elements for any v ∈ U ;

• if u > 0 and v > 0 then the set u · v consists of non-negative elements;

• for any u > 0 there is a unique inverse element u−1 > 0 such that 0 ∈
(u · u−1) ∩ (u−1 · u);

• if a positive element u belongs to a set v1 · v2 then u−1 belongs to v−12 · v
−1
1 ;

• for any elements u1, u2, u3 ∈ U the following inclusion holds:

(u1 · u2) · u3 ⊇ u1 · (u2 · u3),

and the strict inclusion

(u1 · u2) · u3 ⊃ u1 · (u2 · u3)

may be satisfied only for u1 < 0 and |u2 · u3| ≥ ω;

• the groupoid P contains the deterministic subgroupoid P≥0d (being a monoid)
with the universe P(U≥0d ) \ {∅}, where

U≥0d = {u ∈ U≥0 | u−1 · u = {0}};

any set u · v is a singleton for u, v ∈ U≥0d .

By the definition each I-groupoid P contains I-subgroupoids P≤0 and P≥0 with
the universes P(U−∪{0})\{∅} and P(U+∪{0})\{∅} respectively. The structure
P≥0 is a monoid.

Theorem 6.1. For any I-groupoid P there is a theory T with a type p(x) ∈ S1(T )
and a regular labelling function ν(p) such that Pν(p) = P. If the alphabet is at most
countable and the operation of P does not force continuum many types then T is
small.

Proof. We fix an I-monoid P = 〈P(U) \ {∅}; ·〉. The construction of a required
theory will be fulfilled in accordance with a construction of a generic structureM
of language Σ = {Col(1)n | n ∈ ω} ∪ {Q(2)

u | u ∈ U} [29, Chapter 2] with pairwise
disjoint predicates Qu, with an ordered coloring Col: M → ω ∪ {∞} with respect
to each formula Qu(x, y), where u < 0, and with a unique non-principal 1-type
p(x) (isolated by the set {¬Coln(x) | n ∈ ω} of formulas). W.l.o.g. we assume
that |U | ≤ ω (for |U | > ω, the construction differs by cardinalities of diagrams
describing links for elements of finite sets and by cardinalities of sets of diagrams
forming generic structures).

Consider a generic class (T0;6) consisting of all possible diagrams Φ(A) over
finite sets A such that each Φ(A) contains a maximal consistent set of quantifier-free
formulas ϕ(ā), ā ∈ A, united with a set of formulas Qδuv(a, b), a, b ∈ A, δ ∈ {0, 1},
Quv(x, y) = ∃z(Qu(x, z) ∧ Qv(z, y)), u, v ∈ U , and Φ(A) includes formulas with
parameters in A, without free variables, and describing the following properties:
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(1) for any u ∈ U , any element in A is an image and a preimage of some elements
by the relation Qu;

(2) the relation Q0 on the set A is identical;
(3) if a ∈ A then all Qu-images of a have colors ≥ Col(a) and all Qu-preimages

of a have the colors ≤ Col(a);
(4) if u > 0, a ∈ A, and Qu(a, b) ∈ Φ(A) then Qu−1(b, a) ∈ Φ(A) and Col(b) =

Col(a);
(5) if v ∈ (u1 · u2) and Qv(a, b) ∈ Φ(A) then Qu1u2

(a, b) ∈ Φ(A);
(6) for any u 6= 0 some diagram Ψ(B) ⊇ Φ(A) in T0 defines a graph 〈B;Qu〉

with a cycle if and only if 0 ∈ u · . . . · u︸ ︷︷ ︸
n times

for some n > 0;

(7) if u ∈ U≥0d then each element a ∈ A has a unique Qu-image; the following
inductive condition describes the least set U≥0ad ⊇ U≥0d of non-negative elements
u ∈ U for which the sets of Qu-images and of Qu-preimages of a are finite: if
(u·u−1)∪(u−1 ·u) consists of finitely many elements belonging to U≥0ad then u, u−1 ∈
U≥0ad ; if u−1 ·u consists of finitely many elements belonging to U≥0ad then each element
a has finitely many Qu-images; if u·u−1 consists of finitely many elements belonging
to U≥0ad then each element a has finitely many Qu-preimages; for other elements u
the numbers of Qu-images and of Qu-preimages for elements a ∈ A is unbounded;

(8) if u1, u2 ∈ U and the set u1 · u2 is (in)finite then for any element a ∈ A
the set of Qu1u2

-images of a is represented as a union of sets of Qv-images for all
elements v ∈ u1 · u2 (and some set of elements that are not Qu-images of a on any
of the relations Qu);

(9) for any element v ∈ ((u1 · u2) · u3) \ (u1 · (u2 · u3)) there is a description
forming Example 3.3.

