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ON SWITCHING NONSEPARABLE GRAPHS WITH
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Abstract. A graph of order n ≥ 4 is called switching separable if

its modulo-2 sum with some complete bipartite graph on the same set

of vertices is divided into two mutually independent subgraphs, each

having at least two vertices. We describe all switching nonseparable

graphs of order n whose induced subgraphs of order (n − 1) are all

switching separable. In particular, such graphs exist only if n is odd. This

leads to the following essential refinement of the known test on switching

separability, in terms of subgraphs: if all order-(n − 1) subgraphs of a

graph of order n are separable, then either the graph itself is separable,

or n is odd and the graph belongs to the two described switching classes.

Keywords: Two-graph, switching of graph, switching separability, Seidel

switching, n-ary quasigroup.

1. Introduction

A graph of order n ≥ 4 is called switching separable if its sum modulo 2 with some
complete bipartite graph on the same set of vertices is divided into two mutually
independent subgraphs in two or more vertices. As was shown in [4], if removing
one or two vertices of a graph G always leads to a separable graph, then G itself is
separable. For a weaker hypothesis, when removing only one vertex always leads to
a separable graph, the same conclusion cannot be derived, which was illustrated by
an infinite series of examples. The goal of this work is more detailed studying of the
last case and the characterization of all examples of nonseparable graphs such that
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removing any vertex results in a separable subgraph. Moreover, it will be shown
that such graphs exist only for odd number of vertices, which leads to an essential
refinement of the separability test from [4].

Tests for switching separability of graphs are a more simple model of the corres-
ponding assertions about the reducibility of n-ary quasigroups (for the definition
and basic properties of n-ary quasigroups see, e.g., [1]; in combinatorics, equivalent
objects are known as Latin hypercubes, see, e.g., [7]). Also, examples of nonseparable
graphs can be utilized to construct examples of irreducible (undecomposable to
a repetition-free composition) n-ary quasigroups. The relationship between the
switching separability of graphs and the reducibility of n-ary quasigroups and
Boolean functions built from these graphs is discussed in [4]. In [3], [6], and [2],
statements and examples for n-ary quasigroups which are similar to statements
and examples for graphs from [4] are given. This theory has played a significant
role in the characterization of n-ary quasigroups (Latin hypercubes) of order 4
[5]. The results of the current work also have a potential to be generalized to
similar statements for n-ary quasigroups and to be applied for the characterization
of different classes of these objects.

In Section 2, we give definitions, auxiliary statements and formulate the main
theorem. The theorem is proven in Section 3. In Section 4, from the main theorem,
we derive another separability test, in terms of separability of (n− 2)-subgraphs.

2. Auxiliaries and the main theorem

In this paper, we consider only simple (without loops and multiple edges) undi-
rected graphs and only induced subgraphs. Let U be a set of vertices of a graph G =
(V,E). Switching, or U -switching, of the graphG is the graph GU = (V,E∆EU,V \U ),
where KU,V \U = (V,EU,V \U ) is the complete bipartite graph with parts U, V \U ⊆
V (for generality, we allow one of the parts to be empty). The graph switching, also
known as Seidel switching, was introduced in [9]; there is a one-to-one correspondence
between the switching classes and the so-called two-graphs [8].

A set W of vertices of a graph G = (V,E) is said to be isolable if some switching
of G contains no edges joining W with V \W . A graph of order n is called switching
separable (we will often omit the word “switching”) if there exists an isolable set of
vertices W of cardinality at least 2 and at most |V | − 2.

Before stating the main theorem, we define a series of graphs Gn, n ≥ 5 odd. One
of the vertex in Gn is isolated. The remaining vertices form a bipartite graph with
parts {x1, . . . , x(n−1)/2} and {y1, . . . , y(n−1)/2}. Vertices xi and yj are adjacent if
and only if i is odd and i ≤ j, or j is odd and j ≤ i.

Theorem 1. If removing any vertex of a graph G of order n always leads to a
switching separable subgraph of G, then G is either switching separable, or n is odd
and G isomorphic to a switching of Gn or a switching of the complement of Gn.

Corollary 1. Every switching nonseparable graph of even order n has a switching
nonseparable subgraph of order n− 1.

We need the following auxiliary statements.

