ON STRONG EQUIVALENCE THEOREM FOR ANSWER SET SEMANTICS WITH STRONG NEGATION

Z.V. MAKRIDIN, S.P. ODINTSOV

Abstract. We discuss the problem of finding a minimal deductive base for paraconsistent and ordinary answer set semantics satisfying the strong equivalence theorem.

Keywords: answer set, paraconsistency, strong negation, strong equivalence of logic programs, Nelson logic

1. Introduction

In the seminal paper [13], David Pearce proved that the nonclassical logic of here-and-there with strong negation, often denoted by N_5, is closely connected with answer set semantics. Namely, answer sets can be viewed as a certain kind of minimal N_5-models. An important notion of strong equivalence of logic programs relative was introduced in [8]: two programs Π_1 and Π_2 are called strongly equivalent if for any program Π, $\Pi_1 \cup \Pi$ and $\Pi_2 \cup \Pi$ have the same answer sets. It turns out [8] that programs are strongly equivalent wrt answer set semantics if and only if they are equivalent viewed as propositional theories in N_5. This shows that N_5 can be used to reason about answer set programs, and N_5-deduction may be relevant for program transformation and optimisation. In [11], similar results were proved for paraconsistent answer set (admitting inconsistent answer sets) and the logic N_9, the paraconsistent version of the logic of here and there with strong negation.

The logic programs considered in [13, 11] involve two kinds of negation: traditional for logic programming default negation and strong negation based on the idea of explicit or constructible falsity. The concept of constructible falsity assumes that the falsity of atomic statements is given explicitly, and the falsity of complex statements...
is reduced to the truth or falsity of its constituents via a constructive procedure. This concept was introduced into logic by David Nelson [9] to overcome the non-constructivity of intuitionistic negation. Subsequently, his system of constructive logic with strong negation, traditionally denoted by N_3, was axiomatized by Vorob’ev [18, 19] and studied algebraically by Helena Rasiowa [15, 16]. The concept of constructible falsity agrees well with that of paraconsistency. If the falsity of an atom p represented as $\neg p$, the strong negation of p, is given explicitly, we may admit that both p and $\neg p$ are true. The paraconsistent Nelson’s logic N_4 is obtained by deleting the “explosive” axiom $\neg p \rightarrow (p \rightarrow q)$ from the axiomatics of N_3.

In logic programming, the strong negation was introduced by Pearce and Wagner [14], and in the setting of answer set programming by Gelfond and Lifschitz [7]. Originally Gelfond and Lifschitz called the second negation classical, but it was also based on the idea of explicit falsity. Later Pearce [12] established that answer set inference involving this kind of negation could be viewed as an extension of Nelson’s logic N_3. The idea of explicit falsity makes it natural to consider answer sets inconsistent wrt strong negation producing in this way a paraconsistent answer set semantics (PAS). The study of PAS was initiated in [17] and continued in [1], [11], and in [10].

The relations between the intermediate logic HT of here-and-there and answer sets of programs with default negation, between the logic N_5 and answer sets of programs with two negations (default and strong), and between the logic N_9 and paraconsistent answer sets are very similar. This similarity is caught by the notion of a deductive base of a non-monotonic consequence relation suggested by Dietrich [5].

Let \vdash be an non-monotonic consequence relation, \approx be the equivalence relation between sets of formulas associated with \vdash. The equivalence \approx can be defined syntactically: $\Gamma_1 \approx \Gamma_2$ iff $\Gamma_1 \vdash \phi$ for all $\phi \in \Gamma_2$ and $\Gamma_2 \vdash \phi$ for all $\phi \in \Gamma_1$, or in some other natural way. Further, let L be a monotonic logic defined in the same language with associated consequence relation \models_L and equivalence relation \equiv_L. The logic L is a deductive base for \vdash if the following hold: 1) $\Gamma_1 \models_L \subseteq \vdash \subseteq \models_L \Gamma_2$; 2) if $\Gamma \vdash \phi$ and $\phi \models_L \psi$, then $\Gamma \vdash \psi$; 3) if $\Gamma_1 \equiv_L \Gamma_2$, then $\Gamma_1 \models L \approx \Gamma_2$. We say that L is a strong deductive base if it satisfies the additional condition:

$$\Gamma_1 \not\models L \not\equiv \Gamma_2 \Rightarrow \text{there exists } \Gamma \text{ such that } \Gamma_1 \cup \not\Gamma \not\models \not\Gamma_2 \cup \Gamma.$$

In other words, the deductive base L is strong if one can prove the strong equivalence theorem for L.

Each of the logics HT, N_5, and N_9 is a strong deductive base for the non-monotonic consequence relation determined by answer sets, answer sets with two negations, and respectively by paraconsistent answer sets. It is clear that properties 1)–3) are inherited by a smaller logic. Due to this reason it is interesting to find out a maximal deductive base of the respective non-monotonic consequence. It is known that HT is the maximal deductive base for answer set semantics in the class of intermediate logics, as well as that N_5 is the maximal deductive base for the answer sets with two negations in the class of N_3-extensions. In [10], it was proved that the logic N_9 is a maximal deductive base for paraconsistent answer sets in the class of N_4^\perp-extensions, where N_4^\perp is a version of paraconsistent Nelson’s logic with additional falsity constant \perp, this constant satisfies the axiom $\perp \rightarrow p$ and allows to define the intuitionistic negation $\neg \phi := \phi \rightarrow \perp$.

The property to satisfy a strong equivalence theorem is inherited on the other hand by a greater logic, which leads to a problem of finding out the smallest strong deductive base. For the class of intermediate logics and logic programs without nested implication this problem was solved by De Jong and Hendriks in [4], where it was proved that the intermediate logic \mathbf{KC} axiomatized modulo intuitionistic logic by the weak law of excluded middle $\neg p \lor \neg \neg p$ is the least intermediate logic satisfying the strong equivalence theorem for the class of logic programs with default negation and without nested implications. Our goal is to transfer this result to logic programs with default and strong negations and to two kinds of answer set semantics, the ordinary and the paraconsistent one. We obtain a natural and predictable result: the logic $\mathbf{N3KC}$, the minimal conservative extension of \mathbf{KC} in the class of $\mathbf{N3}$-extensions, is the least strong deductive base for answer set semantics and programs without nested implications, whereas the logic \mathbf{NKC}, the minimal conservative extension of \mathbf{KC} in the class of $\mathbf{N4} \bot$-extensions, is the least strong deductive base for PAS and programs without nested implications. Unfortunately, there is no metatheorem which allow to transfer such results directly from one class of programs to the other, and we have to do some technical work, in particular, to obtain a suitable Kripke style semantics for $\mathbf{N3KC}$ and \mathbf{NKC}, and to prove finite model property for this logics.

