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Abstract. The application of an inversion method to the problem
of recovering the initial water elevation field generating a tsunami is
considered. This article addresses the usually ill-posed problem of the
hydrodynamical inversion of remote measurements of water-level data
without any a priori information on a source but its very general spatial
localization. The tsunami wave propagation is considered within the
scope of the linear shallow-water theory. The ill-posed inverse problem
at hand is regularized by means of the least square inversion using
the truncated SV D approach. Some properties of inverting operator
in the context of retrieving a tsunami source are studied numerically.
The goodness of the inversion is defined by the relative errors of the
tsunami source reconstruction. As the result, we find the dependence of
the goodness of the inversion in terms of the number of receivers, their
azimuthal coverage and the frequency band. The applied approach allows
one to control the instability of the numerical solution and to obtain an
acceptable result in spite of the ill-posedness of the problem and makes
it possible to predict a probable quality of the inversion by a certain
observational system. This result should be kept in mind when designing
a tide-gauge network to study a tsunami source.
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1. Introduction

This paper outlines some aspects of an approach to reconstructing an initial water
elevation field that generates a tsunami. Recently, the devastating tsunamis have acutely
put forward the problem for their timely warning and, as consequence, the importance
of the accurate tsunami simulation. Mathematical modeling of tsunamis is to provide
tsunami-withstanding communities with reliable information of inundation heights and
arrival times for the purpose to immediate protective measures. Numerical modeling of a
tsunami source is an important tool of assessment and mitigation of the negative effects
of tsunamis.

Among mathematical approaches based on the inversion of near-field water-level data,
most often used are the methods relying upon Green’s functions technique (GFT) [1],
the least square inversion combined with the GFT [3] or an optimization approach [2].
These methodologies with various modifications are widely used in practice. Later, the
method proposed by V.Titov in [4] for refining source coefficient estimates based on
seismic information by making use of data from Deep-ocean Assessment and Reporting of
Tsunamis (DARTR) buoys. The method involves using these data to adjust precomputed
models via an inversion algorithm so that residuals between the adjusted models and the
DARTR data are as small as possible in a least squares sense.

This paper deals with an application of an original approach to the problem of retrieving
the initial water elevation field (tsunami source) based on the inversion of remote
measurements of water-level data (marigrams). This inversion method was first proposed
by T.A.Voronina and V.A.Tcheverda in 1998 [5] and was already described in its
fundamentals in previous papers [6], [7], [8]. Particularly, the proof of the compactness
of the inverse problem operator was first presented for an arbitrary shape of bottom in
[6]. In this method, the data space consists of a given number of tide-gauge records, and
the model parameter space is represented by the values of the initial water elevation field
at a given number of points.

The direct problem of the tsunami wave propagation is considered within the scope of
the linear shallow-water theory. The ill-posed inverse problem of reconstructing initial
tsunami waveforms is regularized by means of the least-square inversion using the
truncated SVD approach. As a result of the numerical process, an r-solution is obtained
[11]. In the present paper, the properties of inverting operator are studied by means of
numerical modeling. This study is aimed at investigation of the characteristics of the
method avoiding the influence of such a factor as bathymetry and deals, particularly, with
establishing the dependence of the goodness of the inversion on the number of receivers,
their azimuthal coverage and the frequency band when the computational domain is
a right-angle basin. The method presented allows one to control the instability of the
numerical solution and to obtain an acceptable result in spite of the ill-posedness of the
problem.

2. Models

Mathematically, the problem of reconstructing the initial tsunami waveform in the
source area is formulated as determination of spatial distribution of an oscillation source
using remote measurements on a finite set of points (later called as receivers). Let us
consider the coordinate system xyz and direct the axis-z downwards. The plane {z =
0} corresponds to the undisturbed water surface. The spherical shape of the Earth is
neglected. Consider the aquatic part Φ of a rectangular domain Π = {(x; y) : 0 ≤ x ≤
X; 0 ≤ y ≤ Y } on the plane {z = 0} with the solid boundaries Γ and the open sea
boundaries. The arrival of the wave on the coast is not considered in this study. One of
the main advantages of this method is that it is completely independent of any particular
source model. Let Ω = {(x, y) : x1 ≤ x ≤ xM ; y1 ≤ y ≤ yN} be a tsunami source
subdomain of Φ. The observational data are the water level records which are assumed
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to be known at a set of points in the domain Φ. Since a tsunami in the ocean is a long
gravitational wave with a low amplitude, its propagation can be considered in the scope of
the linear shallow water theory. Let η(x, y, t) be a function of the water surface elevation
relative to the mean sea level which is considered to be a solution of the linear shallow
water equation:

(1) ηtt = div (gh(x , y)grad η) + ftt(x , y , t)

with the initial conditions:

(2) η|t=0 = 0; ηt|t=0 = 0

completed on the continental coasts with zero Neumann boundary conditions:

(3)
∂η

∂n

∣

∣

∣

∣

Γ

= 0,

and the boundary conditions simulated on an open boundary when the spatial boundary
occurs in an ocean location. The second order absorbing boundary conditions were used
at the open boundaries [9]. The tsunami wave is assumed to be triggered by a sudden
vertical displacement f(x, y, t) of the sea floor. It is assumed that

(4) f(x, y, t) = H(t)ϕ(x, y),

where ϕ(x, y) is a co-seismic vertical displacement and H(t) is the Heaviside step function.
As a result ϕ(x, y) is the initial sea surface deformation in the target domain Ω. The
acceleration of gravity is the constant g and the wave phase velocity is defined as c(x, y) =√
gh. In addition, the function η(x, y, t) is assumed to be known at a set of points M =

{ (xi, yi), i = 1, ..., P}
Let us consider a special case for the approach proposed when the computational

domain is the parallelepiped with the height h0 based on the rectangular Π, the wave phase
velocity is defined as c(x, y) = c0 =

√
gh0, boundary condition (2) being correct for the line

y = 0 and the free boundary condition corresponding to the lines {x = 0; y = Y ; x = X; }
in the plane {z = 0}. With these assumptions, equation (1) can be rewritten in the form:

(5)
1

c20
ηtt = ∆η +

1

c20
ftt(t, x, y).

This makes possible to consider the analytical solution of the above equation in the spectral
domain. Let us denote:

(6) η(x, y;ω) =

∞
∫

−∞

η(x, y, t)e−iωt dt

(7) f(ω, x, y) =

∞
∫

−∞

f(x, y, t)e−iωt dt,

where function f(x, y, t) is defined by (4). After applying the Fourier transform with
respect to time, one can obtain the following inverse problem: to recover the function
ϕ(x, y) ∈ L2(Ω) with a known spectrum of the function η(x, y;ω) for a certain frequency
band [ω1, ω2]

(8) η(x, y;ω)|M = ηo(xj , yj , ω); ω1 ≤ ω ≤ ω2

with η(x, y;ω) being the solution to the Helmholtz equation

(9) ∆η +
ω2

h0
η =

iω

c0
ϕ(x, y)
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satisfying the Sommerfeld radiation condition. Therefore, the recorded field depends on
the source amplitude in the following manner:

(10)
η0(x, y, ω) == −iω

c2
0

∫ ∫

Ω

ϕ(ξ, ζ)H
(1)
0

(

k
√

(x− ξ)2 + (y − ζ)2
)

dξdζ,

i = 1, . . . , P,

where k ≡ ω/c0, and H
(1)
0

(

k
√

(x− ξ)2 + (y − ζ)2
)

is Hankel’s function. Let us denote

F (ω) = −iω/c20. For the data space, let us consider that the observational system consists
of P receivers disposed at a set of points { (xi, yi), i = 1, ..., P}, where the spectrum of
the recorded field η0(x, y, ωj) is known for some frequency setting {ωj} j = 1, . . . , Kω. In
order to obtain a system of linear algebraic equations by means of a projective method, a
trigonometric basis was chosen in the model space, i.e., the unknown function ϕ(x, y) was
sought for as a series of spatial harmonics {ϕmn(x, y) = sin mπ

l1
(x−x1)·sin nπ

l2
(y−y1), m =

1, 2, · · · ,M ; n = 1, 2, · · · , N} and the center of the tsunami source was believed to be at
the point (xc, yc), being the central point of the domain Ω. Here l1 = (xM − x1); l2 =
(yN − y1). Thus, the unknown function of water surface elevation ϕ(x, y) is approximated
by the sum of spatial harmonics:

(11) ϕ(x, y) =
M
∑

m=1

N
∑

n=1

cmn sin
mπ

l1
(x− x1) · sin nπ

l2
(y − y1)

with unknown coefficients {cmn} in the domain Ω. This leads to the following system of
linear algebraic equations with respect to the coefficients cmn according to formula (11):

(12)
η0(xi, yi, ωj) == F (ωj)

