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Abstract. We present distributions of countable models and
corresponding structural characteristics of complete theories with
continuum many types: for prime models over finite sets relative to
Rudin–Keisler preorders, for limit models over types and over sequences
of types, and for other countable models of theory.
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A classification of models of theories is one of main goals in the modern model
theory. For uncountable models, the basic achievements are connected with results
by S. Shelah [21] and finally represented in the article by B. Hart, E. Hrushovski,
and M. S. Laskowski [9].

The class of countable models has been widely investigated by many specialists
counting the number of countable models (see for example, [2], [11], [13], [14],
[17], [18], [19], [28]), finding basic properties related to countable models ([1],
[12], [15], [22], [25], [27]) and countable models with desired model theoretic and
computability properties ([7], [16], [23], [29]).

An approach to the classification of countable models using basic links between
countable models has been proposed in [22], [23], [24], [25]. However, it was
restricted to the class of small theories. In this paper, this approach is extended
to the class of countable theories with continuum many types. We describe
distributions of countable models of theories T , i. e., possibilities for numbers of
prime models over finite sets relative Rudin–Keisler preorders, for numbers of limit
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models over types and over sequences of types, and for numbers of other countable
models of theory. In particular, every theory T has three characteristics: the number
P (T ) of prime models over finite sets, the number L(T ) of limit models, and the
number NPL(T ) of other countable models refining the number I(T, ω) of pairwise
non-isomorphic countable models of T . It allows to classify countable theories
with respect to these characteristics. As it was shown in [22], [23], [24], [25], for
small theories T , NPL(T ) = 0 and using Morley’s theorem all possibilities for
(P (T ), L(T )) are described. For theories T with continuum many types, NPL(T )
can vary from 0 to 2ω. Under the assumption of Continuum Hypothesis we describe
all possibilities for triples (P (T ), L(T ),NPL(T )).

Denote by Tc the class of all countable complete theories T with sets S(T ) having
continuum many types. Below, unless otherwise stated, we shall assume that all
theories under consideration belong to the class Tc and these theories will be called
non-small or theories with continuum many types.

In general case for theories in Tc, there is no correspondence between types and
prime models over tuples which we observe for small theories (for a given theory
in Tc, some prime models over realizations of types may not exist). Besides, there
are continuum many pairwise non-isomorphic countable models for each of these
theories. However, as we shall show, in this case the structural links for types allow
to distribute and to count the number of prime models over finite sets, limit models,
and other countable models of a theory similar to small theories [25] and arbitrary
countable theories of unary predicates [20].

Now we outline the content of this paper. In Section 1 we describe some basic
examples of theories with continuum many types. In Section 2 we recall Rudin–
Keisler preorders and formulate some basic properties and examples related to
these preorders. The notion of a premodel set compiling basic properties of Rudin–
Keisler preorders for types is presented in Section 3. In Section 4 we prove a criterion
for a Rudin–Keisler sequence of types forming a countable model (Theorem 4.1)
and consider distributions of countable models with respect to these sequences.
In Section 5 we define three classes: P, L, and NPL, of prime over tuples, limit,
and others countable models, respectively. We describe the possibilities for the
numbers of models in this classes assuming the Continuum Hypothesis and the
smallness of the theory (Theorem 5.2); we prove a criterion, for the class Tc, that
each countable model is either prime over a tuple or limit (Theorem 5.3, Corollary
5.4); and establish some relations between the numbers of countable models in the
classes P, L, and NPL (Propositions 5.5, 5.6). In Section 6 we define operators,
used below for realizations of possible distributions of countable models. In Sections
7 and 8 we describe distributions of prime and limit models for finite and countable
Rudin–Keisler preorders (Theorem 7.5, Proposition 7.6, Theorems 7.7, 8.3, 8.4). In
Section 9 we describe links between the classes P, L, and NPL (Theorems 9.1,
9.2), and possible numbers of pairwise non-isomorphic countable models in these
classes under the assumption of Continuum Hypothesis (Theorem 9.4).