2. Paraconsistent Nelson’s Logic and its Extensions

We consider propositional language $\mathcal{L}^\bot := \{\land, \lor, \to, \neg, \bot\}$. The formulas of this language are constructed in a usual way from propositional variables or atoms belonging to a fixed set Prop with the help of connectives in \mathcal{L}^\bot. The set of all formulas is denoted $\text{For}(\mathcal{L}^\bot)$, the set of all atomic formulas, i.e. $\text{Prop} \cup \{\bot\}$ is denoted by At. By a logic in this language we mean a subset of $\text{For}(\mathcal{L}^\bot)$ closed under the rules of substitution and modus ponens. If L is a logic, then E_L denotes the lattice of all extensions of this logic.

With every logic L we associate a consequence relation \vdash_L between sets of formulas and formulas. $\Gamma \vdash_L \phi$ means that ϕ can be obtained from elements of $\Gamma \cup L$ via a finite number of applications of modus ponens.

Paraconsistent Nelson’s logic $\mathbf{N4}^\bot$ is the least logic in the language \mathcal{L}^\bot containing axioms:

1. Axioms of positive logic:
 P1. $p \to (q \to p)$
 P2. $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$
 P3. $(p \land q) \to p$
 P4. $(p \land q) \to q$
 P5. $(p \to q) \to ((p \to r) \to (p \to (q \land r)))$
 P6. $p \to (p \lor q)$
 P7. $q \to (p \lor q)$
 P8. $(p \to r) \to ((q \to r) \to ((p \lor q) \to r))$

2. Strong negation axioms:
 A1. $\sim \sim p \leftrightarrow p$
 A2. $\sim (p \lor q) \leftrightarrow (\sim p \land \sim q)$
 A3. $\sim (p \land q) \leftrightarrow (\sim p \lor \sim q)$
 A4. $\sim (p \to q) \leftrightarrow (p \land \sim q)$

3. Axioms for the constant “absurd”:
A5. $\bot \rightarrow p$
A6. $\neg \bot$.

Notice that we can treat the definable connective $\neg \varphi := \varphi \rightarrow \bot$ as the intuitionistic negation, in a sense that \mathbf{N}^{4+} is a conservative extension of the intuitionistic logic Int considered in the language $\{\lor, \land, \rightarrow, \bot\}$.

The explosive Nelson’s logic \mathbf{N}^3 can be defined as $\mathbf{N}^3 = \mathbf{N}^{4+} + \{\neg p \rightarrow (p \rightarrow q}\}.$

Define the logics $\mathbf{N}^3\mathbf{K}\mathbf{C}$ and $\mathbf{N}\mathbf{C}^\mathbf{K}$ as extension of \mathbf{N}^3 and respectively of \mathbf{N}^{4+} via the axiom:

$[K1.] \neg p \lor \neg q.$

We say that a formula φ is a negative normal form (nnf), if the symbol \neg occurs in φ only in front of atomic formulas (in front of propositional variables and of constant \bot). It is known that every formula can be reduced over \mathbf{N}^{4+} to a negative normal form, more exactly, for every $\varphi \in \text{For}(\mathcal{L}^\bot)$ there is a nnf ψ such that $\varphi \leftrightarrow \psi \in \mathbf{N}^{4+}$.

An atomic formula or its strong negation is called a literal. We denote by Lit the set of all literals, i.e., $\text{Lit} = \text{At} \cup \{\neg p \mid p \in \text{At}\}$. It will be convenient to represent a set \mathbf{S} of literals as a pair of sets of atoms $(\mathbf{S}^+, \mathbf{S}^-)$, where \mathbf{S}^+ consists of atoms that occur in \mathbf{S} positively, and \mathbf{S}^- contains atoms occurring in \mathbf{S} negatively. More exactly, $\mathbf{S}^+ = \mathbf{S} \cap \text{At}$ and $\mathbf{S}^- = \{p \mid p \in \mathbf{S}\}$. The symbol \leq will denote the set theoretical inclusion of sets of literals. It is obvious, that $\mathbf{S}_1 \leq \mathbf{S}_2$ iff $\mathbf{S}_1^+ \subseteq \mathbf{S}_2^+$ and $\mathbf{S}_1^- \subseteq \mathbf{S}_2^-$. The set \mathbf{S} of literals is called consistent if $\mathbf{S}^+ \cap \mathbf{S}^- = \emptyset$.

Let \leq be a preorder on W and $K \subseteq W$. We say that K is a cone wrt \leq if $x \leq y$ and $x \in K$ imply $y \in K$ for all $x, y \in W$. The set of all cones wrt \leq is denoted as $\langle W, \leq \rangle^+$.

Definition 2.1. A frame is a pair $W = \langle W, \leq \rangle$ consisting of a non-empty set of possible worlds W and a preorder \leq on it.

An \mathbf{N}^{4+}-model (over a frame $W = \langle W, \leq \rangle$) is a triple $\mu = \langle W, v^+, v^- \rangle$ consisting of a frame W and two valuations $v^+, v^- : \text{Prop} \rightarrow \langle W, \leq \rangle^+$. If $\mu = \langle W, v^+, v^- \rangle$ is an \mathbf{N}^{4+}-model such that $v^+(p) \cap v^-(p) = \emptyset$ for every $p \in \text{Prop}$, we say that μ is an \mathbf{N}^3-model.

We define the verification and falsification relations between worlds of $\mu = \langle W, v^+, v^- \rangle$ and formulas of \mathcal{L}^\bot:

1. $\mu, w \models^+ p \iff w \in v^+(p)$, $\mu, w \models^- p \iff w \in v^-(p)$;
2. $\mu, w \models^+ \varphi \lor \psi \iff \mu, w \models^+ \varphi$ or $\mu, w \models^+ \psi$,
 $\mu, w \models^- \varphi \lor \psi \iff \mu, w \models^- \varphi$ and $\mu, w \models^- \psi$;
3. $\mu, w \models^+ \varphi \land \psi \iff \mu, w \models^+ \varphi$ and $\mu, w \models^+ \psi$,
 $\mu, w \models^- \varphi \land \psi \iff \mu, w \models^- \varphi$ or $\mu, w \models^- \psi$;
4. $\mu, w \models^+ \varphi \rightarrow \psi \iff \forall w' \geq w(\mu, w' \models^+ \varphi \Rightarrow \mu, w' \models^+ \psi)$,
 $\mu, w \models^- \varphi \rightarrow \psi \iff \mu, w \models^- \varphi$ and $\mu, w \models^- \psi$;
5. $\mu, w \models^- \neg \varphi \Rightarrow \mu, w \models^- \varphi$, $\mu, w \models^- \neg \varphi \Rightarrow \mu, w \models^+ \varphi$;
6. $\mu, w \not\models^+ \bot$, $\mu, w \not\models^- \bot$.