M
∑

m=1

N
∑

n=1

cmn

xM
∫

x1

yN
∫

y1

sin mπ
l1

(ξ − x1) sin
nπ
l2

(ζ − y1)×

×H
(1)
0

(

kj
√

(xi − ξ)2 + (yi − ζ)2
)

dξ dζ

In order to compute these integrals, the uniform grid was introduced over the rectangle Ω
with the parameters I,Q over x− and y− directions, respectively: hx = l1/I, hy = l2/Q,
ξp = hx · p; p = 0, ..., I , ζq = hy · q; q = 0, ..., Q. Within each elementary rectangle

[ξi ≤ ξ ≤ ξi + hx] × [ζq ≤ ζ ≤ ζq + hy] a bilinear approximation denoted as H̃iq(ξ, ζ) for

Hankel’s function was used. Let us denote Hi,j,p,q = H
(1)
0

(

kj
√

(xi − ξp)2 + (yj − ζq)2
)

,

η0,ij = η0(xi, yi, ωj). Then system (12) could be rewritten in the form

(13)
η0,ij = Fj

M
∑

m=1

N
∑

n=1

cmn

I−1
∑

p=1

Q−1
∑

q=1

ξp+hx
∫

ξp

ζq+hy
∫

ζq

sin mπ
l1

(ξ − x1) sin
nπ
l2
(ζ − y1)×

×H̃pq(ξ, ζ) dξ dζ.

There is another fact to be remarked: the function η0(x, y, ωj) is a complex one when
the unknown function ϕ(x, y) describing the source amplitudes is a real one. Therefore,
the unknown coefficients {cmn} will be real, too. This fact was taken into account in
the algorithm and by standard technique a new system with only real equations was
obtained from system (13). Thus, the number of equations in new system will be equal to
L = 2× P ×Kw.

Now, it is possible to use the r−solution method for system (13) as it will be explained
bellow.

3. Inversion method

The proposed inversion method was described in details in previous papers [6], [7],
[8] for the continuous case. In this case, let us denote by A the linear operator of the
Cauchy problem (1)-(3), which is defined in the following way: for each given ϕ(x, y)
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solve the problem (1)-(3) and trace its solution on the line γ (a smooth curve without
self-intersection):

(14) A < ϕ >= η0(s, t),

where
η0(s, t) = η(x(s), y(s), t), (x(s), y(s)) ∈ γ(s),

0 ≤ t ≤ T, 0 ≤ s ≤ L

The inverse problem in question can now be formulated as a problem of solving the linear
operator equation of the first kind. As was shown by A.Kaistrenko in [10], the above
inverse problem has a unique solution only if the source function allows factorization with
the time and spatial variables.

Its solution will be sought for in the least squares formulation. The operator A :
L2(Ω) → L2 (γ(s)× (0, T )) is a compact one because its kernel is a function with weak
singularity and, therefore, this operator does not possess a bounded inverse. In other
words, any attempt to numerically solve equation (14) must be followed by a certain
regularization procedure. In the present paper, regularization is performed by means of
the truncated SV D that brings about the a notion of r-solution (see [11]).

In brief, the notion of r-solution can be described as follows. Any compact operator A

could be described in the Hilbert spaces with the singular system {sj , ~uj , ~vj}, j = 1, . . .∞,
where sj ≥ 0 (s1 ≥ s2 ≥ . . . ≥ sj ≥ . . .) are singular values and {~uj}, {~vj} are the left and
the right singular vectors. A~vj = sj~uj and sj → 0 with j → ∞. The systems {~uj}, {~vj}
are orthogonal. A very important property of the singular vectors is that they form bases
in the data and model spaces and the solution of equation (14) can be given by expression

(15) ϕ(x, y) =
∞
∑

j=1

(η0(s, t) · ~uj)

sj
~vj(x, y).

The solution given by (15) is nothing else as the "normal general"solution and operator,
given by the right-hand side of (15) is normal general pseudoinverse for A ([12]). As one
can see from formula (15) the ill-posedeness of the operator equation of the first kind with
the compact operator is due to the fact that sj → 0 with j → ∞, i.e. one can perturb the
right-hand side η0(s, t) in such a way, that its vanishing perturbation ε(t) can lead to a
large perturbation of the solution.

The regularization procedure based on truncated SVD leads to the notion of r-solution
given by the relation:

(16) ϕ[r](x, y) =
r

∑

j=1

(η0(s, t) · ~uj)

sj
~vj(x, y).

