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UNRECOGNIZABILITY BY SPECTRUM OF FINITE SIMPLE
ORTHOGONAL GROUPS OF DIMENSION NINE

M.A. GRECHKOSEEVA, A.M. STAROLETOV

Abstract. The spectrum of a finite group is the set of its elements
orders. A group G is said to be unrecognizable by spectrum if there are
infinitely many pairwise non-isomorphic finite groups having the same
spectrum as G. We prove that the simple orthogonal group O9(q) has
the same spectrum as V oO−8 (q) where V is the natural 8-dimensional
module of the simple orthogonal group O−8 (q), and in particular O9(q)
is unrecognizable by spectrum. Note that for q = 2, the result was
proved earlier by Mazurov and Moghaddamfar.

Keywords: spectrum, element order, orthogonal group, finite simple
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1. Introduction

The spectrum ω(G) of a finite group G is the set of its element orders. We
call groups G and H isospectral if ω(G) = ω(H). Let h(G) be the number of
pairwise non-isomorphic finite groups isospectral to G. A group G is said to be
unrecognizable by spectrum if h(G) is infinite. A finite group with a nontrivial
normal soluble subgroup is always unrecognizable [1, 2], so of prime interest is the
problem of finiteness of h(G) for a nonabelian simple group G.

Our notation of finite nonabelian simple groups and finite classical groups follows
[3]. In particular, O2n+1(q) and Oε2n(q) denote the groups Ω2n+1(q) and PΩε2n(q),
which are usually simple, while the full orthogonal groups are denoted byGO2n+1(q)
and GOε2n(q). Recall that the order of the center of Ωε2n(q) is (4, qn − ε)/(2, q− ε),
so O−4n(q) = Ω4n(q).
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There is a conjecture attributed to Mazurov that every finite group isospectral to
a finite simple group L of Lie type of sufficiently large Lie rank is an almost simple
group with socle isomorphic to L, and in particular h(L) is finite for a such L. At
present the conjecture is proved with the following restrictions on L: L 6= 3D4(2)
if L is exceptional, the Lie rank of L is least 44 if L is linear or unitary, and the
Lie rank of L is at least 31 if L is symplectic or orthogonal; furthermore, it was
conjectured that the bounds 44 and 31 can be replaced by 4 and 5 respectively,
which are exact bounds in some strict sense (see [4] for details). On the other
hand, the only known unrecognizable symplectic or orthogonal group of Lie rank 4
is S8(2) ' O9(2): Mazurov and Moghaddamfar [5] showed that S8(2) is isospectral
to an extension of a nontrivial 2-group by O−8 (2). In the present paper we generalize
this result by the following.

Theorem 1. Let V be the natural 8-dimensional module of O−8 (q). Then ω(O9(q)) =
= ω(V oO−8 (q)). In particular, O9(q) is unrecognizable by spectrum.

2. Preliminaries

If a and b are positive integers, then (a, b) and [a, b] denote respectively the
greatest common divisor and least common multiple of a and b. If p is a prime,
then ωp′(G) is the set of element orders of G coprime to p. By writing q − ε with
ε ∈ {+,−} we mean the number q − ε1.

By diag(d1, . . . , dk) we denote the diagonal matrix with d1, . . . , dk on the diagonal
(each di can be a number or a diagonal matrix itself). If g is a unipotent element

of GL(V ), then we write ⊕iJkii for the Jordan form of g on V , where Ji denotes
a unipotent Jordan block of length i and the sum is over values of i such that ki > 0.

Lemma 1. We have the following isomorphisms.

(i) Sp2(q) ' SL2(q).
(ii) GOε2(q) ' D2(q−ε), SO

ε
2 ' (q − ε).(2, q), and Ωε2(q) ' (q − ε)/(2, q − 1).

(iii) Ω+
4 (q) ' SL2(q) ◦ SL2(q) and the natural module for Ω+

4 (q) is isomorphic
to the tensor product of two copies of the natural modules of SL2(q), one
for each direct factor in the preimage group SL2(q)× SL2(q).