For a formula φ, we put $\mu^+(\varphi) = \{w \in W \mid \mu, w \models^+ \varphi\}$ and $\mu^-(\varphi) = \{w \in W \mid \mu, w \models^- \varphi\}$.

"STRONG EQUIVALENCE THEOREM 111"
Lemma 2.2 (Monotonicity lemma). Let $\mu = \langle W, \leq, v^+, v^- \rangle$ be an $N4^+$-model. Then for every $\varphi \in \text{For}(L^\perp)$, we have $\mu^+(\varphi), \mu^-(\varphi) \in \langle W, \leq \rangle^+$.

A formula φ is true in the model μ, $\mu \models \varphi$, if $\mu, w \models \varphi$ for all $w \in W$, i.e., $\mu^+(\varphi) = W$. Let $W = \langle W, \leq \rangle$ be a frame and $\Gamma \cup \{\varphi\} \subseteq \text{For}(L^\perp)$. The relation $\Gamma \models_W \varphi$ holds iff for every μ over W and every $w \in W$, the following implication holds

$$\forall \psi \in \Gamma \ (\mu, w \models \psi) \Rightarrow \mu, w \models \varphi.$$

If \mathcal{K} is a class of models, then $\Gamma \models_{\mathcal{K}} \varphi$ means that $\Gamma \models_W \varphi$ for all $W \in \mathcal{K}$.

For a class \mathcal{K} of frames we also define the following sets of formulas:

$$L\mathcal{K} = \{ \varphi \in \text{For}(L^\perp) \mid \mu \models \varphi \text{ for every } N4^+\text{-model over every } W \in \mathcal{K} \}$$

$$L^3\mathcal{K} = \{ \varphi \in \text{For}(L^\perp) \mid \mu \models \varphi \text{ for every } N3\text{-model over every } W \in \mathcal{K} \}$$

We write $L\{W\}$ instead of $L\{\{W\}\}$.

Let $\mu = \langle W, \leq, v^+, v^- \rangle$ be an $N4^+$-model over $W = \langle W, \leq \rangle$ and $K \in W^+$. We define

$$W^K := \langle K, \leq \cap K^2 \rangle \text{ and } \mu^K := \langle W^K, v^K_+, v^K_- \rangle,$$

where $v^K_+(p) = v^+(p) \cap K$ and $v^K_-(p) = v^-(p) \cap K$ for all $p \in \text{Prop}$.

Lemma 2.3 (Generated submodel lemma). Let $\mu = \langle W, \leq, v^+, v^- \rangle$ be an $N4^+$-model and $K \in W^+$. For every $\varphi \in \text{For}(L^\perp)$ and $x \in K$, we have

$$\mu, x \models^+ \varphi \iff \mu^K, x \models^+ \varphi,$$

$$\mu, x \models^- \varphi \iff \mu^K, x \models^- \varphi.$$

To obtain the semantical characterization of the logics $N3KC$ and NKC we recall main features of the canonical model method. For a logic L extending $N4^+$, the notions of L-theory and prime L-theory are defined in a standard way. An L-theory is set of formulas containing L and closed under modus ponens. A prime L-theory Γ is a non-trivial L-theory satisfying the disjunction property: if $\varphi \lor \psi \in \Gamma$, then $\varphi \in \Gamma$ or $\psi \in \Gamma$.

Lemma 2.4 (Extension lemma). For every $L \in \mathcal{LN4}^+$ and a set of formulas $\Sigma \cup \{\varphi\}$, if $\Sigma \not\models_L \varphi$, then there is a prime L-theory $\Gamma \supseteq \Sigma$ such that $\Gamma \not\models_L \varphi$.

Definition 2.5 (Canonical model). Let L be a logic, extending $N4^+$. A canonical L-frame is a pair $W_L = \langle W_L, \leq_L \rangle$, where

1. W_L is a set of all prime L-theories,
2. $\Gamma \leq_L \Delta \iff \Gamma \subseteq \Delta$.

A canonical L-model μ_L is the canonical L-frame W_L with the valuations v^+_L and v^-_L defined as follows:

$$\Gamma \in v^+_L(p) \leftrightarrow p \in \Gamma;$$

$$\Gamma \in v^-_L(p) \leftrightarrow \sim p \in \Gamma.$$

It is obvious that a canonical L-model is an $N4^+$-model.

Lemma 2.6 (Canonical model lemma). Let L be a logic extending $N4^+$. In canonical L-model μ_L for every $\Gamma \in W_L$ and L^\perp-formula φ, the following equivalences hold:

$$\mu_L, \Gamma \models^+ \varphi \iff \varphi \in \Gamma;$$

$$\mu_L, \Gamma \models^- \varphi \iff \sim \varphi \in \Gamma.$$
Recall that a logic L is complete wrt to a class K of frames (models) if

$$L = \{ \varphi \mid W \models \varphi (\mu) \models \varphi \text{ for all } W \in K (\mu \in K) \}.$$

A logic L is strongly complete wrt K if the relations \models_L and \models_K coincide.

Denote the class of all frames as K_{all}, the class of all partially ordered frames as K_{po}, and, finally, the class of all directed partially ordered frames as K_{dpo}. It is well known that N4^+ is strongly complete wrt K_{all} and $\models_{\text{K}_{\text{po}}}$, the logic N3 is strongly complete wrt the class of all N3-models and wrt to the class of all N3-models over partially ordered frames. In particular, $\text{N4}^+ = L\text{K}_{\text{all}} = L\text{K}_{\text{po}}$ and $\text{N3} = L^3\text{K}_{\text{all}} = L^3\text{K}_{\text{po}}$.

Theorem 2.7. The logic NKC is strongly complete wrt K_{dpo}. The logic N3KC is strongly complete wrt the class of all N3-models over frames from K_{dpo}. In particular, we have $\text{NKC} = L\text{K}_{\text{dpo}}$ and $\text{N3KC} = L^3\text{K}_{\text{dpo}}$.