The r-solution is the projection of the exact solution (15) onto a linear span of the r right
singular vectors corresponding to the top singular values of the compact operator A. This
truncated series is stable for any fixed parameter r with respect to perturbations of right-
hand side and operator itself ([11]). It is reasonable that the larger r, the more informative
is the solution obtained. Finally, the value of r is determined by the singular spectrum of
the matrix A which is tightly bounded with the parameters of the observation system.

4. Numerical experiments: description and discussion

A series of calculations were carried out by the method proposed to set up the
dependence of the goodness of an inverted function on certain characteristics of the
observational system such as the number and location of receivers, the frequency band
of the data. As the main objective of our research is an application to reconstructing an
initial tsunami waveform, we can assume the location of the target domain Ω to be known.
In the truly real cases, the tsunami source area is specified from seismological data shortly
after the event. Synthetic data for the numerical inversion experiments presented below
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were computed as a solution of problem (1) - (2) with appropriate boundary conditions
and a function ϕ(x, y) in the form

(17) ϕ(x, y) = β(x, y) · α(x),
where the parameter α(x) was selected according to the case study that will be clear in
what follows. Let us introduce the notation

Pa(x, y) =
(x− x0)

2

R1
2 +

(y − y0)
2

R2
2 ,

then the function β(x, y) describes a semi-paraboloid:

(18) β(x, y) =

{

1− (x−x0)
2

R1
2 − (y−y0)

2

R2
2 , if Pa(x, y) < 1

0 , if Pa(x, y) ≥ 1.

The numerical simulation includes the following steps:
1) First, we obtain the synthetic marigrams in all receivers by solving the forward

problem with appropriate boundary conditions and a certain function ϕ(x, y) as a source
which to be reconstructed. Thus, the vector η0(x, y, w) in (12) is obtained.

2) Next, the matrix A is numerically computed by solving the forward problem with
every spatial harmonic ϕmn(x, y) = sin mπ

l1
x · sin nπ

l2
y}, m = 1, . . . ,M ;n = 1, . . . , N as

initial condition.
3) Further, standard SVD- procedure is applied. The analysis of singular spectrum of

the matrix A allows one to define the number r and to compute the coefficients {cmn} as
an r-solution by (12).

4) After this, the function ϕ̂(x, y) can be computed in the form (11).
6) Finally, to estimate the goodness of an inversion experiment we use an l2 -norm misfit

parameter that represents the squared averaged difference between the exact solution
function {ϕi = ϕ(xi, yi)} and the recovered one {ϕ̂i = ϕ̂(xi, yi)}:

err% =





K∑

i=1

(ϕi−ϕ̂i)
2

K∑

i=1

(ϕi)
2





1/2

× 100%,

where i = n+ (m− 1)×N ;n = 1, . . . , N ;m = 1, . . . ,M ; K = N ×M}.
A series of the calculations were made by the method proposed and were aimed at

recovering the unknown function ϕ(x, y) in the form (11). Let us assume: a flat bathymetry
h(x, y) = 4.082 ( below all distances are scaled in kilometers); the wave velocity c0 =
const = 0.2 km/sec; α(x) = 1 in formula (17), i.e. the initial field is only a turning-
up function. Let us denote a computational domain on surface {z = 0} as a rectangle
Π = {(x; y) : −X ≤ x ≤ X; 0 ≤ y ≤ Y } encompassing all the receivers and the source
area Ω. We assume that the total reflective boundary condition (3) was fulfilled on the
line y = 0 and an open boundary corresponded to the lines x = 0; x = X; y = Y . The
center of the source was located at (x0, y0) = (0, 150). The function ϕ(x, y) was sought for
according to formula (11) with M = 21, N = 21, its maximum value being ϕmax = 1m,
and the domain Ω was a spatial discretization by means of 100 × 100 mesh points, i.e.
I = 101 and Q = 101 in (13).

Let us define an assembly of the above specifying parameters as Pattern 1 and designate
as Model (Mod.) the total sum of the Pattern 1 and additional parameters such as Kp -
the number of receivers, Kw - the number of frequencies and the range of frequency band
and geometry of aperture. Over this all computation were made for the four values of
conditions number of the matrix A: 102; 104; 106; 108. All following graphs of singular
spectra of the matrix A are in the common logarithm scale.