If Φ(A),Ψ(B) are diagrams in T0 and Φ(A) ⊆ Ψ(B), we suppose, by the
definition, that Φ(A) is a strong subdiagram of Ψ(B) (i. e., Φ(A) 6 Ψ(B)) if Φ(A),
with each element a in A, contains all descriptions (for numbers and Q-links) of its
Qu-images in Ψ(B), where u−1 ·u consists of finitely many labels belonging to U≥0ad .

For the checking that (T0;6) is a self-sufficient generic class, it suffices to observe
that for any diagrams Φ(A),Ψ(B), X(C) ∈ T0 with Φ(A) 6 Ψ(B), Φ(A) 6 X(C),
and A = B ∩C there is a diagram Θ(B ∪C) ∈ T0 such that Ψ(B) 6 Θ(B ∪C) and
X(C) 6 Θ(B ∪ C).

For the type Θ(B∪C) we choose the set Ψ(B)∪X(C) extended by the following
formulas for elements b ∈ B \A and c ∈ C \A:

(a) θu,v(b, c), where Qu(b, a) ∈ Ψ(B) and Qv(a, c) ∈ X(C) for some a ∈ A;
(b) ¬θu,v(b, c), where ¬Qu(b, a) ∈ Ψ(B) or ¬Qv(a, c) ∈ X(C) for all a ∈ A;
(c) some formulas θv′(b, c), where Qu(b, a) ∈ Ψ(B) and Qv(a, c) ∈ X(C) for some

a ∈ A, v′ ∈ u · v, and the set u · v is finite;
(d) formulas ¬θv′(b, c), v′ ∈ U , if the previous items do not imply a converse.
We claim that if the operation of P does not force continuum many types then,

applying the generic construction, one obtains a (T0;6 )-generic saturated structure
M with the generic theory T = Th(M), the type p(x) ∈ S(T ), and the regular
labelling function ν(p): PF(p)/PE(p) → U satisfying the condition Pν(p) = P. By
[29, Proposition 1.2.13], each formula Qu(x, y), u < 0, witnesses non-symmetry of
the relation SIp, and each formula Qu(x, y), u > 0, links realizations of p only with
realizations of the same type and, being a principal formula of the structure on the
set p(M) of realizations of p, has the inverse principal formula Qu−1(x, y) on p(M).
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Now we argue to show thatM is saturated. If U≥0ad is finite the saturation ofM is
implied by [29, Theorem 2.5.1] (see also [28, Theorem 4.1]) in view of the uniform
t-amalgamation property that holds by the formula definability of self-sufficient
closure of any finite set.

Using the proof of the same theorem, we shall observe that M is saturated for
|U≥0ad | = ω. For this aim we enumerate all predicates Qu, u ∈ U : Qm, m ∈ ω.

Let M′ be an ω-saturated model of Th(M), Φ(A) and Φ(A′) = [Φ(A)]AA′ be
diagrams in T0 such that M |= Φ(A) and M′ |= Φ(A′). If Ψ(B′) ∈ T0, Φ(A′) 6
Ψ(B′), and M′ |= Ψ(B′) then the construction of M implies that there exists a
set B ⊂ M extending A and satisfying M |= Ψ(B). It means that for a partial
isomorphism f : A → A′ between M and M′ there exists a partial isomorphism
g: B → B′ between these structures extending f .