Proof. The fact that $\Gamma \models_{\text{NKC}} \varphi$ implies $\Gamma \models_{\text{W}} \varphi$ for $W \in K_{\text{dpo}}$ can be proved in a standard way by induction on the length of inference from Γ. In fact, it would be enough to prove that $W \models \neg \varphi \lor \neg \varphi$. Assume that a model μ over W and a world x of W are such that $\mu, x \not \models^+ \neg \varphi \lor \neg \varphi$. This means that $\mu, y \models^+ \varphi$ and $\mu, z \models^+ \neg \varphi$ for some $y, z \geq x$. Since W is directed, there is a world u such that $y, z \leq u$. By Monotonicity lemma $\mu, u \models^+ \varphi \land \neg \varphi$, a contradiction.

Assume that $\Gamma \not \models_{\text{NKC}} \varphi$. Let $\Gamma' \in W^{\text{NKC}}$ be a prime extension of Γ such that $\varphi \not \in \Gamma'$. By Canonical model lemma we have $\mu^{\text{NKC}}, \Gamma' \models^+ \Gamma$ and $\mu^{\text{NKC}}, \Gamma' \not \models^+ \varphi$. It remains to check that the submodel of μ^{NKC} generated by the cone $\{ \Gamma \in W^{\text{NKC}} \mid \Gamma' \subeq \Gamma \}$ is directed.

Notice that $\bot \not \in \Gamma$ for all $\Gamma \in W^{\text{NKC}}$. Indeed, if $\bot \in \Gamma$, then Γ is trivial by axiom A5. Let $\Gamma_1, \Gamma_2 \in W^{\text{NKC}}$ be such that $\Gamma_2 \subseteq \Gamma_1$, $\Gamma' \subseteq \Gamma_2$. Assume that there is no prime theory $\Gamma_3 \in W^{\text{NKC}}$ such that $\Gamma_1, \Gamma_2 \subseteq \Gamma_3$. By Extension lemma this means that $\Gamma_1 \cup \Gamma_2 \not \models_{\text{NKC}} \bot$. Consequently, there is $\varphi \in \Gamma_3$ such that $\Gamma_1 \cup \{ \varphi \} \models_{\text{NKC}} \bot$. By Deduction theorem $\Gamma_1 \not \models_{\text{NKC}} \neg \varphi$. Since Γ' is an NKC-theory, we have $\neg \varphi \lor \neg \neg \varphi \in \Gamma'$. Since Γ' is prime, either $\neg \varphi \in \Gamma'$, or $\neg \neg \varphi \in \Gamma'$, however, the condition $\neg \varphi \in \Gamma'$ contradicts $\varphi \in \Gamma_2$, whereas $\neg \neg \varphi \in \Gamma'$ contradicts $\neg \varphi \in \Gamma_1$.

We have thus proved the completeness theorem for the logic NKC. To prove the completeness result for N3KC it is enough to notice that for every logic L extending N3, every prime L-theory is consistent wrt \sim. As a consequence the canonical model μ^{NKC} is an N3-model.

Now we adopt filtration method for N4^+-models. Let Φ be a set of \mathcal{L}^+-formulas closed under subformulas.

For a model $\mu = \langle W, \leq, v^+, v^- \rangle$, define on W an equivalence \equiv_{Φ} as follows:

$$x \equiv_{\Phi} y \iff \forall \varphi \in \Phi \ (\mu, x \models^+ \varphi \iff \mu, y \models^+ \varphi \text{ and } \mu, x \models^- \varphi \iff \mu, y \models^- \varphi).$$

The coset of $x \in W$ wrt \equiv_{Φ} is denoted as $[x]_{\Phi}$. $[x]_{\Phi} = \{ y \in W \mid x \equiv_{\Phi} y \}$.

A model $\mu' = \langle W', \leq', v'^+, v'^- \rangle$ is called a filtration of $\mu = \langle W, \leq, v^+, v^- \rangle$ wrt Φ if the following holds:

1. $W' = \{ [x]_{\Phi} \mid x \in W \}$;
2. $v'^+(p) = \{ [x]_{\Phi} \mid x \in v^+(p) \text{ and } p \in \Phi \}, p \in \text{Prop}$;
3. $v'^-(p) = \{ [x]_{\Phi} \mid x \in v^-(p) \text{ and } p \in \Phi \}, p \in \text{Prop}$;
4. $x \leq y$ implies $[x]_{\Phi} \leq' [y]_{\Phi}$ for all $x, y \in W$;
\[(5) \ [x]_\Phi \leq^s [y]_\Phi \] implies
\[\forall \varphi \in \Phi (\mu, x \Vdash^+ \varphi \Rightarrow \mu, y \Vdash^+ \varphi \text{ and } \mu, x \Vdash^- \varphi \Rightarrow \mu, y \Vdash^- \varphi),\]
for all \(x, y \in W\).

Notice that if we define the relation \(\leq^s\) as: \([x]_\Phi \leq^s [y]_\Phi\) iff
\[\forall \varphi \in \Phi (\mu, x \Vdash^+ \varphi \Rightarrow \mu, y \Vdash^+ \varphi \text{ and } \mu, x \Vdash^- \varphi \Rightarrow \mu, y \Vdash^- \varphi),\]
we obtain that \((W', \leq^s, v'^+, v'^-)\) is a filtration of \(\mu\) wrt \(\Phi\). Thus, at least one filtration exists for every \(\mu\) and \(\Phi\).

Lemma 2.8 (Filtration lemma). Let \(\mu = (W, \leq, v^+, v^-)\) be an \(N^4\)-model, \(\Phi\) a set of \(L^2\)-formulas closed under subformulas. Let \(\mu' = (W', \leq', v'^+, v'^-)\) be a filtration of \(\mu\) wrt \(\Phi\). Then for every \(\varphi \in \Phi\) and \(x \in W\) the following equivalences hold

\[\mu, x \Vdash^+ \varphi \Leftrightarrow \mu', [x]_\Phi \Vdash^+ \varphi,\]
\[\mu, x \Vdash^- \varphi \Leftrightarrow \mu', [x]_\Phi \Vdash^- \varphi.\]

This statement can be proved in essentially the same way as for intuitionistic logic.

Theorem 2.9. We have \(NKC = LK_{fing}^3\) and \(N3KC = L^3K_{fing}\), where \(K_{fing}\) denotes the class of all finite partially ordered frames with the greatest element.

Proof. If \(\varphi \in NKC\), then \(\varphi\) is true in all directed frames, in particular in all finite frames with the greatest element.