We introduce the following notations:
(1) the words "the conditioning number of the matrix A were designated as cond(A);
(2) the value 100×max(ϕ(x, y)), while (x, y) ∈ Ω is denoted by the symbol {100max};
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(3) the misfit parameter is denoted by err%.

fig. 1. The source-receivers arrangement: the source (red circle),
the target domain Ω (yellow rectangle), the receivers (green circles)
(left). The singular spectra of the matrix A (common logarithm
scaled) in Models 1,2,3,4 with the numbers of their singular values
(right).

Figure 1(left) shows the layout scheme of the source-receivers arrangement for
Models 1 − 4. The spatial parameters of the source were specified by the following way:
a half-sphere with a radius Rs = 5; Ω = {(x, y) : −25 ≤ x ≤ 25; 130 ≤ y ≤ 170}.
In the inversion by Models 1 − 4, the following values of the parameters were used:
Kp = 11, Kw = 50, A = (1100 × 441). In these Models the receivers are uniformly
distributed along the line y = 0 as much as possible along the interval [−L/2, L/2]:

Model1 : w ∈ [0.0005, 0.002]Hz;L = 100;
Model2 : w ∈ [0.002, 0.01]Hz;L = 100;
Model3 : w ∈ [0.0005, 0.002]Hz;L = 1000;
Model4 : w ∈ [0.002, 0.01]Hz;L = 1000;

These inversion experiments were carried out to answer the question how the goodness
of the inversion depends on the aperture length and the frequency band. First of all, we
analyzed the singular spectrum of the matrix A for Models 1−4. In Figs.1-3 the correlation
between Models and color of lines is following: Mod. 1 (green); Mod. 2 (blue); Mod. 3
(orange) and Mod. 4 (red). The common logarithm of the singular values were plotted
in Fig. 1(right). A sharp decrease in the singular values, when their number increases,
is typical for all calculations in all cases of the study, due to the ill-posedness of the
problem. Setting the parameter r is caused by a rapid decrease in the singular values
of the matrix A. Fig.2 (left) shows the range of the number r becoming wider when the
conditioning number of the matrix A is increasing. A larger r results in a more informative
solution obtained: a maximum of the unknown function is increasing (Fig.2 (right)) and
the misfit parameter (err%) is decreasing as one can see in Fig.3 (left). By analyzing
the graphs in Fig.1 (right) we can expect the most successful outcome of the inversion
process for the Mod. 4 ( marked by the red color) because of a gently sloping curve of the
singular spectrum that leads to increasing the number r used in the inversion. Comparing
these values for different models one can see that the inversion becomes better while the
aperture length becomes wider (compare the green and the orange lines corresponding
to Mod 1 and Mod 3 and the blue and the red lines corresponding to Mod 2 and Mod 4,
respectively). These graphs show that increasing the upper limit of the frequency range
makes the most effect for the inversion quality in the case studied (compare the green
and the blue lines corresponding to Mod 1 and Mod 2 and the orange and the red lines
corresponding to Mod 3 and Mod 4, respectively). The diagrams in Fig.3 (right) confirm
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fig. 2. The number r with the conditioning number of the matrix
A in Models 1,2,3,4 (left). The largest extremum of the inverted
function ϕ̂(x, y) in terms of the conditioning number of the matrix
A (Models 1-4) (right).

fig. 3. The misfit parameter err% in terms of the conditioning
number of the matrix A (Models 1-4) (left). The diagrams of
changing the inversion parameters with the upper limit of the
frequency band when 10 receivers are uniformly distributed along
the aperture line y = 0; L = 1000; and Kw = 20 (right).

this conclusion. The functions inverted by the Mods. 1,2,3,4 (cond(A) = 108) are presented
in Fig.4. Figs.4(middle left) and (right) illustrate that an increase in the upper limit of

fig. 4. The inverted functions by Models 1,2,3,4: L=100;
[0.0005,0.002]Hz (left); L=100; [0.002,0.01]Hz (middle left);
L=1000; [0.0005,0.002]Hz (middle right); L=1000; [0.002,0.01]Hz
(right)

the frequency band leads to decreasing the "smearing"of the inverted function and, hence,
to increasing a maximum value in the center of the source supposed.
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In the second series of the inversion we studied the dependence of the inverted function
on the geometry of the aperture. The computer simulations were made within the scope of
Patten1 with the frequency band [0.0005, 0.002]Hz; Kp = 11; Kw = 50 and the condition
number cond(A) = 108. First, let us consider models when the receivers were distributed
on the two sides of the angle BADC (see Fig.5) (left). In Mod. 5.1 and Mod. 5.2 five

fig. 5. The source-receivers arrangement for Models 5-6: the
source (red circle), the target domain Ω (yellow rectangle); the
receivers (small circles on the lines BA, AC, and on the segments
of the circles EVF and GDT, respectively) (left).

receivers are distributed on the line BA;B(−500, 600), A(−500, 0) with the interval 100
and the next six receivers are uniformly distributed on the lines AD or ADC, respectively.
In other words, Mod. 5.1 and Mod. 5.2 are differed from each other by the aperture angle.

