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Abstract. We obtain a complete complexity dichotomy for the edge 3-
colorability within the family of hereditary classes defined by forbidden
induced subgraphs on at most 6 vertices and having at most two 6-vertex
forbidden induced structures.
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1. Introduction

A coloring is an arbitrary mapping from the set of vertices or edges of a graph
into a set of colors of the graph such that any adjacent vertices (or edges) are colored
by different colors. The vertex k-colorability is to verify whether vertices of a
given graph can be colored by at most k colors. The edge k-colorability is the
edge analogue of the vertex k-colorability. The vertex colorability (resp.
the edge colorability) is to find the minimum number of colors necessary for
coloring vertices (resp. edges) of a given graph. All four problems defined above
are NP-complete (see [10, 14, 19]) in the class of all graphs and the same remains
true under its substantial restrictions. At the same time, some areas of tractability
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are known i.e., graph classes where the problems are polynomially solvable (see, for
example, the corresponding surveys and references in [25, 26, 27, 41, 46]).

A class of graphs is called hereditary if it is closed under deletion of vertices. It is
well known that any hereditary (and only hereditary) graph class X can be defined
by a set of its forbidden induced subgraphs S. We write X = Free(S) in this case.
There is a unique minimal under inclusion set S with this property denoted by
Forb(X ). If Forb(X ) is finite, then X is called finitely defined.

The complexity of the vertex colorability and the vertex k-colorability
restricted to graph classes defined by one or more forbidden induced subgraphs has
been studied by many authors [8, 9, 11, 13, 15, 17, 18, 41, 46, 48]. Kral’ et al.
obtained a complete complexity dichotomy for the vertex colorability within
hereditary classes having one forbidden induced subgraph [17]. They also initialized
a study for two forbidden induced subgraphs, but there are classes defined by two 4-
vertex forbidden induced structures for which the complexity status of this problem
remains open [22]. The complexity of the vertex 3-colorability is known for
all classes of the form Free({H}) with |V (H)| ≤ 6 [9]. A similar result for H-free
graphs with |V (H)| ≤ 5 was recently obtained for the vertex 4-colorability
[11]. On the other hand, the complexity status of the vertex k-colorability is
still open for P7-free graphs (k = 3) and for P6-free graphs (k = 4).

For the edge colorability and the edge k-colorability the author does
not know any facts similar to the exhaustive classifications above. The first result
of this type is presented in this article. Namely, we give a complete complexity
dichotomy for the edge 3-colorability in the family of hereditary classes defined
by forbidden induced subgraphs on at most 6 vertices and having at most two 6-
vertex forbidden induced fragments.

2. Notation

As usual, Pn and Cn stand respectively for the simple path with n vertices and
the chordless cycle with n vertices. The graphs claw, diamond, bug, hantel, barbell,
glider are drawn on the picture below.
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Fig 1. The graphs claw, diamond, bug, hantel, barbell, glider

A graph Ti,j,k has vertices x0, x1, x2, . . . , xi, y1, y2, . . . , yj , z1, z2, . . . , zk and edges
(x0, x1), (x1, x2), . . . , (xi−1, xi), (x0, y1), (y1, y2), . . . , (yj−1, yj), (x0, z1), (z1, z2), . . . ,
(zk−1, zk). A graphDi,j,k has vertices x0, y0, z0, x1, x2, . . . , xi, y1, y2, . . . , yj , z1, z2, . . . ,
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zk and edges (x0, y0), (x0, z0), (y0, z0), (x0, x1), (x1, x2), . . . , (xi−1, xi), (y0, y1), (y1, y2),
. . . , (yj−1, yj), (z0, z1), (z1, z2), . . . , (zk−1, zk).
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Fig 2. The graphs Ti,j,k and Di,j,k

A graph kG is the disjoint union of k copies of a graph G. For a graph G and a
set V ′ ⊆ V (G) the formula G\V ′ denotes the subgraph of G induced by V \V ′. The
hereditary closure of a class X (denoted by [X ]) is the set of all induced subgraphs
of its members.