Assume that \(\varphi \notin NKC\). Then there is a model \(\mu = (W, \leq, v^+, v^-)\) over a directed frame and a world \(x \in W\) such that \(\mu, x \nmid \varphi\). Let \(\Phi\) be the set of all subformulas of \(\varphi\). Consider some filtration \(\mu' = (W', \leq', v'^+, v'^-)\) of \(\mu\) wrt \(\Phi\). Then by Filtration lemma we have \(\mu', [x]_\Phi \nmid \varphi\). It follows from Item 4 of the filtration definition that \(\mu'\) is directed. Since \(\Phi\) is finite, the set \(W'\) is finite too. It remains to notice that a finite directed frame contains the greatest element.

The second statement follows from the obvious observation that a filtration of an \(N3\)-model is again an \(N3\)-model.

We have thus proved the finite model property for the logics \(NKC\) and \(N3KC\), which implies, in particular, that these logics are decidable.

Let us consider the frame \(W^{HT} = \langle \{h, t\}, \leq \rangle\) of the logic of here-and-there, where \(h \leq t\), and the extensions of \(N^4\) and of \(N3\) determined by this frame:

\[N_9 = L W^{HT}, \quad N_3 = L^3 W^{HT}.\]

The choice of the notation is explained by the fact, that the logic \(N_x\) can be determined by an \(x\)-element algebra, \(x \in \{5, 9\}\), see, e.g. [10]. A model \(\mu = (W^{HT}, v^+, v^-)\) over \(W^{HT}\) is called an \(N_9\)-model. Define the following four sets of atoms:

\[H^+ = \{p \mid \mu, h \Vdash^+ p\}, \quad H^- = \{p \mid \mu, h \Vdash^- p\},\]
\[T^+ = \{p \mid \mu, t \Vdash^+ p\}, \quad T^- = \{p \mid \mu, t \Vdash^- p\}.

In view of persistency condition on \(v^+\) and \(v^-\) we have \(H^+ \subseteq T^+\) and \(H^- \subseteq T^-\). It is clear that every \(N_9\)-model is uniquely determined by this quadruple of sets of atoms \(\langle H^+, H^-, T^+, T^- \rangle\) and that every quadruple \(\langle H^+, H^-, T^+, T^- \rangle\) with \(H^+ \subseteq T^+\) and \(H^- \subseteq T^-\) determines an \(N_9\)-model. In this case the set \(H^+\) is interpreted as a set of atoms which are true in the world \(h\), the set \(H^-\) is interpreted as a
set of atoms which are false in the world \(h \), and similarly for the world \(t \). In what follows it will be convenient to divide this quadruple into two pairs \(\mathbf{H} = (H^+, H^-) \) and \(\mathbf{T} = (T^+, T^-) \), so \(\langle \mathbf{H}, \mathbf{T} \rangle = ((H^+, \neg H^-), (T^+, \neg T^-)) \). In this way, we identified \(\mathbf{N}_9 \)-models with pairs of sets of literals \(\langle \mathbf{H}, \mathbf{T} \rangle \) such that \(\mathbf{H} \leq \mathbf{T} \).

An \(\mathbf{N}_9 \)-model is an \(\mathbf{N}_9 \)-model, which is simultaneously an \(\mathbf{N}_3 \)-model. In this case, we have \(v^+(p) \cap v^-(p) = \emptyset \) for all \(p \), which is equivalent to \(H^+ \cap \neg H^+ \emptyset \) and \(T^+ \cap \neg T^- \emptyset \). Thus, \(\mathbf{N}_9 \)-models are pairs of consistent sets of literals.

A one-element frame \(\mathcal{W}^H = \{ \{ h \}, \leq \} \) where \(h \leq h \) will determine the logics \(\mathcal{B}4 = \mathcal{L}^W H \) and \(\mathcal{B}3 = \mathcal{L}^3 \mathcal{W} H \). Obviously, models of logics \(\mathcal{B}4 \) and \(\mathcal{B}3 \) can be identified with sets of literals, which are arbitrary for \(\mathcal{B}4 \) and consistent in case of \(\mathcal{B}3 \). Recall that the logics \(\mathcal{B}4 \) and \(\mathcal{B}3 \) are extensions of well known four- and three-valued Belnap-Dunn logics \([3, 2, 6]\) via connectives \(\rightarrow \) and \(\bot \).

In what follows it will be convenient for us to identify a set \(\mathbf{T} \) of literals with the pair \(\langle \mathbf{T}, \mathbf{T} \rangle \) and consider in this way \(\mathcal{B}4 \)-models as a proper subset of the set of \(\mathbf{N}_9 \)-models.

With every world \(w \in W \) of an arbitrary \(\mathbf{N}4^\bot \)-model \(\mu = \langle W, \leq, v^+, v^- \rangle \) we associate a set of literals verified in this word:

\[
lit_{\mu}(w) = \{ p \mid \mu, w \models^+ p \} \cup \{ \neg p \mid \mu, w \models^- p \}.
\]

Naturally, \(lit_{\mu}(w) \) can be considered as a \(\mathbf{B}4 \)-model. In what follows we will also use the denotation \(\langle w \rangle_\mu \) for this \(\mathbf{B}4 \)-model. The lower index \(\mu \) will be omitted if it does not lead to a confusion.

3. Paraconsistent answer set semantics

We will consider two versions of answer set semantics for logic programs with two kinds of negation \([7]\), the ordinary one, which admits only consistent sets of literals as answer sets, and the paraconsistent version, which takes into consideration also inconsistent answer sets.

Recall that the strong negation is denoted by ‘\(\sim \)’ and the second, default negation, usually written as ‘\(\neg \)’ will be denoted by ‘\(\neg \)’. The rules of disjunctive logic programs will be considered as formulas having the following form

\[
L_1 \land \ldots \land L_m \land \neg L_{m+1} \land \ldots \land \neg L_n \rightarrow K_1 \lor \ldots \lor K_k,
\]

where \(L_i, K_j \in \text{Lit} \) and we may have \(m = n \) and \(m \) or \(n \) may be zero. A disjunctive logic program \(\Pi \) is a set of such formulas, a program \(\Pi \) is normal if \(k = 1 \) for all rules in \(\Pi \). The rules of disjunctive programs can be considered as formulas of the language \(\mathcal{L}^\bot \), in which case \(\neg L_i \) is treated as an abbreviation for \(L_i \rightarrow \bot \). It will be convenient in this section to consider a definitional extension of the logic \(\mathcal{N}4^\bot \) via intuitionistic negation \(\neg \) and the constant \(T \) (\(T := \bot \)). So, in this section \(\mathcal{L}^\bot := \{ \land, \lor, \rightarrow, \neg, \sim, \neg, \bot, T \} \).