Now, let Ψ(B) ∈ T0, Φ(A) 6 Ψ(B),M |= Ψ(B), and X and Y be disjoint sets
of variables, which are in bijective correspondence with sets A and B \A. Assume
that the formula ϕn(X) (ψn(X,Y ), respectively), n ∈ ω, describes the following:

(i) finite colors of elements of A (of B);
(ii) negations of colors not exceeding n for elements of A (of B) that are infinite

in color;
(iii) the existence, colors of arcs, the existence and colors of some arcs of pathes

of length 2 (including all possibilities for colors ≤ n of intermediate arcs) connecting
elements of A (of B), and the colors m ≤ n of arcs outgoing from vertices a ∈ A
(a ∈ B) for which ∃yQm(a, y) ∈ Φ(A) (∃yQm(a, y) ∈ Ψ(B)), Qm = Qu, u ∈ U≥0ad ;

(iv) the non-existence of arcs of colors ≤ n and of pathes of length 2 (including
all possibilities for colors ≤ n of intermediate arcs) connecting elements of A (of
B), if these elements are not linked by the pathes, as well as the absence of colors
m ≤ n for arcs outgoing from vertices a ∈ A (a ∈ B) for which ¬∃yQm(a, y) ∈ Φ(A)

(¬∃yQm(a, y) ∈ Ψ(B)), Qm = Qu, u ∈ U≥0ad .
By the construction ofM,

M |= ∀X (ϕn(X)→ ∃Y ψn(X,Y )).

Hence
M′ |= ∀X (ϕn(X)→ ∃Y ψn(X,Y )).

This implies that the set {ψn(A′, Y ) | n ∈ ω} of formulas is locally realizable in
M′; hence, it is realizable in M′ since M′ is ω-saturated. Therefore there exist a
set B′ ⊂ M ′ containing A′, and a partial isomorphism g: B → B′ extending the
partial isomorphism f .

The possibility for extending any partial isomorphisms f : A→ A′ and the known
back-and-forth method show that the structureM with distinguished constants for
the elements in A ⊂M is isomorphic to a countable elementary substructure of the
structure M′ with distinguished constants for the elements in A′. Since the finite
sets A and A′ connected by a partial isomorphism and preserving a type Φ(X) are
chosen arbitrarily, andM′ is saturated, we conclude thatM realizes any type over
a finite set,M is saturated, and Th(M) is small.

Note that for the (T0;6 )-generic structureM, the possibility for extending any
finite partial isomorphisms preserving types Φ(X) in T0 implies that if A,B ⊂M ,
M |= Φ(A) and M |= Φ(B) then there is an automorphism of M extending the
initial partial isomorphism between A and B. Consequently, tpM(A) = tpM(B).
In particular, for any realization a of p and for any u ∈ U the formula Qu(a, y) is
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isolating and these formulas exhaust the list of all pairwise non-equivalent isolating
formulas ϕ(a, y) for which ϕ(a, y) ` p(y)

Similar arguments are valid for the general case producing a required (not
necessary small) theory. �

Remark 6.2. If an I-groupoid P is constructed by a set U≥0 then by the construct-
ion above (restricting the construction to a set of realizations of the type infinite in
color) there is a transitive theory T with a (unique) type p(x) ∈ S(T ) and a regular
labelling function ν(p) such that Pν(p) = P.

7. Groupoids of binary isolating formulas on sets of realizations for
types of special theories

In this section, we present a specificity of groupoids Pν(p) for types p of special
theories used for the classifications of countable models of Ehrenfeucht theories
[24, 25, 29], of theories with finite Rudin–Keisler preorders [27, 29], of small theories
[29, 30], of ω-stable theories with respect to numbers of limit models over types
[31], as well as for the investigations of graph links for limit models over types that
obtained by quotients of numerical sequences [18, 19, 20]. All these constructions
are based on powerful graphs.

Definition 7.1 [26, 29, 32]. Let Γ = 〈X;Q〉 be a graph, and a be a vertex of Γ.
The set 5Q(a) 


⋃
n∈ω

Qn(a,Γ) (respectively 4Q(a) 

⋃
n∈ω

Qn(Γ, a)) is called an

upper (lower) Q-cone of a. We call the Q-cones 5Q(a) and 4Q(a) by cones and
denote by 5(a) and 4(a) respectively if Q is fixed.