The influence of the receivers-to-source distance on the goodness of the inversion was
investigated in Mod. 6.1 and Mod. 6.2 when all receivers are uniformly distributed on
the semi-circles centered at the point (x0, y0) = (0, 150) with R = 150 in Mod. 6.1 and
with R = 500 in Mod. 6.2 (the segments GDT and EV F of the circles in Figure 5)
(left). In addition, we have carried out modeling when the frequency band was equal to
[0.002, 0.01]Hz for the last cases named Mod. 6.12 and Mod. 6.22, respectively.

The comparison of the singular spectra of all these Models plotted in Fig. 5 (right)
allows one to estimate the goodness of the inversion for every Model. A most shape

fig. 6. The singular spectra of the matrix A for Models: 5.1
(magenta line), 5.2 (red line), 6.1 (blue line), 6.2 (green line), 6.12
(yellow line), 6.22 (light green line) (right). The number r, the
misfit parameter err% and the maximum value of ϕ̂(x, y) in terms
of Mods. 5.1, 5.2, 6.1, 6.2, 6.12, 6.22

decreasing in singular values of the singular spectrum of Mod. 5.1 leads to a poor choice
of the number r and, as consequence, to the unsuccessful version of the inversion. As is
shown in Fig.6 (left), there are very similar singular spectra in Models 5.2, 6.1, 6.2. We can
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expect that the inverted fields to be similar in shape, too. This fact is confirmed in Fig.7.
A good similarity is observed between the singular spectra of Mod. 6.1 and 6.2 as well as
between of Mod. 6.12 and Mod. 6.22. This makes possible to bring into coincidence in the
number r for earth pair cases (see Fig.6 (right)) and, finally, it makes possible to obtain
the coincidence of the inversion results. Furthermore, from the preceding arguments we
can expect that the inversion results in Models 6.12 and 6.22 will be better than in Models
6.1 and 6.2, respectively. By analyzing plots in Fig.7 one can conclude:

(1) the results of the inversion by a wide angle aperture in Mod. 5.2 coincide with the
experiments on the wide linear aperture L = 1000 in Mod. 3. Indeed, a maximum value
of the inverted function and misfit parameter are equal to ϕ̂max ≈ 0.35; err% ≈ 29%.

(2) A receivers-to-source distance does not influence on the inversion result: compare
the values in the blue and the green columns, corresponding to Mod. 6.1 and Mod. 6.2,
respectively. They are qualitatively equivalent in the sense of maximum values of the
inverted function, but their smearing is different (see Fig.7). After analyzing the plots in
the blue, green and yellow columns in Fig.6 (left), we can conclude that an increase in the
upper limits in the frequency band makes also the inversion better in these cases.

fig. 7. The recovered functions: (top) by models Mod. 5.1 (left),
Mod. 6.1 (middle) and Mod. 6.2 (right); (bottom) by models
Mod. 5.2 (left), Mod. 6.12 (middle) and 6.22 (right).

4.1. The dependence of the recovered function on the number of receivers and

the aperture angle. This issue is of primary practical importance: how goodness of the
recovered function depends on the number of receivers used in the inversion procedure.
First of all, our purpose was to obtain acceptable results of the inversion using a minimum
number of marigrams. In this connection, we have made the computer simulation using a
number of records that ranges from 1 to 30 with different azimuthal coverage.