A set \(\mathbf{M} \) of literals is a model of a disjunctive program \(\Pi \) if \(\mathbf{M} \) is a \(\mathbf{B}4 \)-model of \(\Pi \).

The Gelfond and Lifschitz reduct (GL-reduct) \(\Pi^\mathbf{M} \) of a disjunctive program \(\Pi \) with respect to a set of literals \(\mathbf{M} \) is a disjunctive program obtained from \(\Pi \) in two steps. First, we exclude from \(\Pi \) all rules containing \(\neg L_i \) with \(L_i \in \mathbf{M} \). Second, from the rest of rules we delete all conjunctive terms of the form \(\neg L_i \). A set of literals \(\mathbf{M} \) is an answer set of a program \(\Pi \), if \(\mathbf{M} \) is \(\leq \)-minimal among all models of the GL-reduct \(\Pi^\mathbf{M} \). In this way we have defined a paraconsistent answer set semantics.
(PAS). The only difference of PAS from the ordinary answer set semantics is that the latter additionally assumes that an answer set must be consistent.

The next statement follows readily from the definition of GL-reduct.

Lemma 3.1. For every disjunctive program Π and set of literals M, the following equivalence holds:

$$M \models \Pi \iff M \models \Pi^M.$$

An N_9-model of the form $\langle T, T \rangle$ is called total. The relation \preceq on N_9-models is defined as follows: $\langle H_1, T_1 \rangle \preceq \langle H_2, T_2 \rangle$ iff $H_1 \leq H_2$ and $T_1 = T_2$.

Let Γ be an arbitrary subset of \mathcal{L}^\bot. A total model $\langle T, T \rangle$ is called an equilibrium model of the set of formulas Γ, if $\langle T, T \rangle$ is an N_9-model of Γ and it is \$\preceq\$-minimal in the class of all N_9-models of Γ. In other words, $\langle T, T \rangle$ is an equilibrium model of Γ iff $\langle T, T \rangle \models N_9 \Gamma$ and there is no H such that $H \neq T$ and $\langle H, T \rangle \models N_9 \Gamma$.

A set of equilibrium models of the set of formulas Γ is denoted by $E^l(\Gamma)$, a set of consistent equilibrium models of Γ is denoted as $E^l^3(\Gamma)$.

Since the equilibrium model of an arbitrary set of formulas is total it can be identified with a set of literals. The following fact is important to establish the connection between (consistent) equilibrium models and (consistent) answer sets in case of disjunctive programs.

Lemma 3.2. Let Π be a disjunctive program and $\langle H, T \rangle$ an N_9-model. The following equivalence holds:

$$\langle H, T \rangle \models \Pi \iff T \models \Pi^T \text{ and } H \models \Pi^T.$$

The next statement was proved in [13] for consistent answer sets and in [11] for arbitrary answer sets.

Theorem 3.3. [13, 11] For a disjunctive program Π, a set T of literals is a (consistent) answer set of Π iff the N_9-model $\langle T, T \rangle$ is an equilibrium model of Π.

This statement was generalized in [4] for very general class of programs (without strong negation), namely programs without nested implication. We extend this result to programs with strong negation.

Let M be a set of literals and φ a nnf. A formula φ^M is defined by induction as follows:

1. $\varphi^M = \varphi$, if φ is a literal
2. $(\varphi \circ \psi)^M = \varphi^M \circ \psi^M$, where $\circ \in \{\lor, \land, \rightarrow\}$
3. $(\neg \varphi)^M = \begin{cases} \bot, & \text{if } M \models \varphi \\ \top, & \text{if } M \not\models \varphi. \end{cases}$

For a formula φ, which is not a nnf, we put $\varphi^M = (\varphi)^M$, where $\overline{\varphi}$ is an nnf of φ. We assume that some algorithm of reducing a formula to a negative normal form is fixed. If Π is a set of formulas, then $\Pi^M = \{\varphi^M \mid \varphi \in \Pi\}$.

A set M of literals is an answer set of Π if M is \$\preceq\$-minimal among all $B4$-models of the GL-reduct Π^M.

Let \mathcal{F}_Π^\ast denote a set of formulas, which can be constructed from literals with the help of connectives of the language \mathcal{L}.
Lemma 3.4. Let $\mathcal{L} = \{\land, \lor, \bot, \top\}$. The for a world w of an $N4^\bot$-model $\mu = (W, \leq, \mathcal{I}^+)$ and $\varphi, \psi \in For^\bot_{\mathcal{L}}$

$$(2) \quad \mu, w \models^\sigma \varphi \iff \langle w \rangle_\mu \models^\sigma \varphi;$$

$$(3) \quad \text{if } \mu, w \models^\sigma \varphi \rightarrow \psi, \text{ then } \langle w \rangle_\mu \models^\sigma \varphi \rightarrow \psi,$$

where $\sigma \in \{+, -, \}.\)

Proof. The equivalence (2) readily follows from the fact that only one world is involved in the definition of verification or falsification of a formula from $For^\bot_{\mathcal{L}}$.

To prove (3) we consider first the case $\sigma = +$. If $\langle w \rangle \not\models^+ \varphi \rightarrow \psi$, then $\langle w \rangle \models^+ \varphi$ and $\langle w \rangle \not\models^+ \psi$. It follows by (2) that $\mu, w \models^+ \varphi$ and $\mu, w \not\models^+ \psi$, whence $\mu, w \not\models^+ \varphi \rightarrow \psi$.

Consider the case $\sigma = -$. If $\langle w \rangle \not\models^- \varphi \rightarrow \psi$, then either $\langle w \rangle \not\models^+ \varphi$ or $\langle w \rangle \not\models^+ \psi$. According to (1) we have $\mu, w \not\models^+ \varphi$ or $\mu, w \not\models^- \psi$, whence $\mu, w \not\models^- \varphi \rightarrow \psi$. □

Lemma 3.5. Let $\mathcal{L} = \{\land, \lor, \bot, \top\}, \varphi, \psi \in For^\ast_{\mathcal{L}}$. For an arbitrary $N9$-model (H, T), the relation $(H, T) \models \varphi \rightarrow \psi$ holds, if and only if $T \models \varphi \rightarrow \psi$ and $H \models \varphi \rightarrow \psi$.