We refer to textbooks in graph theory for any graph terminology undefined here.

3. Boundary graph classes

3.1. The notion of a boundary class and its significance

The notion of a boundary graph class is a helpful tool for analyzing the
computational complexity of graph problems within the family of hereditary graph
classes. This notion was originally introduced by V. Alekseev for the independent
set problem [1]. It was applied for the dominating set problem later [3]. A study
of boundary graph classes for some graph problems was continued in the paper of
Alekseev et al. [2] where the notion was stated in its most general form. Let us give
necessary definitions.

Let Π be an NP-complete graph problem. The term «graph problem» is not
defined here and it is understood intuitively as a question on the input graph. A
hereditary graph class is called Π-easy if Π is polynomial-time solvable for its graphs.
If the problem Π is NP-complete for graphs in a hereditary class, then this class is
called Π-hard. A class of graphs is said to be Π-limit if this class is the intersection
of an infinite monotonically decreasing sequence of Π-hard classes. In other words,
X is Π-limit if there is an infinite sequence X1 ⊇ X1 ⊇ . . . of Π-hard classes such

that X =
∞⋂
k=1

Xk. Each Π-hard class is Π-limit. A minimal under inclusion Π-limit

class is called Π-boundary.
The following theorem certifies the significance of the boundary class notion (see

[1]).

Theorem 1. A finitely defined class X is Π-hard if it contains some Π-boundary
class. If X does not contain a Π-boundary class, then it is Π-easy (unless P = NP ).

The theorem means that finding out all Π-boundary classes implies a complete
classification of finitely defined graph classes with respect to the complexity of
Π. Two concrete classes of graphs are known to be boundary for several graph
problems. The first of them is T . It is constituted by all forests with at most three
leaves in each connected component. The second one is D consisting of line graphs
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of graphs in T . In other words, T (resp. D) is the class of graphs whose connected

components belong to [
∞⋃
i=1

{Ti,i,i}] (resp. to [
∞⋃
i=1

{Di,i,i}]). The papers [2, 4, 29, 35]

are good surveys about graph problems for which either T or D is boundary. Note
that in some papers T is denoted by S and D is denoted by T . We will use the
{T ,D}-notation here.

The most important fields of research in the theory of boundary classes are
revealing new boundary classes for some graph problems and attempts to get a
comprehensive description of some boundary systems (i.e., the sets of boundary
classes). Among important advances in the first field one could mention pointing
out the first two boundary classes for the hamiltonian cycle problem [16], the
first boundary class for the 3-satisfiability problem [23]. Until recently, a complete
description of a boundary system was not known for any graph problem. Only
partial results of this type existed (see [1, 20, 40]). The first comprehensive
description of boundary systems was obtained in [34] where a generalization of
the edge k-colorability was considered.

V. Alekseev, R. Boliac, D. Korobitsyn and V. Lozin conjectured in [2] that
there is a graph problem with an infinite boundary system. By Theorem 1 the
cardinality of a boundary system can be interpreted as a complexity measure of
the corresponding graph problem. It was conjectured in [2] that there is a problem
with a large value of the measure. This conjecture was proved in [28, 31] by showing
that the boundary systems for the vertex 3-colorability and the edge 3-
colorability are infinite. The results of [28, 31] were further improved by proving
that the systems for the vertex colorability and the edge colorability, for
each k ≥ 3 for the vertex k-colorability and the edge k-colorability have
continuum cardinalities [16, 30, 32, 33]. One could consider these results as a Gödel
argument in the sense that the boundary systems for the mentioned problems are
quite complicated and attempts to get their exhaustive descriptions look hopeless.

So, advances in complete descriptions of boundary systems are small. But, for
some graph problems Theorem 1 and known parts of boundary systems (together
with other results) help obtaining a complexity dichotomy in a family of hereditary
classes with small forbidden induced fragments or with a small number of such
forbidden induced subgraphs. For the vertex 3-colorability an exhaustive
classification of classes with two forbidden induced structures on at most five
vertices was obtained in [39]. Some new polynomial and intractable cases were
found in [36, 37, 38] for the vertex colorability. We will apply some known
limit and boundary classes for edge 3-colorability to achieve our aims.