Fig.8 shows the layout scheme of the source-receivers arrangement for Models 7 − 9.
The target domain Ω = {(x, y) : −100 ≤ x ≤ 100; 100 ≤ y ≤ 200}, w ∈ [0, 001, 0, 01]Hz;
α(x) = 1 in relation (17) and cond(A) = 108 in all calculations for these cases. It must be
mentioned that the value Kw in the experiments performed was defined so that Kp ×Kw

remains constant.
Let us consider Mod. 7 based on Pattern1 with the linear aperture along the line

y = 0, L = 1000 (according to Fig.8) and the number of receivers being: 3, 5, 8, 15, 20,
30. These receivers were uniformly distributed along the aperture. In Table1 one can see
the main characteristic of the Models 7-9 more particular.
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fig. 8. The source-receivers arrangement on the surface z = 0:
source for Model 7 (central small circle); for Model 8 − 9 (central
ellipse); receivers (the green small circles)

Table1

Model type of the aperture number of the
receivers

type of the source

Model 7 on the line y=0; L=1000 3,5,8,15,20,30 semi-sphere R1 = 5; R2 = 5

Model 8 on the line y=0; L=200 3,5,7,10,15 semi-ellipsoid R1 = 50;R2 = 25

Model 9 on the semi-circle R=150 1,2,3,5 semi-ellipsoid R1 = 50;R2 = 25

Let us consider Mod. 7 based on Pattern 1 with the linear aperture along the line
y = 0, L = 1000 (according to Fig.8) and the number of receivers being: 3, 5, 8, 15,
20, 30. These receivers were uniformly distributed along the aperture. Comparing the
singular spectra for the Mod. 7 with different number of receivers in Fig.9 we can predict
that the worse result will be in the inversion when 3 receivers were used, while the best
result will be provided using 15-30 receivers. Indeed, in Fig.9 one can see how the number
r, parameter Kw and a maximum value of the recovered function are changing with
the number of receivers used in the inversion when cond(A) = 108. The goodness of

fig. 9. The singular spectra of the matrix A for Mod. 7; with
a different numbers of receivers used in the inversion: 3(dark
green), 5(light green), 8(violet), 15(red), 20(blue), 30(pink) (left).
Dependence of the number r, a maximum value of the recovered
function and the value Kw on the number of receivers in Mod. 7
(right).

the inversion is improving when the number of receivers increases up to 15. Obviously,
further increasing is useless. This assumption is confirmed by the pictures of the recovered
functions in Fig.10 (see maximum values of the recovered function in Table in Fig.9
(right)).
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fig. 10. The recovered functions in Mod. 7 with: (top) 3 receivers
(left); 5 receivers (middle); 8 receivers (right); (bottom) 15 receivers
(left); 20 receivers (middle); 30 receivers (right).

Let us change some spatial parameters in our Models. Let now the function ϕ(x, y)
be a semi-ellipsoid , while α(x) = 1; R1 = 50; R2 = 25 according to relations (17)-(18)
and the number of receivers vary: from 3 to 15 in Mod. 8 and from 1 to 5 in Mod. 9.
In accordance with Figure 8, in Mod. 8 receivers are uniformly distributed on the line

fig. 11. The singular spectra of the matrix A in Mod. 8 in terms
of the number of receivers (left). The singular spectra of matrix
A in Mod. 9 for different receivers aperture angle: 1 receiver (the
dark magenta line); 2 receivers and the aperture angles: π/5 (the
pink line); 3π/5 (the brown line); π (the orange line); 3 receivers
π/5 (the green line); 5 receivers with aperture angles: π/10 (the
blue line); π/2 (the light green line); 2π (the magenta line) right).

y = 0; L = 200, but in Mod. 9 receivers were set on the segment [−α, α] of the circle
centered at the point (0, 150) with R = 150 and the aperture angle is equaled 2α, while
α = n × π/10; n = 0.5, 1, 2.5, 3, 5, 6, 10. In Mod. 8 the number of frequencies was equal
to 30 (Kw = 30) for the inversion by 15, 10, 7 marigrams, Kw = 50 for the case with 5
marigrams and Kw = 100 for the case with 3 marigrams, respectively.

As is clear from Fig.11 the behavior of the singular spectra as a function of the number
of receivers in Mod. 8 and in Mod. 9 keeps the main features being typical of the ill-
posed problem singular spectrum. Increasing the number of receivers leads to moving the
singular spectra in such a way that the available interval of the number r is increasing
and this results in obtaining a more informative solution, i.e. the inversions become more
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robust. The latter is confirmed by the Fig.12 where the recovered functions by Mod. 8 are
represented.

fig. 12. The recovered functions in Mod. 8 with: (top) 3 receivers
(left); 5 receivers (middle); 7 receivers (right); (bottom) 10 receivers
(left); 15 receivers (middle); the theoretical function ϕ(x, y) (right).