Proof. The statement $(H, T) \models \varphi \rightarrow \psi$ is equivalent by definition to the conjunction of two implications: $(H, T), h \models^+ \varphi$ implies $(H, T), h \models^+ \psi$, and $(H, T), t \models^+ \varphi$ implies $(H, T), t \models^+ \psi$. This is equivalent by Lemma 3.4 to implications: $H \models^+ \varphi$ implies $H \models^+ \psi$, and $T \models^+ \varphi$ implies $T \models^+ \psi$, which is equivalent in turn to the desired conjunction: $T \models \varphi \rightarrow \psi$ and $H \models \varphi \rightarrow \psi$. □

Lemma 3.6. Let $\varphi, \psi \in For_{\mathcal{L}^\bot}$, where $\mathcal{L}^\bot := \{\land, \lor, \sim, \top, \bot\}$ is a language without implication. For an arbitrary $N9$-model (H, T), we have $(H, T) \models \varphi \rightarrow \psi$ iff $(H, T) \models (\varphi \rightarrow \psi)^T$.

Proof. By the properties of nnfs we have $(H, T) \models \varphi \rightarrow \psi \iff (H, T) \models \varphi \rightarrow \overline{\varphi}$. So we may assume that both φ and ψ are nnfs. Again the statement $(H, T) \models \varphi \rightarrow \psi$ is equivalent by definition to implications: $(H, T), h \models^+ \varphi$ implies $(H, T), h \models^+ \psi$, and $(H, T), t \models^+ \varphi$ implies $(H, T), t \models^+ \psi$. The same holds for $(H, T) \models \varphi^T \rightarrow \psi^T$. Since nnfs of formulas from $For_{\mathcal{L}^\bot}$ belong to $For^*_{\mathcal{L}^\bot}$, the conclusion of the lemma will follow from the fact that the equivalences:

$$(H, T), h \models^+ \chi \iff (H, T), h \models^+ \chi^T,$$

$$(H, T), t \models^+ \chi \iff (H, T), t \models^+ \chi^T$$

are true for any formula $\chi \in For^*_{\mathcal{L}^\bot}$.

These equivalences can be proved by an easy induction on the structure of $\chi \in For^*_{\mathcal{L}^\bot}$. The basis of induction is obvious since the GL-reduct of a literal is the same literal. The only non-trivial case we have to consider is the case of intuitionistic negation. Since t is the maximal world of the model (H, T), for $x \in \{h, t\}$ we have $(H, T), x \models^+ \sim \varphi \iff (H, T), t \not\models^+ \varphi$. By the induction hypothesis the latter is equivalent to $(H, T), t \not\models^+ \varphi^T$. The GL-reduct $(\sim \varphi)^T$ equals T if $T \models \varphi^T$, otherwise it is equal \bot. By Lemma 3.4 $T \not\models^+ \varphi^T$ iff $(H, T), t \not\models^+ \varphi^T$, which implies the desired equivalence. □
Theorem 3.7. Let \(\Pi \subset L = \{ \varphi \rightarrow \psi : \varphi, \psi \in \text{For}_{L^-} \} \), where \(L^- = \{ \land, \lor, \neg, \bot, \top \} \), and let \(T \) be a set of literals. \(T \) is a (consistent) answer set of \(\Pi \) iff the N\(_9\)-model (N\(_5\)-model) \((T, T) \) is an equilibrium model of \(\Pi \).

Proof. Let \(T \) be an answer set for \(\Pi \). By definition of answer set \(T = \Pi^T \). Let \(H \leq T \), assume that \(\langle H, T \rangle = \Pi \). By Lemma 3.6 we have \(\langle H, T \rangle = \Pi^T \), from which we conclude by Lemma 3.5 that \(H = \Pi^T \). From the definition of answer sets it follows that \(H = T \). We have thus proved that \(\langle T, T \rangle \) is an equilibrium model of \(\Pi \).

If \(\langle T, T \rangle \) is an equilibrium model of \(\Pi \), then \(\langle T, T \rangle = \Pi^T \) by Lemma 3.6, which implies \(T = \Pi^T \) by Lemma 3.5. Assume that \(T \) is not an answer set of \(\Pi \), i.e., there is \(H \leq T \) such that \(H \neq T \) and \(H = \Pi^T \). By Lemma 3.5 we conclude that \(\langle H, T \rangle = \Pi^T \), and that \(\langle H, T \rangle = \Pi \) by Lemma 3.6, which contradicts the assumption that \(\langle T, T \rangle \) is an equilibrium model of \(\Pi \).

\[\square \]

4. Strong equivalence of logic programs

Let \(L \) be a set of formulas in one or another language. By a program over \(L \) we mean a subset of \(L \).

Programs \(\Pi_1 \) and \(\Pi_2 \) over \(L \) are (consistently) strongly equivalent (in \(L \)) if for every program \(\Pi \) over \(L \), the programs \(\Pi_1 \cup \Pi \) and \(\Pi_2 \cup \Pi \) have the same (consistent) answer sets.

The following statement was proved in [8] for consistent strong equivalence, and in [11] for paraconsistent answer set semantics.

Theorem 4.1. Let \(\Pi_1 \) and \(\Pi_2 \) be programs over \(L \), where \(L \) contains all normal programs. The programs \(\Pi_1 \) and \(\Pi_2 \) are (consistently) strongly equivalent in \(L \), if and only if they are equivalent in the logic N\(_9\) (N\(_5\)).

\[\Pi_1 \equiv_{N_9} \Pi_2 \quad (\Pi_1 \equiv_{N_5} \Pi_2). \]

Lemma 4.2. Let \(L = \{ \varphi \rightarrow \psi : \varphi, \psi \in \text{For}_{L^-} \} \), \(\Gamma \subseteq L \), \(\chi \in L \). Then

\[\Gamma \vdash_{\text{NKC}} \chi \Leftrightarrow \Gamma \vdash_{\text{N_9}} \chi, \]

\[\Gamma \vdash_{\text{N3KC}} \chi \Leftrightarrow \Gamma \vdash_{\text{N_5}} \chi. \]

Proof. The implications from left to right are obvious due to inclusions NKC \(\subseteq \text{N_9} \) and N3KC \(\subseteq \text{N_5} \).

Now let \(G \not\vdash_{\text{NKC}} \varphi \rightarrow \psi \). By the completeness theorem for NKC there is an NKC-model \(\mu = \langle W, \leq, v^+, v^- \rangle \) with the greatest element \(t \) and there is a world \(h \in W \) such that \(h \models^+ \varphi \), \(h \models^+ \psi \), and \(h \not\models^+ \psi \).