(iv) Ω−4 (q) ' L2(q2) and the natural module for Ω−4 (q) is isomorphic to the
tensor product of the natural module M for SL2(q2) and the image of M
under the automorphism σ : x 7→ xq of GF (q2).

Proof. Parts (i) and (ii) are well known; see for instance [6, Proposition 2.9.1].
Parts (iii) and (iv) are [7, Lemma 1.12.3]. �

Lemma 2. Let q be a power of a prime p. Then ω(Ω9(q)) is the set of all divisors
of the following numbers:

(i) (q4 ± 1)/(2, q − 1), (q2 ± q + 1)(q2 − 1)/(2, q − 1), p(q3 ± 1)/(2, q − 1),
p(q2 + 1)(q ± 1)/(2, q − 1), p(q2 − 1);

(ii) 4(q2 ± 1), 8(q ± 1) if p = 2;
(iii) 9(q2 ± 1)/2 if p = 3;
(iv) 25(q ± 1)/2 if p = 5;
(v) 49 if p = 7.

Proof. This follows from [8, Corollary 3] if q is even and [8, Corollary 6] if q is
odd. �



UNRECOGNIZABILITY OF SOME ORTHOGONAL GROUPS 923

Lemma 3. Let q be a power of a prime p. Then ω(Ω−8 (q)) is the set of all divisors
of the following numbers:

(i) (q4±1)/(2, q−1), (q2±q+1)(q2−1)/(2, q−1), p(q2 +1)(q±1)/(2, q−1),
p(q2 − 1);

(ii) 4(q2 − 1), 8 if p = 2;
(iii) 9(q ± 1) if p = 3;
(iv) 25 if p = 5.

Proof. In even characteristic, this follows from [8, Corollary 4] (there is an evident
misprint in Part (6) of this corollary: l must be odd if ε = + and even if ε = −). In
odd characteristic, we use the description of reductive subgroups of SO−8 (q) given
in [8, Proposition 3.3] and then follow the line of the proof of [8, Corollary 8] (we do
not apply [8, Corollary 8] itself since it contains some non-obvious misprints). �

The following is an immediate corollary of Lemmas 2 and 3.

Lemma 4. Let q be a power of a prime p. Then ω(Ω9(q)) = ω(Ω−8 (q)) ∪M(q),
where M(q) is the set of all divisors of the following numbers:

(i) p(q3 ± 1)/(2, q − 1);
(ii) 4(q2 + 1), 8(q ± 1) if p = 2;
(iii) 9(q2 ± 1)/2 if p = 3;
(iv) 25(q ± 1)/2 if p = 5;
(v) 49 if p = 7.

The following result is rather well-known, but we could not find a convenient
reference.

Lemma 5. Let V be a vector space over a finite field of characteristic r > 0,
G ≤ GL(V ) and H = V o G be the natural semidirect product of V by G. Let
g ∈ G, g = us be the Jordan decomposition of g with u unipotent and s semisimple,
and W = CV (s). Then the coset V g of H contains an element of order r|g| if and
only if the restriction of u to W has a Jordan block of size |u|.

Proof. Let |g| = n, |u| = k and |s| = m. Since vg1 · vg2 = (v + vg1)g1g2, it follows
that (vg)n = v(1 + · · ·+ gn−1) for v ∈ V . Since 〈gk〉 = 〈s〉, it follows that

1 + · · ·+ gn−1 =
gn − 1

gk − 1
· g

k − 1

g − 1
=
sm − 1

s− 1
· g

k − 1

g − 1
.

The element s is semisimple, so V = W × V (s− 1), and we can choose w ∈W and
v1 ∈ V such that v = w + v1(s− 1). Then

v(1 + · · ·+ gn−1) = (w + v1(s− 1))
sm − 1

s− 1
· g

k − 1

g − 1
= mw

uk − 1

u− 1
= mw(u− 1)k−1.