Lemma 1 ([4]). If all subgraphs of orders n − 1 and n− 2 of a graph G of order
n are separable, then G is a separable graph.
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Lemma 2 ([4]). Let W be a subset of the vertex set V of a graph G = (V,E). The
following assertions are equivalent:

(1) The set W is isolable in G.
(2) For any distinct x and y from W , z and t from V \W , the number of edges

from {{x, z}, {x, t}, {y, z}, {y, t}}∩ E is even.
(3) There exist W1, W2, V1, V2 such that W = W1 ∪W2, V \W = V1 ∪ V2 and

every vertex of Wi, i = 1, 2, is adjacent with every vertex of V3−i, and is
not adjacent to any vertex of Vi.

Lemma 3. Let D = (V,E) be a separable graph of order n ≥ 5 with an isolable
vertex set W , where 2 ≤ |W | ≤ n/2. Let there exist a vertex a such that the graph
D\{a} is not separable. Then W = {a, b} for some vertex b.

Proof. Assume the statement does not hold. That is, |W\{a}| ≥ 2. Then each of
W\{a} and (V \W )\{a} has at least two vertices, and by Lemma 2 the graph D\{a}
is separable, which contradicts the hypothesis. �

Lemma 4. If a subset W of vertices is isolable in G, then W is isolable in the
complement of G. This also means that if a graph is separable, then its complement
is also separable.

Proof. The statement is straightforward from items 1 and 2 of Lemma 2. �

3. Proof of the theorem

We will try to characterize all nonseparable graphs of order n such that all
subgraphs of order n− 1 are separable.

Let a graph G = (V,E) of order n ≥ 5, odd or even, meet the following properties:

(1) G is a nonseparable graph.
(2) For every vertex a of G, the graph G\{a} is separable.

Then, by Lemma 1, G has at least one nonseparable subgraph of order n − 2.
That is, for some vertices a and b, the graph G\{a, b} is nonseparable. Without loss
of generality we assume that a is an isolated vertex of G (we can always isolate it
by switching the set of vertices adjacent with a). In a separable graph G\{a}, there
is a nonseparable subgraph G\{a, b}; so, by Lemma 3, there is a vertex c 6= b, a
such the set {b, c} is isolable in the graph G\{a}. Then, in accordance with items
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1 and 3 of Lemma 2, there are several admissible options for the sets W1, W2,
W1 ∪W2 = {b, c}, and V1, V2, V1 ∪ V2 = V \{a, b, c} (see Figure 2):
0) W1 = {b, c}, V1 = V \{a, b, c}, W2 = V2 = ∅;
1) W1 = {b}, W2 = {c}, V1 = V \{a, b, c}, V2 = ∅;
2) W1 = {b}, W2 = {c}, V2 = V \{a, b, c}, V1 = ∅;
3) W1 = {b, c}, V2 = V \{a, b, c}, W2 = V1 = ∅;
4) W1 = {b, c}, W2 = ∅, V1, V2 6= ∅;
5) W1 = {b}, W2 = {c}, V1, V2 6= ∅.

0)

c b

a 1)

c b
a

2)

c b
a

3)

c b
a 4)

c b
a

5)

c b
a

Fig. 2. here and below, the figure does not indicate possible edges
between vertices illustrated at the same height

Only the last variant, where all the sets W1, W2, V1, V2 are nonempty, does
not contradict to the nonseparability of the graph G. Indeed, in cases 0, 1, and 2,
{a, b, c} is isolable in G; in cases 3 and 4, {b, c} is isolable in G. Thus, the only
admissible case is case 5. Denote Vb = V2 and Vc = V1, see Figure 3.

c b
a

Vc Vb

Fig. 3

The graph G\{b} has a nonseparable subgraph G\{a, b}; by Lemma 3, the graph
G\{b} has an isolable set {a, d} for some vertex d. If d = c, then we have a
contradiction with item 2 of Lemma 2 ((x, y, z, t) = (a, c, f, g), where f ∈ Vb, and
g ∈ Vc). Thus, d either belongs to Vc and is adjacent to all vertices of V \{a, b, d},
or belongs to Vb and is not adjacent to any vertex of V \{a, b, d}. The {b}-switching
of the graph G\{a, c} is isomorphic to G\{a, b}; consequently, G\{a, c} is not
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separable, too. Similarly, there exists a vertex e that either belongs to Vc and is
not adjacent to any vertex of V \{a, c, e}, or belongs to Vb and is adjacent with all
vertices of V \{a, c, e}. Moreover, d and e cannot belong to Vc or Vb simultaneously
(otherwise there is a contradiction with the edge {d, e}). Therefore, the graph G
assumes one of the forms illustrated in Figure 4. We will consider only case 1, as
case 2 can be reduced to it by switching the set {a} and taking the complement.