A countable acyclic directed graph Γ = 〈X;Q〉 is said to be powerful if the
following conditions hold:

(a) the automorphism group of Γ is transitive, that is any two vertices are
connected by an automorphism;

(b) the formula Q(x, y) is equivalent in the theory Th(Γ) to a disjunction of
principal formulas;

(c) acl({a}) ∩4(a) = {a} for each vertex a ∈ X;
(d) Γ |= ∀x, y ∃z (Q(z, x) ∧Q(z, y)) (the pairwise intersection property).

Below we define the property of powerfulness for the directed graph Γ in terms
of the groupoid Pν(p) for the unique 1-type p of the theory T = Th(Γ) assuming
that the theory is small.

At first we note that U− = ∅ in view of Corollary 1.5 and so Pν(p) is a monoid.

Since the formula Q(x, y) is equivalent to some disjunction
n∨
i=1

θui
(x, y), the

acyclicity of Γ means that 0 /∈ ui1ui2 . . . uik for any ui1 , . . . , uik ∈ {u1, . . . , un}.
The condition acl({a}) ∩4(a) = {a} is equivalent to that any sets u−1i1 u

−1
i2
. . . u−1ik

do not contain almost deterministic elements. The pairwise intersection property
means that for any ui, i = 1, . . . , n, and any v ∈ U , the set uiv contains an element
uj . In particular, if n = 1 then u1 ∈ u1v for any v ∈ U . In this case we say that the
element u1 induces the pairwise intersection property, or it is a PIP-element.

The characterizations above imply the following

Proposition 7.2. A small theory T of the language {Q(2)} is a theory of a powerful
graph Γ = 〈X;Q〉 if and only if T has the unique 1-type p with a regular labelling
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function ν(p) such that for some elements u1, . . . , un ∈ ρν(p) the following conditions
are satisfied:

(1) ` Q(x, y)↔
n∨
i=1

θui
(x, y);

(2) 0 /∈ ui1ui2 . . . uik for any ui1 , . . . , uik ∈ {u1, . . . , un};
(3) for any ui, i = 1, . . . , n, and any v ∈ U , the set uiv contains an element uj.

Definition 7.3. A monoid Pν(p) is called special if ρν(p) ∩ U− 6= ∅ and for any
elements u1, u2, . . . , un, v ∈ ρν(p), where u1 < 0, . . . , un < 0, v ≥ 0, and for any
element u′ ∈ u1u2 . . . unv, there is an element v′ ≥ 0 such that u′ ∈ v′u1u2 . . . un.

A special monoid Pν(p) is called PIP-special if each negative u ∈ ρν(p) is a PIP-
element, i. e., u ∈ uv for any v ∈ ρν(p).

Having a special monoid (for a special small theory T ) the process of construction
of a limit model over a type p is reduced to a sequence of θun -extensions, un < 0,
n ∈ ω, of prime models over realizations of p: for any limit modelM over p there
is an elementary chain (M(an))n∈ω, |= p(an), such that its union forms M and
|= θun

(an+1, an) is satisfied, n ∈ ω. In this case the isomorphism type of M is
defined by the sequence (un)n∈ω.

As shown in [29], if a PIP-special monoid exists then, by adding of multiplace
predicates, each prime model over a tuple of realizations of p is transformed to a
model isomorphic to Mp. Thus, the type p is connected with the unique, up to
isomorphism, prime model over a realization of p and with some (finite, countable,
or continuum) number of limit models over p, which is defined by some quotient for
the set of sequences (un)n∈ω, un ∈ U− ∩ρν(p), n ∈ ω. The action of these quotients
is defined by some identifications (w ≈ w′) of words in the alphabet U− ∩ ρν(p)
such that if w = u1 . . . um and w′ = u′1 . . . u

′
n then for any v ∈ U≥0 ∩ ρν(p) and

u0 ∈ u1 . . . umv, there exists v′ ∈ U≥0 ∩ ρν(p) with u0 ∈ v′u′1u′2 . . . u′n.
To conclude this section we describe some connections of Iν(p)-monoids with the

strict order property.