1. Examples

Recall some basic examples of theories with continuum many types ([5], [6], [10]):

(1) the theory Th(⟨N; +, ·⟩) of the standard model of arithmetic on naturals (for
any subset A of the set P of all prime numbers, the set Φ(x) of formulas describing
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the divisibility of an element by a number in A and its non-divisibility by each
number in P \A is consistent);

(2) the theory Th(⟨Z; +, 0⟩) (there are continuum many 1-types by the same
reason as in the previous example);

(3) a theory Th(⟨Q; +, ·,≤⟩) of ordered fields (there are 2ω cuts for the set of
rationals);

(4) the theory Tsdup of a countable set of sequentially divisible unary predicates
S
(1)
δ , δ ∈ 2<ω, with the following axioms:

∃>ωx (Sδ(x) ∧ ¬Sδˆ0(x) ∧ ¬Sδˆ1(x));

Sδˆε(x) → Sδ(x), ε ∈ {0, 1};
¬∃x(Sδˆ0(x) ∧ Sδˆ1(x));

(5) the theory Tiup of a countable set of independent unary predicates P (1)
k , k ∈ ω,

axiomatizable by formulas:

∃x (Pi1(x) ∧ . . . ∧ Pim(x) ∧ ¬Pj1(x) ∧ . . . ∧ ¬Pjn(x)),

{i1, . . . , im} ∩ {j1, . . . , jn} = ∅ (one get continuum many 1-types by consistency of
any set of formulas {P δ(k)

k (x) | k ∈ ω}, δ ∈ 2ω);

(6) Example suggested by E. A. Palyutin: the theory Tsipe (similar to the theory
REFω [5]) of a countable set of sequentially independent unary predicates P (1)

k ,
k ∈ ω, with an equivalence relation E(2), defined by the following conditions:

(a) there are infinitely many E-classes and each E-class is infinite;
(b) for any k ∈ ω, there is unique E-class Xk containing infinitely many solutions

of each formula P δ0
0 (x) ∧ . . . ∧ P δk

k (x), δ0, . . . , δk ∈ {0, 1}, and Xk is disjoint with
relations Pi, i > k; there is a prime model consisting of E-classes Xk, k ∈ ω;

one get continuum many 1-types in E-classes having nonempty intersections with
each predicate Pk, k ∈ ω;

(7) the theory Tsier (similar to [4, p. 176]) of a countable set of sequentially
independent equivalence relations E(2)

n , n ∈ ω, with the following conditions:
(a) ⊢ En+1(x, y) → E0(x, y), n ∈ ω;
(b) |= ∀x, y(E0(x, y) → ∃z(Em(x, z) ∧ En(z, y))), m ̸= n;
(c) each E0-class is infinite and each En+1-class is a singleton or infinite, n ∈ ω;
(d) if an En+1-class X is contained in an E0-class Y then Y consists of infinitely

many En+1-classes, each of which is a singleton or infinite, n ∈ ω;
(e) if Xn+1 is an infinite En+1-class contained in an E0-class Y then Y is

represented as a union of infinite intersections X1 ∩ . . . ∩Xn ∩Xn+1 for Ei-classes
Xi, 1 ≤ i ≤ n; moreover, for any δi ∈ {0, 1} the sets Xδ1

1 ∩ . . . ∩Xδn
n ∩Xδn+1

n+1 ∩ Y
are infinite, n ∈ ω;

(f) for any n ∈ ω, there is unique E0-class containing infinite
n∩

i=1

Ei-class and

singleton Em-classes, n < m; there is a prime model consisting of these E0-classes;
there are continuum many 2-types in E0-classes containing infinite En+1-classes,

n ∈ ω.

The structures ⟨N; +, ·⟩ and ⟨Q; +, ·,≤⟩ are prime (since the universes of there
structures equal to dcl(∅)). The structure ⟨Z; +, 0⟩ is prime over each its nonzero
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element a (i. e., ⟨Z; +, 0, a⟩ is prime) but it is not prime over ∅. Moreover, as shown
in [3], the theory Th(⟨Z; +, 0⟩) does not have prime models over ∅.

The theory Tsdup has a prime model, this model omits the type p∞(x) deduced
from the set of formulas describing the unbounded divisibility of Sδ(x) by Sδˆε(x),
and p∞(x) has continuum many completions. Besides the theory Tsdup has a
prime model over every finite set, hence there are continuum many pairwise non-
isomorphic prime models over tuples.