1) c b
a

e d

Vc\{e} Vb\{d}

2) c b
a

e d

Vc\{e} Vb\{d}

Fig. 4

Consider the graph G\{d}. It is separable. Consequently, by items 1 and 2 of
Lemma 2, its vertices can be colored in two colors, say black and white, in such a
way that the following two properties are satisfied. At first, there are at least two
vertices of each color. At second, between each pair of black vertices and each pair
of white vertices, there are even number of edges. Suppose, to be definite, that a is
black. Consider the variants to color b and c.

(1) If b and c are white, then neither Vb\{d} nor Vc can contain a black vertex
f (by item 2 of Lemma 2, (x, y, z, t) = (b, c, a, f)), which contradicts the
separability of G\{d}.

(2) If b and c are black, then all white vertices are in Vb\{d}∪Vc. If both Vb\{d}
and Vc contain white vertices, say f and g, respectively, then we have a
contradiction with item 2 of Lemma 2, (x, y, z, t) = (a, b, f, g). Otherwise,
the set of white vertices is isolable in G (by item 2 of Lemma 2), which
contradicts the nonseparability of G.

(3) If b is black and c is white, then the rest W of white vertices (similarly to
the previous case) belongs either to Vb\{d}, or to Vc. The set W is isolable
in G, as it satisfies the condition of item 3 of Lemma 2; hence, W consists
of only one vertex, say z. If z 6= e, then (x, y, z, t) = (c, z, a, e) does not
satisfy the condition of item 2 of Lemma 2. So, the set of white vertices
is {c, e}, and it can be seen by items 1 and 3 of Lemma 2 that this set is
isolable in G, contradicting the nonseparability of G.

(4) If b is white and c is black, then, similarly to the previous case, there is
only one other white vertex, say f . There is an edge {b, c} if and only if f
belongs to Vc (by item 2 of Lemma 2, taking x = a, y = c, z = b, t = f).
By Lemma 2 with x = b, y = f , z = a, we see that f is adjacent with all
vertices of Vb\{d, f}, and with none of Vc\{f}.

We have seen that only the case 4 is not contradictory.
Analogously, by removing a vertex e, we have a situation similar to one described

in item 4. That is, there is a vertex g, adjacent with all vertices of Vc\{e, g} and
with none of Vb\{g}.

Moreover, there is an edge {b, c} if and only if g belongs to Vb. Consequently, f
and g cannot belong to Vb or Vc simultaneously.
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If g = d, then any vertex h from Vc\{e} is not in agree with item 2 of Lemma 2
(x = a, y = h, z = c, t = g = d); we conclude that Vc\{e} is empty, and f = e.
Then, similarly, Vb\{d} is empty too. Then G has 5 vertices and isomorphic to G5.
Analogously, f = e leads to G5.

As a result, if G has more than 5 vertices, it should be of one of types shown in
Figure 5.

1) c b
a

e d

f g

Vc\{e, f} Vb\{d, g}

2) c b
a

e d
g f

Vc\{e, g} Vb\{d, f}

Fig. 5

Consider the case 1.

Proposition 1. For any k ≤ max(|Vc|+1, |Vb|+1), there exist k vertices x1, . . . , xk

from Vc ∪ {b} and k vertices y1, . . . , yk from Vb ∪ {c} such that:

• the vertices xi and yj are adjacent if and only if i is odd, and i ≤ j, or j is
odd and j ≤ i;

• for every i, the vertex xi is not adjacent with any vertex from Vc ∪ {b} and
the vertex yi is not adjacent with any vertex from Vb ∪ {c};

• for every i and every z from Vb∪{c}\{y1, . . . , yk} (from Vc∪{b}\{x1, . . . , xk}),
the vertex xi (yi, respectively) is adjacent with z if and only if i is odd.