Thus V g contains an element of order rn if and only if there is an element w ∈W
such that w(u− 1)k−1 6= 0, or equivalently the restriction of u to W has a Jordan
block of size k. �

We conclude this section with two results concerning Jordan forms of elements
of Ωε2n(q) on its natural module. We will need the representation of Ωε2n(q) as
a subgroup in the centralizer of a suitable Frobenius morphism of a suitable simple
linear algebraic group (cf. [9, Chapter 7]). Throughout the paper K denotes
an algebraically closed field of characteristic p, where p is the defining characteristic
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of the orthogonal group under consideration, V denotes a 2n-dimensional vector
space over K, SO2n(K) = SO2n(V ) denotes the connected component of the full
orthogonal group GO2n(V ), and σ denotes a Frobenius morphism of G = SO2n(K)
such that Gσ = CG(σ) is equal to SOε2n(q) if p is odd and Ωε2n(q) if p = 2. Also we
write K∗ to denote the multiplicative group of K.

Lemma 6. Let n ≥ 2 and ε ∈ {+,−}. The group Ωε2n(q) contains a unipotent
element with the following Jordan form:

(i) J2n−1 ⊕ J1 if q is odd;
(ii) J2n−2 ⊕ J2 if q is even.

Proof. If n = 2, this follows from Lemma 1. Let us assume that n ≥ 3.
Let q be odd. It is well known that Ωε2n(q) contains a unipotent element with

Jordan form ⊕iJkii if and only if ki is even for each even i and, in addition, ki 6= 0
for some odd i when ε = − (see [10, pp. 36–39] or [9, Corollary 3.6(ii) and Theorem
7.1(i) ]). This yields (i).

Let q be even. We use the results of [9, 7.2]. Recall that Ωε2n(q) = Gσ where
G = SO2n(K) and σ is a suitable Frobenius morphism of G. Regular unipotent
elements of G has Jordan form J2n−2 ⊕ J2 (see [9, p. 61]), and by [9, Theorem
7.3(i)], the group Gσ contains some regular unipotent element.

�

To describe Jordan forms of semisimple elements of orthogonal groups, we use
the description of their maximal tori from [11]. By [11, Proposition 4.3] for q odd
and [11, Proposition 3.1] together with [11, Section 5] for q even, it follows that
every maximal torus of Ω−2n(q) is conjugate in SO2n(K) to a group of the form

{diag(tk11 , . . . , t
ks
s , t

−k1
1 , . . . , t−kss ) | k1 + k2 + · · ·+ ks ≡ 0 (mod(2, q − 1))},

where for 1 ≤ i ≤ s
ti = diag(λi, λ

q
i , . . . , λ

qni−1
i ), λi ∈ K∗, |λi| = qni − εi for ni > 0 and εi ∈ {+,−},

with n1 + n2 + · · · + ns = n and the number of i with εi = − being odd. And
conversely, for every signed partition of n with odd number of ’minus’ parts, there
is a maximal torus of Ω−2n(q) conjugate to a subgroup of the described form. Let us,
for brevity, write (n1, . . . , nk, nk+1, . . . , ns) for a partition (n1, . . . , ns) with εi = +
for 1 ≤ i ≤ k and εi = − for k + 1 ≤ i ≤ n and write D(λ1, . . . , λn) to denote
diag(λ1, . . . , λn, λ

−1
1 , . . . , λ−1n ). Applying the above result and notation to Ω−8 (q),

we obtained the following.

Lemma 7. The structure of the maximal tori of Ω−8 (q) is given in Table 1.

3. Proof of Theorem 1

Let q be a power of a prime p, S = Ω−8 (q), V be the natural 8-dimensional
module of S, and L = Ω9(q). Denote the product V o S by H. We begin with two
auxiliary lemmas, before proving ω(H) = ω(L).

Lemma 8. Let g ∈ S, (|g|, p) = 1 and d = dimCV (g).