3.2. Limit and boundary classes for the edge 3-colorability

Let G be a graph with two chosen vertices such that there is an automorphism
of G mapping these vertices to each other. Replacement of an edge e = (a, b) by the
graph G is deleting e from a graph, identifying a with one of the chosen vertices of
G and b with the other chosen vertex of G. Clearly, the resultant graph does not
depend on the choice of a vertex identified with a.

For a binary sequence π of length l π-sheaf is a graph obtained from P2l+2 by
replacements of its edges. For each i ∈ {1, 2, . . . , l} the 2i-th edge of this path is
replaced by diamond (if πi = 0) or by bug (if πi = 1). By Tπ we denote the graph
obtained by replacements of all edges of claw by π-sheafs. Replacements of all edges
of D1,1,1 incident to its leaves by π-sheafs yield the graph Dπ.
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Let π be an infinite binary sequence now and π(l) be its subsequence consisting
of the first l members. The class Tπ (resp. Dπ) is the set of graphs whose connected
components belong to [

∞⋃
l=1

{Tπ(l)}] (resp. to [
∞⋃
l=1

{Dπ(l)}]). Continuum cardinality of

the boundary system for the edge 3-colorability immediately follows from the
following result (proved in [30]).

Theorem 2. For any infinite binary sequence π the classes Tπ and Dπ are boundary
for the edge 3-colorability.

A graph is called subcubic if degrees of all its vertices are at most three. Clearly,
the edge 3-colorability for a class of graphs is polynomially reduced to the
same problem for its subcubic part. The set F(3) of subcubic forests is a limit
class for the problem [21]. We will need three more limit classes for it. They can be
obtained by some graph operations called inscribing a triangle, diamond and glider
implantations.

Let G be a subcubic graph and the neighborhood of x ∈ V (G) consist of pairwise
nonadjacent vertices y1, y2, . . . , yk. Inscribing a triangle for x is to delete x, add new
vertices x1, x2, x3 and the edges (x1, x2), (x1, x3), (x2, x3), (x1, y1) (if k ≥ 1), (x2, y2)
(if k ≥ 2), (x3, y3) (if k = 3).
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Fig 3. Inscribing a triangle

The graph G is edge 3-colorable iff the resultant graph has this property. By
F t(3) we denote the hereditary closure of the set of graphs produced by inscribing
a triangle for each vertex of any graph in F(3).

Let H be a subcubic graph and e = (x, y) ∈ E(H). Diamond implantation for
e is to delete the edge, add new vertices x′, y′ and the edges (x, x′), (x′, y′), (y′, y),
replace (x′, y′) by diamond.
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Fig 4. Diamond implantation

Glider implantation is defined in a similar way (see Fig 5).
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Fig 5. Glider implantation

It is easy to see that both implantations preserve edge 3-colorability. The
class Fd(3) is the hereditary closure of the set of graphs obtained by diamond
implantation for every edge of any graph in F(3). The class Fg(3) is the hereditary
closure of the class of graphs produced by inscribing a triangle for each vertex of any
graph in F(3) and, furthermore, implanting glider for any edge outside triangles.

Lemma 1. The classes F t(3),Fd(3),Fg(3) are limit for the edge 3-
colorability.

Proof. Let {Xi} be a monotonically decreasing sequence of hard classes for the
edge 3-colorability converging to F(3). We can assume that each its member
consists of subcubic graphs. Inscribing a triangle for each vertex of any graph in Xi
produces some set of graphs. Let Yi be the hereditary closure of this set. The class
Yi is hard for the edge 3-colorability, since the problem is hard for Xi. We have

Y1 ⊇ Y2 ⊇ . . . and F t(3) =
∞⋂
i=1

Yi. So, F t(3) is limit for the edge 3-colorability.

Proofs for Fd(3),Fg(3) are similar. �

The classes F(3),F t(3),Fd(3),Fg(3) are likely to be boundary for the edge
3-colorability. Proving (or disproving) this fact is a challenging problem.