Next, we present the results obtained in Mod. 9 when the goodness of the inversion was
studied with a range of the aperture angle and the number of receivers.

fig. 13. The graphs of changing the inversion parameters with
the number of used receivers in Mod. 9: half-aperture angle (α)
multiplied by 10 (the line 1); the misfit parameter (the line 2); the
number r (the line 3) and the maximum value multiplied by 100
(the line 4)(left). The diagram of changing the inversion parameters
with the number of receivers used in the calculations in Mod.9 :
displaced water volume multiplied by 104 (the line 1); released
energy multiplied by 103 (the line 2) and the maximum value of
the recovered function multiplied by 100 (the line 3) (right).

Adding new receivers in Mod.9 leads to increasing a maximum value of the recovered
function from the value 0.28 to the value 0.876 (the line (3) in Fig.13 (left)) and,
simultaneously, to decreasing the misfit parameter from 44% to 2.43% (the line (2) in
Fig.13 (left)) for the cases with different aperture angles. One can see in Fig.13 (right)
that the released energy is increasing as well as maximum value of inverted function, but
the total displacement volume ("sum amplitude") as is not changes in our experiments.
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fig. 14. The diagram of changing the inversion parameters with
the aperture angle range and the number of receivers used in
Model 9. There are solid lines: half-aperture angle multiplied by 10
(the line 1); cond(A) = 108, 100max (the line 2a) and the misfit
parameter err% (the line 3a); the number r (the line 4) and the
dashed lines cond(A) = 100: 100max (the line 2b) and the misfit
parameter err% (the line 3b)

Let us discuss the graphs plotted in Fig.14. As is clear, increasing the number of
receivers, in total, leads to the more robust inversion: the misfit parameter (the line 3a) is
decreasing while maximum value (the line 2a) of the recovered function tends to maximum
value (100) of the theoretical function. If the number of receivers is fixed the goodness
of the inversion rises with the azimuthal coverage (the line 1). In addition, we studied
the dependence of such inversion parameters as maximum value of the recovered function
and the misfit parameter on the conditioning number of the matrix A. In addition, when
5 receivers were used, the simulation was made with cond(A) = 100 (see 3b and 2b
dashed lines in Fig.14). Comparing lines 3a and 2a with lines 3b and 2b, respectively,
one can see that if the aperture angle (the line 1) is sufficiently wide, the influence of the
conditioning number is not significant. The recovered functions for the above discussed
cases are presented in Figs.15-16 (compare with the theoretical function for Models 8, 9 in
Fig.12 ( bottom right)). The best result was obtained when the source area is ringed by

fig. 15. The recovered functions in Mod. 9 by the inversion with:
1 receiver (left); 2 receivers; α = 0.1π (middle left); 2 receivers;
α = 0.5π (middle right); 3 receivers; α = 0.1π (right).

receivers, i.e. the aperture angle 2α = 2π (see Fig.15(right)) and the number of marigrams
engaged in the inversion process is equal to 5 in our study.

5. Conclusion

We applied an inversion method to the problem of reconstructing the initial water
elevation field that generates a tsunami. The numerical simulation of a tsunami source is
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fig. 16. The recovered functions in Mod. 9 by the inversion with:
3 receivers; α = 0.6π (left); 5 receivers; α = 0.05π (middle left); 5
receivers; α = 0.25π (middle right); 5 receivers; α = π (right).

one of an important component of the assessment and, thus, mitigation of the effects of
the tsunami impact.

The application of r-solutions is an effective means of regularization of an ill-posed
problem. The number of r basic vectors applied appears to be essentially lower than the
minimum dimension of the matrix. This, in fact, enables one to avoid the instability of
the problem caused by a sharp decrease in singular values of the matrix.

Analysis of the singular spectrum of the matrix obtained allows us to predict a possible
quality of the inversion by a given observational system. This result should be kept in
mind when designing a tide-gauge network to study a tsunami source.

Since the calculations were really made in the time-spectral domain, we can conclude
that for the solution being satisfactory the shortest wavelength should be less than half of
the characteristic size of a tsunami source. The number of frequencies used in calculations
should not be large; it is sufficient to use about 15 frequencies.

The quality of a solution is improving when the number of receivers increase up to
10-15. The further increase is useless.

We have also shown that a way to improve the inversions with a lesser number of
marigrams is to use the wide range of angles of observation. The best range is the entire
circle. The results are very satisfactory, since a rough localization of the source enables
us to recovery the initial water surface displacement in the source area. This is promises
the similar result in more complicated case when the depth of the basin is an arbitrary
function of two variables.
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