Definition 7.4. Let T be a theory with a type p having the modelMp, Pν(p) an
Iν(p)-groupoid, and X a subset of ρν(p) having a cardinality λ. We say that X is
(formula) definable if for a realization a of p the set of solutions of Lλ+,ω-formula
ϕ(a, y)


∨
u∈X

θu(a, y) inMp is Lω,ω-definable inMp by a formula ψ(a, y). In this

case we say that the formula ψ(x, y) witnesses definability of X.
We say that a groupoid Pν(p) generates the strict order property if for some

definable set X ⊆ ρν(p), for a witnessing formula ϕ(x, y), and for some realizations
a and b of p satisfying |= θv(b, a) with a label v ∈ ρν(p), the inclusion ϕ(a,Mp) ⊂
ϕ(b,Mp) holds.

Proposition 7.5. If T is a small theory with a type p, and the groupoid Pν(p) has
a definable set X ⊆ ρν(p) containing an element u < 0 with u ·X ⊆ X, then Pν(p)

generates the strict order property.

Proof. Take a definable set Y = X ∪{0} and consider a witnessing formula ϕ(x, y).
Since u · X ⊆ X then u · Y ⊆ Y and, for any realizations a and b of p with
M |= θu(b, a), we have ϕ(a,Mp) ⊆ ϕ(b,Mp). At the same time, 0 ∈ Y implies
b ∈ ϕ(b,Mp), and if b ∈ ϕ(a,Mp) then a isolates b that is impossible by u < 0.
Thus, ϕ(a,Mp) ⊂ ϕ(b,Mp) and Pν(p) generates the strict order property. �
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Corollary 7.6. Let T be a small theory with a type p, and for some nonempty

finite set X ⊆ U− ∩ ρν(p) there be a natural number n such that Xn+1 ⊆
n⋃
i=1

Xi,

where X1 = X, Xi+1 = Xi ·X. Then the groupoid Pν(p) generates the strict order
property.

Proof. Clearly, the finite set X is definable and the sets Xi and Y 

n⋃
i=1

Xi are

also definable. Since Xn+1 ⊆ Y then for any element u ∈ X we have u · Y ⊆ Y .
Since u < 0 then by Proposition 7.5 the groupoid Pν(p) generates the strict order
property. �

Corollary 7.7. If T is a small theory with a type p and U− ∩ ρν(p) is a nonempty
finite set then the groupoid Pν(p) generates the strict order property.

Proof. Consider the set X = U− ∩ ρν(p). As X is finite it is definable. Since X
contains all negative labels in ρν(p), by Proposition 1.6, we have u · X ⊆ X for
any u < 0 in ρν(p). Therefore, by Proposition 7.5, the groupoid Pν(p) generates the
strict order property. �

8. Partial groupoid of binary isolating formulas on a set of
realizations for a family of 1-types

In this section, the results above for a structure of a type are generalized for a
structure on a set of realizations for a family of types.

Let R be a nonempty family of types in S1(T ). We denote by ν(R) a regular
family of labelling functions

ν(p, q): PF(p, q)/PE(p, q)→ U, p, q ∈ R,

ρν(R) 

⋃

p,q∈R
ρν(p,q).

Similarly Proposition 3.1, we obtain that, having atomic modelsMp for all types
p ∈ R (for instance, if T is small), the function P , being partial for |R| > 1, on the set
R×(P(U)\{∅})×R, which maps each tuple of triples (p1, u1, p2), . . . , (pk, uk, pk+1),
where u1 ∈ ρν(p1,p2), . . . , uk ∈ ρν(pk,pk+1), to the set of triples (p1, v, pk+1), where
v ∈ P (p1, u1, p2, u2, . . . , pk, uk, pk+1), is left semi-associative:

(8) P (P (p1, u1, p2, u2, p3), u3, p4) = P (p1, u1, p2, u2, p3, u3, p4) ⊇
⊇ P (p1, u1, P (p2, u2, p3, u3, p4))

for u1 ∈ ρν(p1,p2), u2 ∈ ρν(p2,p3), u3 ∈ ρν(p3,p4).
Having the modelsMp we consider the semi-associative structure

Pν(R) 
 〈R× (P(U) \ {∅})×R; ·〉
with the partial operation · such that

(p1, X1, p2) · (p2, X2, p3) =
⋃
{(p1, u1, p2) · (p2, u2, p3) | u1 ∈ X1, u2 ∈ X2},

(p1, u1, p2) · (p2, u2, p3) = {(p1, v, p3) | v ∈ P (p1, u1, p2, u2, p3)},
u1 ∈ ρν(p1,p2), u2 ∈ ρν(p2,p3).