4. Treewidth of graphs and its significance

It is well known that many NP-complete graph problems are polynomial-time
solvable for trees. It is also true for sets of graphs that are close to trees with respect
to some qualitative or quantitative measure. In other words, if for graphs in a class
this measure grows slowly, then one can expect that a considered graph problem
is solvable in polynomial time for them. Treewidth is such a measure defined as
follows. A k-tree is a graph that can be obtained from the (k+1)-clique by iterative
implementation of the rule: add a new vertex to a k-tree G and k edges incident
to the new vertex and all vertices of a k-clique of G. A partial k-tree is a subgraph
(not necessarily induced) of a k-tree. Treewidth of a graph is the smallest value of
k for which the graph is a partial k-tree.

The notion of treewidth has an equivalent definition in terms of tree
decompositions. The concept of tree decompositions was originally introduced by
R. Halin [12]. Later it was rediscovered by N. Robertson and P. Seymour [42] and
afterwards it was studied by many other authors.

Many graph problems are efficiently (polynomially) solved for classes with
treewidth uniformly bounded by a constant [5, 6, 7, 45]. It is also true for the
vertex k-colorability and the edge k-colorability for any k (see [6]).

The significance of treewidth inspires determining sufficient conditions that a
given graph class has bounded treewidth. N. Robertson and P. Seymour showed
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that for any planar graph G the set of G-minor-free graphs (i.e., graphs where
repeating removal of vertices and edges, and contraction of edges can not produce
G) is a family with uniformly bounded treewidth [43]. V. Lozin and D. Rautenbach
proved in [24] the following result.

Lemma 2. Let X be a hereditary class, T * X , D * X and for some constant
d degrees of vertices of all its graphs are bounded by d. Then there is a constant
C = C(X , d) such that treewidth of each graph in X is at most C.

5. Auxiliary results

5.1. Bounding graph diameter or forbidding an induced fragment

Lemma 3. Let G be a connected graph in Free({D0,0,k}) (k ≥ 2). Then G is
triangle-free or its diameter is at most 2k + 2.

Proof. Let G contains a triangle with vertices x, y, z. We will show that the
eccentricity of x is at most k + 1. This fact and the triangle inequality implies
the bound for the diameter. Assume the opposite, i.e. that G contains the shortest
induced path P on at least k + 3 vertices connecting x with some other vertex of
G. We enumerate all vertices of P starting from x. No one of the vertices x, y, z can
be adjacent to a vertex of P with an index greater than three (P is not shortest
otherwise). Let n ≤ 3 be the largest index of a vertex in P that is adjacent to x
or to y or to z. It is easy to verify that two or three vertices in {x, y, z} and the
vertices of P with indices in {n, n+ 1, . . . , k + n} induce a subgraph isomorphic to
D0,0,k. We have a contradiction. �

Similarly, one can show the validity of Lemma 4.

Lemma 4. Let G be a connected graph in Free({T1,1,k}) (k ≥ 2). Then G is
claw-free or its diameter is at most 2k + 2.

5.2. Some polynomial-time reductions for the edge 3-colorability

The idea of a compression of a given graph is frequently used as a part of an
algorithm to solve a given graph problem. For example, such an idea is dropping
vertices of degrees at most k−1 for the clique problem (to find the maximum subset
of pairwise adjacent vertices in a graph) assuming that the current feasible solution
has at least k + 1 vertices. Sometimes, a data reduction itself produces an efficient
algorithm. For example, deleting any neighbor of a simplicial vertex (i.e., a vertex
whose neighborhood induces a clique) for solving the independent set problem (to
find the maximum subset of pairwise nonadjacent vertices in a given graph) for
chordal graphs. A graph is chordal if it has no induced cycles with four and more
vertices. A chordal graph always has a simplicial vertex.

The following assertion by A. Schrijver (see his monography [44]) is a data
compression for the edge k-colorability.

Lemma 5. Let a vertex v of some graph G and all its neighbors have degrees at
most k and at most one vertex of the neighbourhood has exactly k adjacent vertices.
Then G is edge k-colorable iff G \ {v} is edge k-colorable.