The theory Tiup does not have prime models over finite sets. The theories Tsipe
and Tsier have prime models over empty set and do not have prime models over
non-isolated types.

2. Rudin–Keisler preorders

Consider a theory T ∈ Tc, a type p ∈ S(T ), and its realization ā. It is known
that all prime models over realizations of p are isomorphic. So if there is a prime
model M(ā) over the tuple ā, this model will be usually denoted by Mp.

Recall [28] that the prime model of T exists if and only if every formula consistent
with T belongs to an isolated type.

Note that an expansion of any countable structure M by constants for each
element transforms this structures to a prime one. Hence, the property of absence
of a prime model for a theory is not preserved under expansions of a theory. Clearly,
this property is not also preserved under restrictions of a theory.

Definition. Let p and q be types in S(T ). Following [22], [26], we say that p
is dominated by a type q, or p does not exceed q under the Rudin–Keisler preorder
(written p ≤RK q), if any model M |= T realizing q realizes p too.

Similar to small theories, the condition p ≤RK q is implied by the following:
there is a (q, p)-formula, i. e., a formula φ(x̄, ȳ) such that the set q(ȳ) ∪ {φ(x̄, ȳ)}
is consistent and q(ȳ) ∪ {φ(x̄, ȳ)} ⊢ p(x̄). But this syntactic condition may be not
implied by p ≤RK q for theories in Tc. If a (q, p)-formula φ(x̄, ȳ) exists, we say that
φ(x̄, ȳ) witnesses that q dominates p and denote by p ≤φ

RK q. We write p ≤′
RK q if

p ≤φ
RK q for some formula φ.

Notice that in the contrast to small theories, even having a (q, p)-formula, a
principal formula φ(x̄, b̄) with the conditions specified, where |= q(b̄), may not
exist. If a principal formula φ(x̄, b̄) of that form exists, the (q, p)-formula φ(x̄, ȳ) is
called (q, p)-principal .

Definition. If p ≤RK q and the models Mp and Mq exist, we say also that Mp

is dominated by Mq, or Mp does not exceed Mq under the Rudin–Keisler preorder ,
and write Mp ≤RK Mq.

If the models Mp and Mq exist, the condition Mp ≤RK Mq means that Mq |= p,
i. e., some copy M′

p of Mp is an elementary submodel of Mq: M′
p ≼ Mq.

If the model Mq exists then the condition p ≤RK q implies p ≤′
RK q and it is

witnessed by some (q, p)-principal formula. At the same time, there is a theory T
with types p and q such that p ≤RK q, there is a (q, p)-principal formula, and the
model Mq does not exist (it suffices to take the theory Tiup and 1-types p and q
with p = q).

Obviously, no formula φ(x̄, ȳ) can be both a (q, p)-formula and a (q, p′)-formula
for p ̸= p′. At the same time, a fixed formula can be a (q, p)-formula even for
continuum many types q. For instance, any principal formula φ(x̄) witnesses that
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corresponding principal type by all types of a given theory. The following example
illustrates the mechanism of domination for a type by continuum many types in
structures different from the above.

Example 2.1. Consider a structure with countable disjoint unary predicates R0

and R1 whose union forms the universe of required structure. Define a coloring
Col: R0 ∪ R1 → ω ∪ {∞} with infinitely many elements for each color in each
predicate R0, R1. Thus each predicate R0, R1 is divided by disjoint unary predicates
Coln of elements having n in color, n ∈ ω. Define a bipartite acyclic directed
graph with a relation Q connecting parts R0 and R1 and satisfying the following
conditions:

• every element a ∈ R1 of color m ∈ ω has infinitely many elements b ∈ R0

of each color n ≥ m such that (a, b) ∈ Q and there are no elements c ∈ R0 with
(a, c) ∈ Q and Col(c) < m;

• every element a ∈ R0 of color m ∈ ω has infinitely many elements b ∈ R1

of each color n ≤ m such that (b, a) ∈ Q and there are no elements c ∈ R1 with
(c, a) ∈ Q and Col(c) > m.