(i) If d ≥ 5 then |g| divides one of the numbers (q ± 1)/(2, q − 1).
(ii) If d ≥ 3 then |g| divides one of the numbers (q2 ± 1)/(2, q − 1).
(iii) If d ≥ 1 then |g| divides one of the numbers q2− 1, (q3± 1)/(2, q− 1), and

(q2 + 1)(q ± 1)/(2, q − 1).
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Table 1. Structure of maximal tori of Ω−8 (q)

Partition Elements of the torus Conditions

(4) D(λk11 , λ
qk1
1 , λq

2k1
1 , λq

3k1
1 )

|λ1| = q4 + 1; if q is odd

then k1 is even

(1, 3) D(λk11 , λ
k2
2 , λ

qk2
2 , λq

2k2
2 )

|λ1| = q − 1, |λ2| = q3 + 1;

if q is odd then k1 + k2 is even

(2, 2) D(λk11 , λ
qk2
1 , λk22 , λ

qk2
2 )

|λ1| = q2 − 1, |λ2| = q2 + 1;

if q is odd then k1 + k2 is even

(3, 1) D(λk11 , λ
qk1
1 , λq

2k1
1 , λk22 )

|λ1| = q3 − 1, |λ2| = q + 1;

if q is odd then k1 + k2 is even

|λ1| = |λ2| = q − 1,

(1, 1, 2) D(λk11 , λ
k2
2 , λ

k3
3 , λ

qk3
3 ) |λ3| = q2 + 1; if q is odd

then k1 + k2 + k3 is even

|λ1| = q2 − 1, λ2 = q − 1,

(2, 1, 1) D(λk11 , λ
qk1
1 , λk22 , λ

k3
3 ) |λ3| = q + 1; if q is odd

then k1 + k2 + k3 is even

|λ1| = |λ2| = q + 1,

(1, 1, 2) D(λk11 , λ
k2
2 , λ

k3
3 , λ

qk3
3 ) |λ3| = q2 + 1; if q is odd

then k1 + k2 + k3 is even

|λ1| = |λ2| = |λ3| = q − 1

(1, 1, 1, 1) D(λk11 , λ
k2
2 , λ

k3
3 , λ

k4
4 ) |λ4| = q + 1; if q is odd

then k1 + k2 + k3 + k4 is even

|λ2| = |λ3| = |λ4| = q + 1

(1, 1, 1, 1) D(λk11 , λ
k2
2 , λ

k3
3 , λ

k4
4 ) |λ1| = q − 1; if q is odd

then k1 + k2 + k3 + k4 is even

Proof. We may assume that g 6= 1. By Lemma 7, the element g is conjugate to
a diagonal matrix D = D(λ1, λ2, λ3, λ4) with λi specified in the last column of
Table 1.

Let d ≥ 5. Then g has at least five eigenvalues equal to 1, whence at least three
of λi are equal to 1. By Table 1, we may assume that D = D(λk, 1, 1, 1), where
|λ| = q ± 1 and k is even if q is odd. Hence |g| divides (q ± 1)/(q − 1, 2).

Let d ≥ 3. By the above, it is sufficient to handle the case d = 4, and so
D = D(λk11 , λ

k2
2 , 1, 1), where |λ1| = qn1 − ε1, |λ2| = qn2 − ε2 for some integers

n1 ≥ n2 and ε1, ε2 ∈ {+,−}. By Table 1, we have that n1 = 2 or n1 = 1. In the
first case λ2 = λq1, n1 = n2 = 2, ε1 = ε2 and k1 = k2. Moreover, if q is odd then
k1 is even. Thus |g| is a divisor of (q2 − ε1)/(q − 1, 2) as required. If n1 = n2 = 1,
then |g| divides [q − ε1, q − ε2] and so divides (q2 − 1)/(q − 1, 2).
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Table 2. Unipotent classes for Ω−8 (q), q even

Decomposition R

W (1)4 GO−8 (q)

W (3) +W (1) GO+
2 (q)×GO−2 (q)

W (2) +W (1)2 Sp2(q)×GO−4 (q)

W (2) + V (2)2 Sp2(q)

W (1)2 + V (2)2 Sp4(q)

W (1) + V (4) + V (2) Sp2(q)