Proof. We prove by induction. For k = 3, the statement holds (x0 = a, x1 = b,
x2 = e, x3 = f , y1 = c, y2 = d, y3 = g, see Figure 5).

Assume the statement holds for k = i− 1 < max(|Vc|+ 1, |Vb|+ 1); let us prove
it for k = i. Without loss of generality we assume that Vc\{x2, . . . , xi−1} has at
least one vertex. Consider the graph G\{xi−1}. It is separable, and we can color its
vertices into two colors, black and white, in accordance with some isolable set and
its complement, each color corresponding to at least two vertices. Suppose, to be
definite, that x0 is black. Consider several simple claims.

1. Every black vertex is either adjacent with all white vertices, or not adjacent
to any white vertex. Indeed, since this is true for the isolated black vertex x0, by
Lemma 2 this is true for each other black vertex.

2. The vertices x1 and y1 cannot both be white. This is evident from the previous
claim.

3. The vertices x1 and y1 cannot be white and black, respectively. Indeed, if it is
so and y2 is black, then by claim 1 we have that x1 is the only white vertex. If y2
is white, then we again have a contradiction with claim 1, as the black vertex y1 is
adjacent with the white x1, but not with the white y2.

4. Similarly, x1 and y1 cannot be black and white, respectively.
5. Thus, x1 and y1 are black.
6. The white vertices all belong to one of Vc and Vb. This is straightforward from

claim 1, if we consider the black vertex x1.
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7. The white vertices belong to Vb. Indeed, if this is not true, then they all belong
to Vc. Then, sinse xi−1 is not adjacent with any vertex from Vc, the set of white
vertices is separable in G. A contradiction.

8. There are no two white vertices among y2, . . . , yi−1. Indeed, for every l and
m satisfying 2 ≤ l < m ≤ i − 1, the vertex xl+1 is adjacent with only one of yl
and ym. If l + 1 6= i − 1 then xl+1 is black, and yl and ym cannot both be white
by claim 1. If l + 1 = i − 1, then l + 1 = m, and considering any black vertex
from Vc\{x2, . . . , xi−1} (here we use that this set is nonempty) leads to the same
conclusion.

9. There are no two white vertices in Vb\{y2, . . . , yi−1}. Indeed, it is easy to see
that set of white vertices in Vb\{y2, . . . , yi−1} is separable in G, as any other vertex
is either adjacent with every vertex from this set or not adjacent with every vertex
from this set.

10. Therefore, there is exactly one white vertex among y2, . . . , yi−1; there is
exactly one white vertex in Vb\{y2, . . . , yi−1}.

11. The white vertex among y2, . . . , yi−1 is yi−2. Indeed, if l = (i− 1), then xi−1

is either adjacent or not adjacent with all white vertices, If l 6= (i− 1), (i− 2), then
we find a contradiction with claim 1 by considering the black vertex xl+1.

The white vertex different from yi−2 can be chosen as yi. Since it is adjacent
with the same vertices (except xi−1) as yi−2, it satisfies the necessary properties.

We also see that there is at least one vertex in Vb\{y2, . . . , yi−1}. Then, we can
find xi in a similar way, considering G\{yi−1}. �

In particular, taking the maximal possible value of k, we get n = 2k + 1.
Now consider case 2 (Figure 5).

Proposition 2. For any k ≤ |Vb|+1, there exist k vertices x1, . . . , xk from Vb∪{b}
such that for every i from 1 to k:

• for all j > i, the vertex xi is adjacent with xj if and only if i is odd;
• for all x from Vb ∪ {b}\{x1, . . . , xk}, the vertex xi is adjacent with x if and

only if i is odd.
• xi is not adjacent with any vertex from Vc ∪ {c}.

Proof. The proof is rather similar to that of Proposition 1; the most essential
differences are in the proofs of claims 3 and 9 below. For k = 3, the statement
holds (x0 = a, x1 = b, x2 = d, x3 = f , see Figure 5).