By the construction, for 1-types pi isolated by sets {Ri(x)}∪{¬Coln(x) | n ∈ ω},
i = 0, 1, we have p0 ≤RK p1 (witnessed by the formula Q(x, y)) and p1 ̸≤RK p0.

That structure is denoted by M01 and its theory by T01. Expand the structure
M01 by independent unary predicates Pk, k ∈ ω, on each set defined by the formula
R1(x) ∧ Coln(x), n ∈ ω, such that the type p0 preserves the completeness. Then
the type p1(x) has continuum many completions q(x), each of which dominates the
type p0(x) by the formula Q(x, y).

A modification of the example with the theory Tsdup instead of Tuip leads to the
theory for which the formula Q(x, y) produces the domination of the model Mp0

to continuum many models Mq, where all types q are completions of the type p0
in S1(T01).

Definition. Recall that types p and q are said to be domination-equivalent ,
realization-equivalent , Rudin–Keisler equivalent , or RK-equivalent (written p ∼RK

q) if p ≤RK q and q ≤RK p. If p ∼RK q and the models Mp and Mq exist then
Mp and Mq are also said to be domination-equivalent , Rudin–Keisler equivalent ,
or RK-equivalent (written Mp ∼RK Mq).

As in [27], types p and q are said to be strongly domination-equivalent , strongly
realization-equivalent , strongly Rudin–Keisler equivalent , or strongly RK-equivalent
(written p ≡RK q) if for some realizations ā and b̄ of p and q respectively, both
tp(b̄/ā) and tp(ā/b̄) are principal. Moreover, If the models Mp and Mq exist, they
are said to be strongly domination-equivalent , strongly Rudin–Keisler equivalent ,
or strongly RK-equivalent (written Mp ≡RK Mq).

Clearly, domination relations form preorders, (strong) domination-equivalence
relations are equivalence relations, and p ≡RK q implies p ∼RK q.

If Mp and Mq are not domination-equivalent then they are non-isomorphic.
Moreover, non-isomorphic models may be found among domination-equivalent ones.

Repeating the proof [26, Proposition 1] we get a syntactic characterization for
an isomorphism of models Mp and Mq. It asserts, as for small theories, that
an existence of isomorphism between Mp and Mq is equivalent to the strong
domination-equivalence of these models.



272 R. A. POPKOV, S. V. SUDOPLATOV

Proposition 2.2. For any types p(x̄) and q(ȳ) of a theory T having the models Mp

and Mq, the following conditions are equivalent:
(1) the models Mp and Mq are isomorphic;
(2) the models Mp and Mq are strongly domination-equivalent;
(3) there exist (p, q)- and (q, p)-principal formulas φp,q(ȳ, x̄) and φq,p(x̄, ȳ)

respectively, such that the set

p(x̄) ∪ q(ȳ) ∪ {φp,q(ȳ, x̄), φq,p(x̄, ȳ)}

is consistent;
(4) there exists a (p, q)- and (q, p)-principal formula φ(x̄, ȳ), such that the set

p(x̄) ∪ q(ȳ) ∪ {φ(x̄, ȳ)}

is consistent.

Denote by RK(T ) the set P of isomorphism types of models Mp, p ∈ S(T ),
with the relation of domination induced by ≤RK for models: RK(T ) = ⟨P;≤RK⟩.
We say that isomorphism types M1,M2 ∈ P are domination-equivalent (written
M1 ∼RK M2) if so are their representatives.

We consider also the relations ≤RK and ≤′
RK being defined on the set S(T ) of

complete types of a theory T . Denote the structures ⟨S(T );≤RK⟩ and ⟨S(T );≤′
RK⟩

by RKT(T ) and RKT′(T ) respectively. By the definition, RKT′(T ) is a preordered
subset of RKT(T ). Recall that RKT(T ) = RKT′(T ) for small theories T and
RKT′(T ) can both coincide with RKT(T ) or ≤′

RK be proper in ≤RK for theories T
in Tc.

Below we investigate properties of the preordered sets RK(T ), RKT(T ), and
RKT′(T ) as well as relations between these sets and between arbitrary countable
models of a theory with continuum many types.