V (4) 1

V (6) + V (2) 1

Let now d ≥ 1. We may assume that d = 2 and so D = D(λk11 , λ
k2
2 , λ

k3
3 , 1), where

|λi| = qni − εi for some integers ni, εi ∈ {+,−} for 1 ≤ i ≤ 3. For convenience,
we suppose that n3 ≥ n2 ≥ n1. Let n1 = 3. Then k1 = k2 = k3, n1 = n2 = n3,

λ2 = λq1, λ3 = λq
2

1 and k1 is even if q is odd. So |g| divides (q3 − ε1)/(q− 1, 2). Let
n1 = 2. Then n2 = n1, ε1 = ε2, n3 = 1, k1 = k2 and λ2 = λq1, therefore, |g| divides
(q2 + 1)(q− ε3)/(q− 1, 2) if ε1 = + and q2− 1 otherwise. If n1 = n2 = n3 = 1 then
|g| divides (q2 − 1)/(q − 1, 2). �

Lemma 9. Let q be even and u ∈ S be unipotent.

(i) If |u| = 8 then u has Jordan form J6 ⊕ J2 on V .
(ii) If |u| = 4 and u has a Jordan block of size 4 on V , then ω2′(CS(u)) consists

of divisors of q ± 1.
(iii) If |u| = 2 and CS(u) contains an element s of order m1m2 where m1 6= 1

is a divisor of q − 1 or q + 1 and m2 6= 1 is a divisor of q2 + 1, then
CV (s) = 0.

Proof. Let G = SO2n(K), σ be a Frobenius morphism of G, so that Gσ = Ω−2n(q),
and u be a unipotent element of G. According to [9, Lemma 6.2], under the action
of u, the vector space V decomposes into an orthogonal sum of indecomposable
modules the form W (m) and V (m), which can be defined as follows: W (m) cor-
responds to a unipotent element which is a regular element in a Levi subgroup
SLm(K) of G, V (m) to a regular element in Spm(K) which lies in an orthogonal
group GOm(K). The element u induces Jm ⊕ Jm on W (m) and Jm on V (m) (see
[9, Table 4.1]).

The unipotent classes of G are listed in [9, Table 8.5a] together with the cor-
responding number of Gσ-classes. We extract from this list those classes uG for
which uG ∩Gσ is not empty, and give them in the first column of Table 2. By [9,
Theorem 7.3(iii)], the centralizer CGO−8 (q)(u

′), where u′ ∈ uG ∩Gσ, is an extension

of a 2-group by a group R, which is a direct product of symplectic and orthogonal
groups. The second column of Table 2 gives R (it turns out that all these groups
are isomorphic even when the number of Gσ-classes is larger than 1).

Now Parts (i) and (ii) follow from Table 2 and the fact that a semisimple element
of Sp2(q) ' SL2(q) has order dividing q − 1 or q + 1.
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Suppose that u, s and m1, m2 are as in (iii). Since m1m2 6∈ ω(Sp4(q)) (see, for
example, [12, Lemma 7]), we see that u belongs to the class with decomposition
W (2) + W (1)2. Furthermore, using results of [13, Section 8], we conclude that u
is an involution of type a2 in notation of [13, p. 16]. By [13, (8.6)], we can choose
a basis of V so that every element g in CGO−8 (q)(u) be of the form

X(g)

A(g) Y (g)

B(g) C(g) X(g)


where X(g) ∈ Sp2(q), Y (g) ∈ GO−4 (q), and A(g), B(g), C(g) are some matrices of
sizes 4×2, 2×2, 2×4 respectively. Since m2 6∈ ω(Sp2(q)) and m1m2 6∈ ω(GO−4 (q)),
it follows that |X(s)| = m1 and |Y (s)| = m2. But then the eigenvalues of |X(s)| are

λ1, λ
−1
1 where |λ1| = m1 and the eigenvalues of |Y (s)| are λ2, λ

q
2, λ
−1
2 , λ−q2 where

|λ2| = m2 (see Lemma 1). Thus none of the eigenvalues of s is equal to 1, and so
CV (s) = 0. �

Now we are ready to prove Theorem 1. First we show that ω(H) ⊆ ω(L). Assume
that h ∈ H and |h| 6∈ ω(L). By Lemma 5, it follows that h = vus where v ∈ V ,
u and s are commuting unipotent and semisimple elements of S respectively, and
the Jordan form of the restriction of u to CV (s) has a Jordan block of size |u|, in
particular dimCV (s) ≥ |u|.