Assume the statement holds for k = i − 1 < |Vb| + 1; let us prove it for k = i.
Consider the graph G\{xi−1}. It is separable, and we can color its vertices into two
colors, black and white, in accordance with some isolable set and its complement,
each color corresponding to at least two vertices. Suppose, to be definite, that x0

is black. Consider several simple claims.
1. Every black vertex is either adjacent with all white vertices, or not adjacent

to any white vertex. Indeed, since this is true for the isolated black vertex x0, by
Lemma 2 this is true for each other black vertex.

2. The vertices x1 and c cannot both be white. This is obvious from claim 1.
3. The vertices x1 and c cannot be white and black, respectively. Indeed, if it is

so and x2 is black, then by claim 1 we have that x1 is the only white vertex. Thus,
x2 is white. Then all vertices of Vc are black (if some vertex v from Vc is white,
then the black vertex c adjacent with v and not adjacent with x2, contradicting
claim 1). Moreover, all vertices of Vb\{xi−1} are white (if there some vertex w is
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black then w is adjacent with x1 and not adjacent with x2, contradicting claim 1).
Then, since xi−1 is not adjacent with any vertex of Vc ∪ c, we see that Vb ∪ {b} is
isolable in G, a contradiction.

4. Similarly, x1 and c cannot be black and white, respectively.
5. Thus, x1 and c are black.
6. The white vertices all belong to one of Vc and Vb. This is straightforward from

claim 1, if we consider the black vertex x1.
7. The white vertices belong to Vb. Indeed, if this is not true, then they all belong

to Vc. Then, sinse xi−1 is not adjacent with any vertex from Vc, the set of white
vertices is isolable in G. A contradiction.

8. There are no two white vertices among x2, . . . , xi−2. Indeed, assume the
contrary. Let l and m be the two minimal values such that xl and xm are white. If
m > l+1, then xl+1 is black and adjacent with only one of xl and xm; so, we have
a contradiction with claim 1. Thus, m = l + 1. As follows from claim 1, there is
no black vertex in Vb\{x2, . . . , xm+1, xi−1}. Then, the set of white vertices together
with xi−1 is isolable in G. We get a contradiction.

9. There are no two white vertices in Vb\{x2, . . . , xi−1}. Indeed, it is easy to see
that the set of white vertices from Vb\{x2, . . . , xi−1} is isolable in G.

10. Therefore, there is exactly one white vertex among x2, . . . , xi−2; there is
exactly one white vertex in Vb\{x2, . . . , xi−1}.

11. The white vertex xl among x2, . . . , xi−2 is xi−2. Indeed, if l < i− 2, then we
find a contradiction with claim 1 by considering the black vertex xl+1.

The white vertex different from xi−2 can be chosen as xi. Since it is adjacent with
the same vertices (except xi−1) as xi−2, it satisfies the necessary properties. �

Then, taking k = |Vb|+1, we see that Vb∪{b} is isolable in G. The contradiction
with the nonseparability of G shows that case 2 (Figure 5) is not possible.

We see from Proposition 1 that n is odd and G is isomorphic to Gn. The proof
of Theorem 1 is over.

Remark 1. It should be noted that Gn is nonseparable and all its subgraphs of
order n− 1 are separable. This is straightforward from Theorem 1 and the fact that
such graphs exist [2]; however, we will show this independently.

Assume Gn is separable and consider the corresponding black-and-white coloring
of its vertices where the isolated vertex x0 is black. Then every black vertex is
connected with every pair of white vertices by the even number (0 or 2) of edges.
The vertices x1 and y1 cannot both be white (otherwise, x0 is the only black vertex).
Thus, x1 or y1 is black, and we see that all white vertices belong to the same part,
say {x1, . . . , x(n−1)/2}. But for two white vertices xi and xj , i < j, the black vertex
yi+1 is adjacent with only one of them. We have a contradiction, proving that Gn

is not separable.
It remains to consider the subgraphs of order n− 1. In G\{x0}, the set {x1, y1}

is isolable. In G\{x1}, the set {x0, y2} is isolable (similarly, {x0, x2} is isolable in
G\{y1}). The set {y(n−3)/2, y(n−1)/2} is isolable in G\{x(n−1)/2} (similarly, the set
{x(n−3)/2, x(n−1)/2}, in G\{y(n−1)/2}). Finally, for every i ∈ {2, . . . , (n− 3)/2},
the set {yi−1, yi+1} is isolable in G\{xi} (similarly, {xi−1, xi+1}, in G\{yi}).
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4. The case of separable (n− 2) subgraphs

Theorem 2. If in a graph G of order n ≥ 7 all subgraphs of order n − 2 are
separable, then G is separable.