Let us consider an N\(_9\)-model \(\langle H, T \rangle = (\text{lit}_\mu(h), \text{lit}_\mu(t)) \).

We prove several statements about an N\(_9\)-model \(\langle H, T \rangle \), which will imply the conclusion of the lemma:

1. For all \(\chi \in \text{For}_{L^-} \), we have \(\mu, t \models^ \sigma \chi \Leftrightarrow \langle H, T \rangle, t \models^\sigma \chi \Leftrightarrow T, t \models^\sigma \chi \).
2. For all \(\chi \in \text{For}_{L^-} \), we have \(\mu, h \models^ \sigma \chi \Leftrightarrow \langle H, T \rangle, h \models^\sigma \chi \), where \(\sigma \in \{+, -, \} \).
3. For all \(\chi \in L \), the following implication holds: \(\mu, h \models^+ \chi \Rightarrow T \models \chi \).

The first statement follows from the facts that \(t \) is the greatest world in both models by Monotonicity lemma.

The second statement follows from the first one and the fact that only two worlds, \(h \) and \(t \), are involved in the definition of verification and falsification of formulas in
the world of \(h\) of \(\mu\). The definition of the model \((H, T)\) gives the base of induction, the only non-trivial case of the intuitionistic implication can be treated as follows. For the case of verification we have the following chain of equivalences:

\[
\mu, h \models^+ \neg \chi \iff \mu, t \models \neg^+ \chi \iff (H, T), t \models^+ \chi \iff (H, T), h \models^+ \neg \chi.
\]

Here the second equivalence is due to statement 1. For the case of falsification we have:

\[
\mu, h \models \neg \chi \iff \mu, h \models^+ \chi \iff (H, T), h \models^+ \chi \iff (H, T), h \models \neg \chi.
\]

In this case the first equivalence follows from the definition of intuitionistic negation, \(\neg \chi = \chi \rightarrow \bot\), where as the second one follows by induction hypothesis.

The last statement easily follows from the previous ones.

According to statement 3 we have \((H, T) \models \Gamma\), at the same time it follows from statement 2 that \((H, T), h \models^+ \varphi\) and \((H, T), h \not\models^+ \psi\). We have thus proved the first equivalence.

The second one can be proved in exactly the same way. It is enough to notice that from an \(N3KC\)-model \(\mu\) we obtain an \(N5\)-model \((H, T)\).

Theorem 4.3. Let \(\Pi_1\) and \(\Pi_2\) are programs over \(L = \{\varphi \rightarrow \psi : \varphi, \psi \in For_{\not\models}\}\). Then \(\Pi_1\) and \(\Pi_2\) are (consistently) strongly equivalent in \(L\), if and only if \(\Pi_1 \equiv_{NKC} \Pi_2\) \((\Pi_1 \equiv_{N3KC} \Pi_2)\). Moreover, \(NKC\) (\(N3KC\)) is the least extension of \(N4^+\), satisfying the (consistent) strong equivalence theorem for programs over \(L\).

Proof. The fact that logic \(NKC\) (\(N3KC\)) satisfies the (consistent) strong equivalence theorem for logic programs over \(L\) follows from the previous lemma, Theorem 4.1, and the fact that \(L\) obviously contains normal programs.

It was proved in [4] (see Lemma 24) that the superintuitionistic logic \(KC\) can be represented as

\[
Int + \{(((p \land r) \rightarrow t) \land (\neg p \rightarrow q) \land (\neg r \rightarrow q)) \rightarrow (\neg t \rightarrow q)\}.
\]

This means that the formulas \(A := (((p \land r) \rightarrow t) \land (\neg p \rightarrow q) \land (\neg r \rightarrow q)) \rightarrow (\neg t \rightarrow q)\) and the standard \(KC\) axiom \(\neg p \lor \neg \neg p\) are equivalent over \(Int\). Consequently, these formulas will be equivalent over logics \(N4^+\) and \(N3\) extending \(Int\). So we can represent the logic \(NKC\) and \(N3KC\) as \(N4^+ + \{A\}\) and \(N3 + \{A\}\) respectively.

We just noticed that the (consistent) strong equivalence theorem holds for \(NKC\) (\(N3KC\)). It follows from the new axiomatization of these logics that the programs \(\Pi_1 = \{(p \land r) \rightarrow t, \neg p \rightarrow q, \neg r \rightarrow q, \neg t \rightarrow q)\}\) and \(\Pi_2 = \{(p \land r) \rightarrow t, \neg p \rightarrow q, \neg r \rightarrow q, \neg t \rightarrow q\}\) are (consistently) strongly equivalent. This means that \(\Pi_1\) and \(\Pi_2\) must be equivalent in every logic \(L \in \mathcal{F}N4^+\) satisfying the (consistent) strong equivalence theorem. In other word, every logic \(L\) satisfying the (consistent) strong equivalence theorem must contain the logic \(NKC\).

Further, since \(\sim p \rightarrow (p \rightarrow q) \in N3KC\) and \(N3KC\) satisfies the consistent strong equivalence theorem, this means that the programs \(\{\sim p, p, q\}\) and \(\{\sim p, p\}\) are consistently strongly equivalent. Thus, these programs are equivalent in every \(N4^+\)-extension, satisfying consistent strong equivalence theorem. We have thus proved that every \(N4^+\)-extension, satisfying consistent strong equivalence theorem must contain the logic \(N3KC\).

\[\Box\]

Notice that all programs mentioned in the proof are normal. This allows us to infer the following
Corollary 4.4. Let Π_1 and Π_2 are normal programs with strong negation. Then Π_1 and Π_2 are (consistently) strongly equivalent in the class of normal programs with strong negation, if and only if $\Pi_1 \equiv_{\text{NKC}} \Pi_2$ ($\Pi_1 \equiv_{\text{N3KC}} \Pi_2$). Moreover, NKC (N3KC) is the least extension of $\text{N}4^-$, satisfying the (consistent) strong equivalence theorem for normal programs with strong negation.

REFERENCES
S.P. Odintsov
Sobolev Institute of Mathematics,
Koptyug Ave. 4,
630090, Novosibirsk, Russia
E-mail address: odintsov@math.nsc.ru

Z.V. Makridin
Novosibirsk State University,
Pirogova 2,
630090, Novosibirsk, Russia
E-mail address: skrol_z@mail.ru