It was noticed in [44] that Lemma 5 implies a new proof of the famous Vizing’s
theorem [47] claiming that a graph with maximum degree of vertices at most k
is edge (k + 1)-colorable. The Schrijver’s result is useful for proving the next two
lemmas.
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Lemma 6. The 3-edge colorability for {barbell, claw}-free graphs is
polynomially reduced to the same problem for subcubic {barbell, claw,D2,2,2}-free
graphs.

Proof. Let G ∈ Free({barbell}) be a claw-free subcubic graph that contains an
induced copy of D2,2,2. We will show that deg(x1) = deg(y1) = deg(z1) = 2.
Assume that among them at least one vertex (say x1) has three neighbors. If x
is the neighbor of x1 different from x0 and x2, then (x, x2) 6∈ E(G) (since G is
a subcubic barbell-free graph) and (x, x2) ∈ E(G) (as G is claw-free). We have a
contradiction.

By G′ we denote the graph obtained by deleting the vertices x0, y0, z0, adding
a vertex v and edges (v, x1), (v, y1), (v, z1). The graph G is edge 3-colorable iff it
is so for G′. By Lemma 5 the graphs G′ and G′ \ {v} are simultaneously edge 3-
colorable or each of them has no such a coloring. Hence G is edge 3-colorable iff
G \ {x0, y0, z0} has this property. Doing the same for all copies of D2,2,2 we obtain
a polynomial-time reduction to subcubic {barbell, claw,D2,2,2}-free graphs. �

Lemma 7. The 3-edge colorability for {hantel, C3}-free graphs is
polynomially reduced to the same problem for subcubic {hantel, C3, T4,4,4}-free
graphs.

Proof. Let G ∈ Free({hantel}) be a triangle-free subcubic graph that contains
an induced copy of T4,4,4. By Lemma 5 one may assume that among the
vertices x1, y1, z1 of T4,4,4 at least two have degrees equal to three. Let (x1, x) ∈
E(G), (y1, y) ∈ E(G) and x, y 6∈ V (T4,4,4). Assume that x 6= y. Since G is
triangle-free, then (x, x2) 6∈ E(G) and (y, y2) 6∈ E(G). Either y, y1, y2, x1, x0, z1 or
x, x1, x2, y1, x0, z1 induce a copy of hantel. We have a contradiction. Hence x = y.
If x and z2 are adjacent, then (x, z3) 6∈ E(G), (x, z1) 6∈ E(G) and x1, x, y1, z1, z2, z3
induce hantel. Therefore (x, z2) 6∈ E(G). If (x, z1) ∈ E(G), then x2, y2 and z2 have
degrees equal to two (as G is {hantel, C3}-free). Deleting x and contracting the
edges (x0, x1), (x0, y1), (x0, z1) yield a graph G′. It is easy to verify that G is edge
3 colorable iff G′ is edge 3-colorable. This fact and Lemma 5 imply that G is edge
3-colorable iff it is so for G \ {x0, x, x1, y1, z1}. Hence x and z1 are not adjacent.
The vertex z1 can not have a neighbor outside V (T4,4,4), since G is not hantel-free
otherwise.

Let deg(x2) = deg(y2) = 2. If there is a neighbor z 6∈ {x1, y1} of x, then deg(z) ≤
2 (otherwise, the neighborhood of z, z, x, x1, y1 induce hantel). Let us fix some edge
3-coloring of H = G \ {x0, x, x1, y1} (if one exists). As deg(y2) = deg(z1) = 2 (in
G), then there is a color c1 that differs from the colors of (y2, y3), (z1, z2). By the
same reason, there is a color c2 (perhaps c1 = c2) different from the colors of the
edges incident to z or x2 in H. If c1 = c2, then the coloring of H can be extended
to an edge 3-coloring of G by coloring (y2, y1), (z, x), (x2, x1), (z1, x0) in c1 and
(y1, x), (x, x1), (x1, x0), (x0, y1) in the remaining two colors. If c1 6= c2, then an edge
3-coloring of G is obtained by coloring (y1, y2),
(z1, x0), (x, x1) in c1, (x, z), (x1, x2), (y1, x0) in c2 and (y1, x), (x0, x1) in the last
third color. Hence G is edge 3-colorable iff H is edge 3-colorable.