The following assertion proposes criteria for the existence of the least element in
RK(T ).

Theorem 2.3. For a countable complete theory T , the following conditions are
equivalent:

(1) the theory T has a prime model;
(2) the theory T does not have consistent formulas which not belong to isolated

types;
(3) the structure RKT(T ) has the least ∼RK-class, this class consists of isolated

types of T and has a nonempty intersection with any nonempty set

[φ(x̄)] = {p(x̄) ∈ S(T ) | φ(x̄) ∈ p(x̄)}.

Proof. The equivalence (1) ⇔ (2) forms a criterion for the existence of a prime
model of a theory [28]. The implications (1) ⇒ (3) and (3) ⇒ (2) are obvious. �

Since theories with continuum many types may not have prime models over
tuples, the limits models may not exist too. Nevertheless the links between
countable models can be observed by the following generalization of Rudin–Keisler
preorder on isomorphism types of countable models that will be also denoted
by ≤RK. This generalization extends the preorder ≤RK for isomorphism types of
prime models over tuples and is based on the inclusion relation for type diagrams
D(M) = {p ∈ S(∅) | M |= p}.
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Definition. Let M1 and M2 be isomorphism types of models M1 and M2 (of
T ) respectively. We say that M1 is dominated by M2 and write M1 ≤RK M1 if
each type in S1(∅), being realized in M1, is realized in M2: D(M1) ⊆ D(M2).

Since the relation ≤RK does not depend on representatives M1 and M2 of
isomorphism types M1 and M2, we shall also write M1 ≤RK M2 for the
representatives M1 and M2 if M1 ≤RK M2.

We denote by CM(T ) the set CM of isomorphism types of countable models of T ,
equipped with the preorder ≤RK of domination on this set: CM(T ) = ⟨CM;≤RK⟩.

Clearly, RK(T ) ⊆ CM(T ). Obviously the equality RK(T ) = CM(T ) is equivalent
to ω-categoricity of T .

By the definition, a prime model over a type and a limit model over that type
[23], being non-isomorphic, are domination-equivalent. Hence, any two limit models
over a common type are also domination-equivalent.

The generalized relation of domination leads to a classification of countable
models of an arbitrary theory of unary predicates [20].

As we pointed out, a series of examples shows that, unlike small theories, for
theories with continuum many types the relations of domination may not induce
least elements (being isomorphism types of prime models). Besides, by the following
example, isomorphism types of prime models over tuples can quite freely alternate
with other isomorphism types of countable models.

Example 2.4. Consider again a structure with countable disjoint unary predicates
R0 and R1 whose union forms the universe of the required structure. We define a
coloring Col: R0 → ω ∪ {∞} with infinitely many elements for each color. On the
set R1, we put a structure of independent unary predicates Pk, k ∈ ω. We denote
by T0 the complete theory of the described structure.

Now we fix a dense (in the natural topology) set X = {qm | m ∈ ω} of 1-
types containing the formula R1(y). Using binary predicates Qm, m ∈ ω, the type
p∞(x), being isolated by the set {R0(x) ∧ ¬Coln(x) | n ∈ ω}, and neighbourhoods

R0(x)∧
n∧

i=0

¬Coli(x) of p∞(x), we get, in the expanded language, that all types in X

are approximated so that if the type p∞(x) is realized in a model M of expanded
theory, then the type qm(y) is realized in M by the principal formula Qm(a, y),
where |= p∞(a) and Qm(a, y) ⊢ qm(y), m ∈ ω, and the realizability in a model of
some types in X does not imply the realizability of p∞(x) in that model. Thus, a
prime model over p∞ dominates a prime model over a set A, where A consists of
realizations of types in X (one realization of each type).

In turn, the model Mp∞ is dominated by a countable model (being not prime
over tuples) which contains a realization of p∞ (with realizations of types in X) and
a countable set of realizations of 1-types consistent with R1(x) and not belonging
to X.