The groupoids Pν(p), p ∈ R, are naturally embeddable into this structure. The
structure Pν(R) is called a join of groupoids Pν(p), p ∈ R, relative to the family
ν(R) of labelling functions and it is denoted by

⊕
p∈R

Pν(p). If ρν(p,q) = ∅ for all p 6= q
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the join
⊕
p∈R

Pν(p) is free, it is isomorphically represented as the disjoint union of

the groupoids Pν(p), and it is denoted by
⊔
p∈R

Pν(p).

By (8), we obtain

Proposition 8.1. For any complete theory T , for any nonempty family R ⊂ S(T )
of 1-types having models Mp for each p ∈ P , and for any regular family ν(R) of
labelling functions, each n-ary partial operation

P (p1, ·, p2, ·, p3 . . . , pn, ·, pn+1)

on the set P(U) \ {∅} is interpretable by a term of the structure
⊕
p∈R

Pν(p) with

fixed types p1, . . . , pn+1 ∈ R.
By Proposition 1.6 we obtain the following analogue of Proposition 3.4.

Proposition 8.2. For any complete theory T , for any nonempty family R ⊂ S(T )
of 1-types, and for any regular family ν(R) of labelling functions, the restriction of
the structure Pν(R) to the set of negative (respectively non-positive, non-negative)
labels is closed under the partial operation ·.

In view of Proposition 8.2, the structure Pν(R) has substructures P≤0ν(R) and
P≥0ν(R), generated by triples (p, u, q) with u ≤ 0 and u ≥ 0 respectively, p, q ∈ R.
Here, for any triple (p, u, q) inP≥0ν(R) the triple (q, u−1, p) is also attributed toP≥0ν(R).

A structure Pν(R) is called (almost) deterministic if the set (p, u, q) · (q, v, r) is a
singleton (finite) for any triples (p, u, q) and (q, v, r) in Pν(R) with u ∈ ρν(p,q) and
v ∈ ρν(q,r).

The deterministic structure Pν(R) is generated by the structure P′ν(R) = 〈R ×
U ×R; �〉, where (p, u, q) · (q, v, r) = {(p, u, q)� (q, v, r)} for p, q, r ∈ R, u, v ∈ U .

Adapting the proof of Proposition 4.1 to a family R of 1-types we obtain

Proposition 8.3. For any complete theory T , for any nonempty family R ⊂ S(T )
of 1-types having models Mp for each p ∈ P , and for any regular family ν(R) of
labelling functions, the following conditions are equivalent:

(1) the relation IR is transitive for any modelM |= T ;
(2) the structure Pν(R) is almost deterministic.

Note that the absence of principal edges linking distinct realizations of types in
R is equivalent to the antisymmetry of the relation IR. Since IR is reflexive (by the
formula (x ≈ y)), the definition of the family ν(R) and Propositions 1.6, 8.3 imply

Corollary 8.4. For any complete theory T , for any nonempty family R ⊂ S(T )
of 1-types having models Mp for each p ∈ P , and for any regular family ν(R) of
labelling functions, the following conditions are equivalent:

(1) the relation IR is a partial order on the set of realizations of types of R in
any modelM |= T ;

(2) the structure Pν(R) is almost deterministic and ρν(R) ⊆ U≤0.
The partial order IR is identical if and only if ρν(R) = {0}. The non-identical

partial order IR has infinite chains if and only if |ρν(p)| > 1 for some p ∈ R or there
is a sequence pn, n ∈ ω, of pairwise distinct types in R such that |ρν(pn,pn+1)| ≥ 1,
n ∈ ω, or |ρν(pn+1,pn)| ≥ 1, n ∈ ω.