Let both vertices x2, y2 have neighbors outside V (T4,4,4). They must be
coinciding, nonadjacent to x3 and y3, adjacent to x. Hence deg(x3) = deg(y3) = 2.
The edges (x2, x3), (y2, y3), (x0, z1) have different colors in any edge 3-coloring of
G (by reductio ad absurdum). Deleting the common neighbor z′ of x2 and y2,
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deleting x and contracting (x0, x1), (x1, x2), (x0, y1), (y1, y2) produce an edge 3-
colorable graph iff G is edge 3-colorable. This observation and Lemma 5 imply
that G is edge 3-colorable iff it is so for G \ {x0, x, z′, x1, y1, x2, y2}.

Let among x2 and y2 only one vertex (say x2) has a neighbor. Let {a1, a2, . . . , ak,
b1, b2, . . . , bk} be a set with the maximal cardinality such that (a1, a2), (a2, a3), . . . ,
(ak−1, ak), (b1, b2), (b2, b3), . . . , (bk−1, bk), (a1, b1), (a2, b2), . . . , (ak, bk) are edges of
G and x0 = a1, y1 = b1, x1 = a2, x = b2, x2 = a3, z

′′ = b3. It is computed
in polynomial time. As deg(z1) = 2, then z1 6∈ {a1, b1, a2, b2, . . . , ak−1, bk−1}. If
k ∈ {2, 3}, then z1 6∈ {ak, bk} (otherwise, x0, x1, x2, y1, y2, z1, z2 do not induce
T2,2,2). The same is true for k > 3 (G contains an induced copy of hantel
otherwise). Similarly, y2 6∈ {a1, a2, . . . , ak, b1, b2, . . . , bk}. Without loss of generality,
one may assume that ak is adjacent to a′ 6∈ {ak−1, bk} and bk is adjacent to
b′ 6∈ {ak, bk−1} (obviously, a′ 6= b′). Due to the maximality above, (a′, b′) 6∈ E(G).
As G is {hantel, C3}-free, then deg(a′) ≤ 2, deg(b′) ≤ 2. If a′ = z1 or b′ = z1,
then {ak, bk} = {z2, z3} and {a′, b′} = {z1, z4}. If a′ = y2 or b′ = y2, then
{ak, bk} = {y3, y4}. Denote the graph G \ {a1, a2, . . . , ak, b1, b2, . . . , bk} by H. We
will show that any edge 3-coloring of H can be extended to an edge 3-coloring of
G.

Consider an arbitrary edge 3-coloring of H (if one exists). As z1, y2, a
′, b′

have degrees in G at most two, then {a′, b′} ∩ {z1, y2} = ∅ and there are
colors c1 and c2 such that c1 differs from the colors of the edges incident to
y2 or z1 and c2 differs from the colors of the edges incident to a′ or b′. If
c1 = c2, then (y2, b1), (z1, a1), (a2, b2), (a3, b3), . . . , (ak−1, bk−1), (a′, ak), (b′, bk)
are colored in c1, the remaining uncolored edges of G are colored in two
other colors (as they constitute an even cycle). If c1 6= c2 and k is even,
then (y2, y1), (z1, x0) and all elements of {(ai, bi) : 1 < i ≤ k} are colored
in c1, (a′, ak), (b′, bk), (a1, b1) and all edges from {(a2i, a2i+1) : 1 ≤ i ≤
k
2 − 1} ∪ {(b2i, b2i+1) : 1 ≤ i ≤ k

2 − 1} are colored in c2. If c1 6= c2 and k is odd,
then (y2, y1), (z1, x0), (a2, a3), (b2, b3), (a4, a5), (b4, b5), . . . , (ak−1, ak),
(bk−1, bk) are colored in c1, (a′, ak), (b′, bk), (a1, a2), (b1, b2), (a3, a4), (b3, b4) . . . , (ak−2,
ak−1), (bk−2, bk−1) in c2. In both cases the uncolored edges are colored in the third
color.