Using the notion of a dense set of types for the theory Tiup (without the
predicate R1) one describes (see [20]) the preordered, with respect to ≤RK, set M
of isomorphism types of countable models of Tiup. Each countable model is defined
by some countable set of realizations of a dense set. A model M1 is dominated by
a model M2 if and only if each 1-type p, realized in M1, is realized in M2 and the
number of realizations of p in M1 does not exceed the number of realizations of
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p in M2. Since density of a set of types is preserved under arbitrary removing or
adding of a 1-type, the set M does not have minimal and maximal elements.

Example 2.4 illustrates that the absence of a prime model of a theory can be
combined with the presence of a prime model over a tuple. At the same time, as
the following proposition asserts, if a consistent formula, which does not belong
to isolated types, exists then no prime model can be dominated by all countable
models of the considered theory.

Proposition 2.5. For any consistent formula φ(x̄), which does not belong to
isolated types, and for any non-isolated type p(ȳ) ∈ S(T ), there is a non-isolated
type q(x̄) ∈ S(T ) containing the formula φ(x̄) and not dominating the type p(ȳ).

Proof. By Omitting Type Theorem, there is a countable model M of T omitting
the type p(ȳ). At the same time, by consistency of φ(x̄), there is a tuple ā such that
M |= φ(ā). The type q(x̄) = tp(ā) contains the formula φ(x̄) and, by the definition,
does not dominate the type p(ȳ). �

Since each consistent conjunction of a formula φ(x̄), which does not belong to
isolated types, and a formula ψ(x̄) is again a formula, which does not belong
to isolated types, there are infinitely many types q(x̄) ∈ S(T ) containing the
formula φ(x̄) and do not dominating the type p(ȳ). Moreover, in examples of T like
above, there are uncountably many these types since otherwise there is a countable
expansion T ′ of T with new predicates Qn(x̄, ȳ), n ∈ ω, producing the isolation of
each type r(x̄) ∈ S(T ′), containing φ(x̄), by its restriction to the language of T , and
the domination of p(ȳ) by each type q(x̄). Since the formula φ(x̄) does not belong
to isolated types, we get a contradiction by Proposition 2.5.

Note that if a type p(ȳ) is not dominated by a type q(x̄) then, introducing new
independent predicates Pk(x̄), k ∈ ω, transforming a neighbourhood of q(x̄) to a
formula, which does not belong to isolated types, and q(x̄) to 2ω completions, we get
a theory such that p(x̄) is not dominated by continuum many types. By a similar
way, as in Example 2.1, if a type p(ȳ) is dominated by a type q(x̄) then, in an
expansion, the type p(ȳ) is dominated by continuum many completions of q(x̄).

Note also that a structure RKT(T ) can have a minimal but not least ∼RK-class.
Indeed, expanding the theory Tiup by binary predicates, one can obtain a dense set S
of 1-types, each of which is domination-equivalent with the other, and the absence of
prime model is preserved (it can be done by a countable set of new binary predicates,
each of which is responsible for the domination-equivalence of two 1-types in the
given dense set, and this domination-equivalence is obtained by approximations
for neighbourhoods of given types). The set S and types, domination-equivalent to
types in S, form a minimal ∼RK-class. By similar expansions, one get countably
many minimal classes.

Together with Example 2.4 and Proposition 2.5, Example 2.1 illustrates a
mechanism of domination of a non-principal type by all non-principal types of
a theory with continuum many types and without consistent formulas, which does
not belong to isolated types.

Having the features, in the following section, we suggest a list of some basic
properties of the structures RKT′(T ) for theories T in Tc (recall that for the
countable structures RKT(T ), we have RKT(T ) = RKT′(T ) and the basic
properties: the countable cardinality, the upward direction, the countability of ∼RK-
classes, and the existence of least ∼RK-classes are presented in [26]).
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3. Premodel sets

Definition. A height (width) of a preordered set ⟨X;≤⟩ is the supremum of
cardinalities for its ≤-(anti)chains consisting of pairwise non-∼-equivalent elements,
where ∼ = (≤ ∩ ≥). If a ∈ X then the set △(a) (respectively ▽(a)) of all elements
x in X, for which x ≤ a (a ≤ x), is the lower (upper) cone of a.