Lemma 1.3 and Proposition 8.3 imply
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Corollary 8.5. For any complete theory T , for any nonempty family R ⊂ S(T )
of 1-types having models Mp for each p ∈ P , and for any regular family ν(R) of
labelling functions, the following conditions are equivalent:

(1) IR is an equivalence relation on the set of realizations of types of R in any
modelM |= T ;

(2) the structure Pν(R) is almost deterministic and ρν(R) ⊆ U≥0.
An element u ∈ U is called (almost) deterministic with respect to the regular

family ν(R) of labelling functions if for some realization a of a type in R and for
some type q ∈ R, the formula θtp(a),u,q(a, y) is consistent and has a unique solution
(has finitely many solutions).

Repeating the proof of Proposition 4.11 we obtain

Proposition 8.6. For any structure Pν(R) its restriction Pν(R),d (respectively
Pν(R),ad) to the set of (almost) deterministic elements is closed under the partial
operation of the structure Pν(R).

Using the proof of Proposition 4.13 the following proposition holds.

Proposition 8.7. If for the types p, q ∈ S1(T ) the models Mp and Mq exist then
an element u ≥ 0 in ρν(p,q) is deterministic if and only if (q, u−1, p) · (p, u, q) =
{(q, 0, q)}.
Proposition 8.8. If the structure Pν(R) is deterministic then the structure P′ν(R)

is a join of groups if and only if each set ρν(p), p ∈ R, consists of non-negative
elements.

Proof is identical to the proof of Proposition 4.15 for each set ρν(p). �

Corollary 8.9. If R is a nonempty family of 1-types in S1(T ), there are models
Mp for p ∈ R, Pν(R) is a deterministic structure, and P′ν(R) is a join of groups,
then all elements in P′ν(p), p ∈ R, are deterministic.

Proof. Since, by Proposition 8.8, the sets ρν(p) consist of non-negative elements, the
determinacy of the structure Pν(R) and Proposition 8.7 imply that each element in
P′ν(p), p ∈ R, is deterministic. �

Repeating the proof of Proposition 4.17 we obtain

Proposition 8.10. If R is a nonempty family of 1-types in S1(T ), there exists
models Mp for p ∈ R, and ν(R) is a regular family of labelling functions, then for
the structure Pν(R) the set ρ≥0ν(R),d of all non-negative deterministic elements u in
ρν(R), for which the elements u−1 are also deterministic, forms the deterministic
substructure G≥0ν(R),d of Pν(R) such that (G≥0ν(R),d)

′ is a join of groups.

The results above substantiate the transformation of the diagram in Figure 1
replacing the type p by a nonempty family R ⊆ S1(∅).

9. IR-structures

Definition 9.1. Let R be a nonempty set, U = U− ∪̇ {0} ∪̇U+ be an alphabet
consisting of a set U− of negative elements, of a set U+ of positive elements and
a zero 0. If p and q are elements in R, we write u < 0 and (p, u, q) < 0 for any
u ∈ U−, u > 0 and (p, u, q) > 0 for any u ∈ U+. For the set R2 of all pairs (p, q),
p, q ∈ R, we consider a regular family µ(R) of sets µ(p, q) ⊆ U such that
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• 0 ∈ µ(p, q) if and only if p = q;

• µ(p, p) ∩ µ(q, q) = {0} for p 6= q;

• µ(p, q) ∩ µ(p′, q′) = ∅ for p 6= q and (p, q) 6= (p′, q′);

•
⋃

p,q∈R
µ(p, q) = U .

Below we write µ(p) instead of µ(p, p), and considering a partial operation · on
the set R× (P(U) \ {∅})×R we shall write, as above, (p, u, q) · (q, v, r) instead of
(p, {u}, q) · (q, {v}, r).