The elimination process described in the previous paragraphs finishes the
reduction. �

Lemma 8. The 3-edge colorability for {hantel, 2C3}-free graphs is
polynomially reduced to the same problem for graphs of bounded treewidth.

Proof. Let G be a {hantel, 2C3}-free graph. By the previous lemma and Lemma
2 one can consider that G has a triangle T . Deleting its vertices with their
neighborhoods produces a triangle-free graph. Hence G has at most 4 triangles.
Let G′ be the subgraph induced by vertices of G lying at distance at least 7 from
each vertex of T . Any possible induced copy of T4,4,4 in G with the central vertex
in V (G′) has no joint vertices with any triangle of G. Such a copy of T4,4,4 will
be called separated. For a separated copy of T4,4,4 one can apply the elimination
process from the previous lemma if a′ 6= b′. Therefore we can assume that any
separated copy of T4,4,4 has a ladder where a′ or b′ belongs to a triangle. These
ladders for different copies of T4,4,4 are not intersected. Each triangle of G interrupts
at most three ladders. Hence G′ has at most 12 separated copies of T4,4,4 i.e.,
G′ is 13T4,4,4-free. The absolute difference between treewidths of G and G′ is
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at most |V (G)| − |V (G′)| (see the definition of treewidth) that is no more than
3(1+1+2+4+8+16+32) = 192. By Lemma 2 and Lemma 7 we have the validity
of the claim. �

6. Main result

Theorem 3. Let F be the family of hereditary classes defined by forbidden
induced subgraphs on at most 6 vertices and having at most two 6-vertex forbidden
fragments. The edge 3-colorability is NP-complete for X ∈ F if D ∪ T ∩
Free({T1,2,2}) ⊆ X or T ∪ D ∩ Free({D0,1,1}) ⊆ X . It is polynomial-time solvable
for all other classes from F.

Proof. It is easy to see that hantel is the unique graph in F(3) \ T on at most
six vertices. The same is true for barbell and F t(3) \ D. Since F(3) and F t(3) are
limit classes for the edge 3-colorability, then one may assume F(3) * X and
F t(3) * X . Otherwise X is a hard case for the problem.

Let D ⊆ X , then barbell ∈ Forb(X ) (as F t(3) * X ). If X = Free({barbell})
or X = Free({barbell, hantel}) or X = Free({barbell, T1,2,2}), then X is a hard
class for the edge 3-colorability (by Theorem 1, Lemma 1 and Fg(3) ⊆ X ). In
all other cases Forb(X ) contains a graph in (T \ D) ∩ Free({T1,2,2}) on at most
6 vertices. Hence it is an induced subgraph of T1,1,5. Since one may consider only
subcubic graphs in X , then by Lemma 4 and Lemma 6 the problem is polynomially
reduced to Free({barbell, claw,D2,2,2}). This class is easy by Lemma 2.

Let T ⊆ X now, then hantel ∈ Forb(X ) (as F(3) * X ). If X 6= Free({hantel})
and X 6= Free({hantel, barbell}), then Forb(X ) have an element of D \ T . If
Free({hantel,D0,1,1}) ⊆ X , then it is hard for the problem (by Theorem 1,
Lemma 1 and Fd(3) ⊆ Free({hantel,D0,1,1})). If Free({hantel,D0,1,1}) * X , then
Forb(X ) contains a graph G ∈ (D \ T )∩Free({D0,1,1}). As |V (G)| ≤ 6, then G =
2C3 or G is an induced subgraph of D0,0,6. By Lemma 8 the first case is polynomial,
by Lemmas 3 and 7 the second one is reduced to Free({hantel, C3, T4,4,4}) which
is easy by Lemma 2.

If T * X and D * X , then by Lemma 2 the class X is easy for the problem. �

Extending the complexity dichotomy above for larger forbidden structures is a
challenging research problem.
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