We will need the following auxiliary statement about the graph Gn, defined in
Section 2.

Lemma 5. The graph G2k+1\{x0, x1} is isomorphic to G2k−1.

Proof. The vertices x0, x1, x2, x3, x4, x5, . . . have the degrees 0, k, 1, k−1, 2, k−2,
. . . , respectively. That is, the set of degrees are all integers from 0 to k. Similarly,
the set of degrees of y1, . . . , yk are all integers from 1 to k. It is easy to see that
all bipartite graph with parts of size k + 1 and k and pairwise different degrees in
each part are isomorphic.

For the vertices x2, x3, . . . , xk of the graph G2k+1\{x0, x1}, the set of degrees
are all integers from 1 to k − 1. The vertices y1, y2, y3, y4 in the same graph have
the degrees k − 1, 0, k − 2, 1, . . . , respectively; this set of degrees are all integers
from 0 to k − 1. Hence, G2k+1\{x0, x1} is isomorphic to G2k−1. �

of Theorem 2. Assume the contrary, that G is not separable. Then, by Lemma 1,
it has a nonseparable subgraph G\{z} of order n− 1. Without loss of generality we
assume that some vertex different from z is isolated in G. By Theorem 1, (n− 1) is
odd, and we can assume that G\{z} = Gn−1, see Figure 1, where we do not know
how the vertex z is connected with the other vertices.

y1x1

y2x2

y3x3

ykxk

x0

z

.

.

.

.

.

.

Fig. 6

Consider the graph G\{xk, yk}, where k = (n − 2)/2. By the hypothesis of the
theorem, the graph it is separable, while the subrgaph G\{xk, yk, z} = Gn−3 is
nonseparable. By Lemma 3, the vertex z has a “mate” vertex x such that {z, x} is
isolable in G\{xk, yk}.

Now consider the graph G\{x0, x1}. By Lemma 5, the subgraph G\{x0, x1, z}
is isomorphic to Gn−3; consequently, it is nonseparable. Hence, the vertex z has a
“mate”, say y, such that {z, y} is isolable in G\{x0, x1}.

Consider the case when there is edge {z, y2}. Graph G\{xk, yk−1, z} is isomorphic
to nonseparable graph G\{xk, yk, z} as in G\{z} the vertices yk and yk−1 are
different only in vertex xk. Analogous, graph G\{xk−1, yk, z} is isomorphic to
nonseparable graph G\{xk, yk, z}. Then, in this graphs z has “mates” x̃, ỹ such that
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{x̃, z} is isolable in G\{xk, yk−1} and {ỹ, z} is isolable in G\{xk−1, yk}. If x̃ 6= y2
and x̃ 6= x0, then by item 2 of lemma 2 vertex y2 must be adjacent with x, because
it adjacent with z, and then x = x1. Analogous, if ỹ 6= x0 and ỹ 6= y2 then ỹ = x1.
If x̃ = x0(y2) and ỹ = x1 then contradictory with the edge {z, x2(y1)}. If x̃ = x0

and ỹ = y2 then contradictory with vertex x2 (As {z, y2} isolable in G\{xk−1, yk, z}
there is edge {x1, z} and no edge {z, x2}. As {z, x0} is isolable G\{xk, yk−1, z} there
is edge {z, x2}. Contradiction.) Then x = y and {z, x} is isolable in G. Further we
can assume that there no edge {z, y2} in graph G.

Note that x and y are different (otherwise {z, x} is isolable in G). Suppose n ≥ 10
and consider subcases for x and y.

First assume x = x0. Then, as {z, x0} is isolable in G\{xk, yk}, the vertex z
is either adjacent with all vertices from V \{xk, yk, x0, z} or not adjacent with all
vertices from V \{xk, yk, x0, z}. Since {z, y} is isolable in G\{x0, x1}, The vertex y is
also adjacent with all vertices from V \{xk, yk, x0, x1, y, z} or not adjacent with all
of them. The only vertex with this property is y2. Thus, y = y2. Utilizing Lemma 2,
we see that z is adjacent or is not adjacent with x2, xk, and yk simultaneously.
Finally, we find that {z, x0} is isolable in G, a contradiction.