A preordered upward directed set ⟨X;≤ ⟩ with |X| = 2ω is called premodel if it
has:

• countably many elements under each element a ∈ X: | △ (a)| = ω;

• only countable ∼-classes: | △ (a) ∩▽(a)| = ω for any a ∈ X;

• over any elements a1, . . . , an ∈ X there are countably many or continuum many
common elements; if there are continuum many these common elements then the
set of these elements is equal to X or contains co-countably many or co-continuum
many elements of X: | ▽ (a1) ∩ . . . ∩ ▽(an)| = ω, or | ▽ (a1) ∩ . . . ∩ ▽(an)| = 2ω

and ▽(a1) ∩ . . . ∩▽(an) = X, |X \ (▽(a1) ∩ . . . ∩▽(an))| = ω, or

|X \ (▽(a1) ∩ . . . ∩▽(an))| = 2ω;

• the countable height.

Proposition 3.1. If |S(T )| = 2ω then the structure RKT′(T ) is premodel.

Proof. The structure RKT′(T ) is upward directed since types p(x̄), q(ȳ) ∈ S(T ),
where x̄ and ȳ are disjoint, are dominated by any type r(x̄, ȳ) ⊃ p(x̄)∪q(ȳ) in S(T ).

As T is countable, the set of formulas of T is also countable and each type
dominates at most countably many types. Having countably many types, being
domination-equivalent with a given type (for instance, a type tp(ā) is domination-
equivalent with types tp(āˆā), tp(āˆāˆā), . . .), we get that any type is domination-
equivalent with countably many types of T .

Since each formula witnesses domination of a type to at most countably many, or
continuum and co-continuum many types, and there are countably many formulas
of T , then any types p1, . . . , pn lay under countably many, or continuum many and
coinciding with S(T ), co-countably many, or co-continuum many types.

As each type dominates countably many types, the height of RKT′(T ) is at most
countable. At the same time the height can not be finite since its finiteness, the
upward direction of RKT′(T ), and the countable domination imply that RKT′(T )
is countable in spite of |S(T )| = 2ω. �

Since each ∼RK-class of a countable theory T is countable and each type
dominates countably many types, the ordered quotient RKT′(T )/ ∼RK can be
linearly ordered only for small T . Moreover, as the height of RKT′(T ) is countable
for T ∈ Tc, this quotient has continuum many incomparable elements, i. e., the
width equals to continuum:

Proposition 3.2. The width of any premodel set ⟨X;≤ ⟩ equals to continuum.

Proof. Assume that the width of a preordered set ⟨X;≤ ⟩ is less than continuum.
Consider a maximal antichain Y . By the assumption, we have |Y | = λ < 2ω. We
associate to each element y ∈ Y a maximal chain Cy. Each chain Cy is countable
since the height is countable and each ∼-class is countable too. Now we note that
X =

∪
{△(c) | c ∈ Cy, y ∈ Y } since ⟨X;≤ ⟩ is upward directed. Then, as each
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lower cone △(c) is countable, we obtain |X| ≤ λ · ω · ω < 2ω that contradicts the
condition |X| = 2ω. �

4. Distributions for countable models of a theory by ≤RK-sequences

Recall that by Tarski–Vaught criterion, a set A in a structure M of language L
forms an elementary substructure if and only if for any formula φ(x0, x1, . . . , xn) of
the language L and for any elements a1, . . . , an ∈ A if M |= ∃x0 φ(x0, a1, . . . , an)
then there is an element a0 ∈ A such that M |= φ(a0, a1, . . . , an). It means that
each formula φ(x̄) over a finite set A0 ⊆ A and belonging to a type over A0 has a
realization ā ∈ A.

Let M be a model of a countable theory T and q = (qn)n∈ω be a ≤RK-sequence of
types of T , i. e., a sequence of non-principal types qn with qn ≤RK qn+1, n ∈ ω. We
denote by U(M,q) the set of all realizations in M of types of T dominated by some
types in q. The ≤RK-sequence q is called elementary submodel if for any consistent
formula φ(ȳ) of T , some type in q dominates a type p(ȳ) ∈ S(T ) containing the
formula φ(ȳ), and if the formula φ(ȳ) is equal to ∃xψ(x, ȳ) then the type p(ȳ)
extends to a type p′(x, ȳ) ∈ S(T ) dominated by a type in q and such that ψ(x, ȳ) ∈
p′.