Suppose that |u| = 1. Since dimCV (s) ≥ 1, Lemma 8 implies that |s| divides
one of the numbers (q3± 1)/(2, q− 1), (q2 + 1)(q± 1)/(2, q− 1), and q2− 1. Hence
|h| divides one of the numbers p(q3 ± 1)/(2, q − 1), p(q2 + 1)(q ± 1)/(2, q − 1), and
p(q2 − 1), and so |h| ∈ ω(L), contrary to our assumption.

Suppose that |u| > 1 and p is odd. Then p ≤ |u| ≤ dimCV (s) ≤ 8 and so
|u| = p and p ≤ 7. If p = 7, then Table 1 implies that dimCV (s) = 8, so |s| = 1 and
|h| = 49. If p = 5, then by Lemma 8, we have that |h| divides 25(q±1)/2. Similarly,
if p = 3 then |h| divides 9(q2 ± 1)/2. In any case |h| ∈ ω(L), a contradiction.

Let finally |u| > 1 and p = 2. If |u| = 8, then |s| = 1 by Lemma 3. Moreover, u
has Jordan form J6⊕J2 by Lemma 9. Hence |h| = 8. If |u| = 4, then the restriction
of u to CV (s) has a Jordan block of size 4, and by Lemma 9, it follows that |s|
divides q ± 1. Therefore |h| divides 8(q ± 1) ∈ ω(L).

Let |u| = 2. By Lemma 3, the order of s divides q2 − 1 or (q2 + 1)(q ± 1). If |s|
divides q2 − 1 or q2 + 1 then |h| ∈ ω(L). Hence |s| = m1m2, where m1 6= 1 divides
q ± 1 and m2 6= 1 divides q2 + 1. Now Lemma 9 yields CV (s) = 0, a contradiction.

To prove that ω(L) ⊆ ω(H), it is sufficient to show that M(q) ⊆ ω(H), where
M(q) is defined in Lemma 4.

By Table 1, there exists an element s in S with Jordan form D(1, λk, λqk, λq
2k),

where |λ| = q3 + ε and k = (q − 1, 2). Note that |s| = (q3 + ε)/(q − 1, 2) and take
w ∈ CV (s)\{0}. Then |ws| = p(q3 +ε)/(q−1, 2). Thus p(q3±1)/(q−1, 2) ∈ ω(H),
and the proof is complete for p > 7.

Let p = 7. By Lemma 6, there is a unipotent element with Jordan form J1 ⊕ J7
in S. By Lemma 5, it follows that 49 ∈ ω(H).

Let p = 5. Let W be a nondegenerate 6-dimensional subspace of V of sign ε
and N be the stabilizer of W in S. Then N includes a subgroup A × B where
A ' Ωε6(q) acts in a natural way on W and trivially on W⊥, while B ' Ω−ε2 (q) acts
in a natural way on W⊥ and trivially on W . By Lemma 6, there is a unipotent
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element u with Jordan form J5 ⊕ J1 in A. Taking an element s of order (q + ε)/2
in B and applying Lemma 5, we see that 25(q + ε)/2 ∈ ω(H).

Let p = 2. We construct a subgroup of the form Ωε6(q) × Ω−ε2 (q) as above and
take a unipotent element with Jordan form J4⊕J2 in Ωε6(q). Then we again choose
s as an element of order (q + ε)/2 in Ω−ε2 (q) and conclude that 8(q + ε) ∈ ω(H).

Similarly, if p = 3, then taking a subgroup of the form Ω+
4 (q)×Ω−4 (q), a unipotent

element with Jordan form J3 ⊕ J1 in Ω+
4 (q) and elements of orders (q2 ± 1)/2 in

Ω−4 (q) results in 9(q2 ± 1)/2 ∈ ω(H).
Thus ω(L) = ω(H) and the proof is complete.
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