The case y = y2 is similar (we conclude that x = x0 and have the same
contradiction).

If x 6= x0 and y 6= y2 then x and z are connected with the same vertices in
graph G\{xk, yk} and y and z are connected with the same vertices in graph
G\{x0, x1} and as a consequence x and y are connected with the same vertices
in graph G\{x0, x1, xk, yk, z}.

If x and y belong to V \{x0, x1, xk, yk}, then x and y are connected with the
same vertices and {x, y} is isolable in G\{x0, x1, xk, yk, z}; but this graph has at
least 5 vertices ant it is nonseparable (Lemma 5), a contradiction. Let x and y
belong to {x1, xk, yk}. If x = x1 and y = yk(xk) then y2 connected with x1 and
not connected with yk(xk). Contradiction. Let x = x1 and y 6= yk(xk). Then x1

and y are connected with the same vertices in graph G\{xk, yk, z} and {x, y} is
isolable in this graph but this graph is nonseparable. Let y = yk(xk). Then in
graph G\{x0, x1, xk, yk, z} ∪ {y} x and y have a same degree and lying in same
part. Consequently, x = yk−1(xk−1). But then {z, yk(xk)} is isolable in G.

Now consider the case n = 8. By Theorem 1, it is sufficient to consider the case
when for some vertex z the graph G\{z} is a switching of G7 or of its complement.
Some switching of the complement of G7 is a cycle. Thus, we can assume that G
is the cycle and some vertex z, where we do not know how z is connected with the
vertices of the cycle. Moreover, we can assume that the degree of z is 0, 1, 2, or 3
(we can achieve this by switching the vertex z). There are only 9 such graphs, up
to isomorphism. It is straightforward to check that 2 of them are separable, while
each of the remaining 7 graphs has a nonseparable subgraph of order 6. �

Remark 2. For n = 6 the statement of Theorem 1 is not true; indeed, all graphs
of order 4 are separable, while nonseparable graphs of order 6 exist.

References

[1] V.D. Belousov, n-Ary Quasigroups, Shtiintsa, Kishinev, 1953. In Russian.
[2] D.S. Krotov, On irreducible n-ary quasigroups with reducible retracts, Eur. J. Comb., 29:2

(2008), 507–513. DOI: 10.1016/j.ejc.2007.01.005. MR2388386



998 E.A. BESPALOV

[3] D.S. Krotov, On reduciblity of n-ary quasigroups, Discrete Math., 308: 22 (2008), 5289–5297.
DOI:10.1016/j.disc.2007.08.099. MR2450465

[4] D.S. Krotov, On connection between the switching separability of a graph and its subgraphs,
Diskretn. Anal. Issled. Oper. 17:2 (2010), 46–56. MR2682089

[5] D.S. Krotov, V.N. Potapov, n-Ary quasigroups of order 4, SIAM J. Discrete Math., 23:2
(2009), 561–570. DOI:10.1137/070697331. MR2496903

[6] D.S. Krotov, V.N. Potapov, On connection between reducibility of an n-ary qusigroup and that

of its retracts, Discrete Math., 311 (2011), 58–66. DOI:10.1016/j.disc.2010.09.023. MR2737969
[7] B.D. McKay, I.M. Wanless, A census of small Latin hypercubes, SIAM J. Discrete Math., 22:2

(2008), 719–736. DOI:10.1137/070693874. MR2399374
[8] E. Spence, Two-graphs, In C.J. Colbourn and J.H. Dinitz, editors, CRC Handbook of

Combinatorial Designs, 686–694. Boca Raton, FL: CRC Press, 1996.
[9] J.H. van Lint, J.J. Seidel, Equilateral point sets in elliptic geometry, Nederl. Akad. Wet., Proc.,

Ser. A, Indag. Math, 69 (1996), 335–348.

Evgeny Andreevich Bespalov

Novosibirsk State University,

Pirogova 2,

630090, Novosibirsk, Russia

Sobolev Institute of Mathematics,

pr. Koptyuga, 4,

630090, Novosibirsk, Russia

E-mail address: bespalovpes@mail.ru