A left semi-associative structure P = 〈R × (P(U) \ {∅})×R; ·〉 with a regular
family µ(R) of sets is called an IR-structure if the partial operation · of P has
values (p,X, q) · (p′, Y, q′) only for p′ = q, ∅ 6= X ⊆ µ(p, q), ∅ 6= Y ⊆ µ(p′, q′),
and is generated by the partial function · for elements in U where (p, x, q) · (q, y, r)
forms a nonempty set of triples (p, z, r), z ∈ µ(p, r), if x ∈ µ(p, q) and y ∈ µ(q, r):
for any sets X,Y ∈ P(U) \ {∅}, ∅ 6= X ⊆ µ(p, q), ∅ 6= Y ⊆ µ(q, r),

(p,X, q) · (q, Y, r) =
⋃
{(p, x, q) · (q, y, r) | x ∈ X, y ∈ Y },

as well as the following conditions hold:

• each restriction Pµ(p) of P to the set {p}× (P(µ(p))\{∅})×{p} is isomorphic
to an I-groupoid with the universe P(µ(p)) \ {∅}, p ∈ R;
• if u ∈ µ(p, q) and u < 0 then the sets (p, u, q · (q, v, r) and (r, v′, p) · (p, u, q)

consist of negative elements for any v ∈ µ(q, r) and v′ ∈ (r, p);

• if u ∈ µ(p, q), v ∈ µ(q, r), u > 0, and v > 0, then the set (p, u, q) · (q, v, r)
consists of non-negative elements;

• for any element u ∈ µ(p, q) with u > 0 there is a unique inverse element
u−1 ∈ µ(q, p), u−1 > 0, such that (p, 0, p) ∈ (p, u, q) · (q, u−1, p) and (q, 0, q) ∈
(q, u−1, p) · (p, u, q);
• if an element (p, u, r) is positive and belongs to the set (p, v1, q) · (q, v2, r) then

the element (r, u−1, p) belongs to the set (r, v−12 , q) · (q, v−11 , p);

• for any elements (p, u1, q), (q, u2, r), (r, u3, t) the following inclusion holds:

((p, u1, q) · (q, u2, r)) · (r, u3, t) ⊇ (p, u1, q) · ((q, u2, r) · (r, u3, t)),
and the strict inclusion

((p, u1, q) · (q, u2, r)) · (r, u3, t) ⊃ p, u1, q) · ((q, u2, r) · (r, u3, t))
may be satisfied only for u1 < 0 and |(q, u2, r) · (r, u3, t)| ≥ ω;

• the structure P contains the deterministic substructure P≥0d , being the rest-
riction to the set

U≥0d = {u ∈ U≥0 | (q, u−1, p) · (p, u, q) = {(q, 0, q)} for some p, q ∈ R};

every set (p, u, q) · (q, v, r) is a singleton for u ∈ U≥0d ∩µ(p, q) and v ∈ U≥0d ∩µ(q, r).

By the definition, any IR-structure P contains I-subgroupoids Pµ(p), p ∈ R,
and IR-substructures P≤0 and P≥0 being restrictions of P to the sets U≤0 and
U≥0 respectively.

Theorem 9.2. For any IR-structure P there exists a theory T with a
family R ⊂ S(T ) of 1-types and a regular family ν(R) of labelling functions such
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that Pν(R) = P. If the alphabet and the family R are at most countable, and the
operation of P does not force continuum many types, then T is small.

Proof follows the schema for the proof of Theorem 6.1 extended by the schema for
the proof of Theorem 3.4.1 in [29]. In view of bulkiness of this proof we only point
out the distinctive features leading to the proof of this theorem.

1. For each symbol p ∈ R we introduce a unary predicate Rp, which intersects
all predicates Coln, n ∈ ω, and forms, on the set of realizations of complete 1-
type p′(x), being isolated by the set {Rp(x)} ∪ {¬Coln(x) | n ∈ ω}, a structure
of isolating formulas corresponding to the I-groupoid Pµ(p). Moreover, we suppose
that predicates Rp are disjoint.

2. For the elements u ∈ µ(p, q) the predicates Qu link only elements a in Rp
with elements b in Rq. Moreover, if u > 0 then Col(a) = Col(b), and if u < 0 then
Col(a) ≤ Col(b) and the coloring Col is Qu-ordered.

3. The relation Q≥0 =
⋃
u≥0

Qu is an equivalence relation such that its classes are

ordered by the relation Q<0 =
⋃
u<0

Qu. �

In conclusion, we note that, using the operation ·eq, the constructions above can
be transformed for an arbitrary family of types in S(T ).
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