Theorem 4.1. For any ω-homogeneous model M of a countable theory T and for
any ≤RK-sequence q of types in S(T ), realized in M, the following conditions are
equivalent:

(1) some (countable) subset of U(M,q) is a universe of elementary submodel of
M;

(2) q is an elementary submodel ≤RK-sequence.

Proof. (1) ⇒ (2) is implied by Tarski–Vaught criterion.
(2) ⇒ (1). Let q be an elementary submodel ≤RK-sequence. Using elements

of U(M,q) we construct, by induction, a countable elementary submodel of M.
On the initial step we enumerate, by natural numbers, all consistent with T
formulas φ(x, ȳ) such that the enumeration ν starts with some formula φ0(x)
and each formula appears infinitely times. We choose a realization a0 ∈ U(M,q)
of the formula φ0(x) and put A0 = {a0}. Assume that, on step n, a finite set
An ⊂ U(M,q) is defined, the type of this set is dominated by some type in q,
and all possible tuples of elements in An are substituted in initially enumerated
formulas φ(x, ȳ) instead of tuples ȳ such that there are infinitely many numbers
for each formula, where tuples of elements in An are not substituted. We assume
also that the results (φ(x, ȳ))ȳā of substitutions have the same numbers as before, a
substitution is carried out for the formula with the number n+1, and this formula
has the form φ(x, ā). If M |= ¬∃xφ(x, ā), we put An+1 = An. If M |= ∃xφ(x, ā), we
add fictitiously to the tuple ā all missing elements of An and choose an existing, by
conjecture, type p′(x, ȳ) extending the type p(ȳ) = tp(An), where φ(x, ȳ) ∈ p′ and
the types p, p′ are dominated by some types in q. We take for an+1 a realization
in U(M,q) of the type p′(x,An) (that exists since the model M is ω-homogeneous)
and put An+1 = An ∪ {an+1}.

It is easy to see, using a mechanism of consistency [8], that
∪

n∈ω
An is a universe

of required elementary submodel of M. �

Since every ω-saturated structure is ω-homogeneous, Theorem 4.1 implies
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Corollary 4.2. For any ω-saturated model M of a countable theory T and for any
≤RK-sequence q of types in S(T ), the following conditions are equivalent:

(1) some (countable) subset of U(M,q) is a universe of elementary submodel of
M;

(2) q is an elementary submodel ≤RK-sequence.

Note that in the proof of Theorem 4.1 we essentially use that the model M is
ω-homogeneous and all types of the sequence q are realized in M. Possibly the
types of a ≤RK-sequence q are not realized in an ω-homogeneous model M but
are realized in some other ω-homogeneous model M′, where Theorem 4.1 can be
applied.

Example 4.3. Consider the theory Tiup. By Theorem 4.1, each countable model
of Tiup realizes a dense set X of 1-types (where

∪
X contains all formulas

Pi1(x) ∧ . . . ∧ Pim(x) ∧ ¬Pj1(x) ∧ . . . ∧ ¬Pjn(x),

{i1, . . . , im} ∩ {j1, . . . , jn} = ∅) and vice versa, for each countable dense set X of
types, there is an (ω-homogeneous) model of Tiup such that the set of types of its
elements is equal to X.

Take two countable disjoint dense sets Y0 and Y1 of 1-types, and ω-homogeneous
models M0 and M1 containing exactly one realization of each type in Y0 and Y1
respectively. Then there are ≤RK-sequences qi of types with realizations from given
sets of realizations of types in Yi, i = 0, 1. Here, all types in qi are realized in Mi

and are omitted in M1−i, i = 0, 1.

By Theorem 4.1, each elementary submodel ≤RK-sequence q corresponds to some
set of isomorphism types of countable models of a theory T , which can vary from
1 to 2ω. We denote this set by Imq (T ). Here m denotes the word “maximum” and
we take all isomorphism types related to q.

The sets Imq (T ) can have nonempty intersections (for instance, having a prime
model M0 its isomorphism type belongs to each set Imq (T )) and can be disjoint (as
in Example 4.3).

Distributing isomorphism types of countable model to pairwise disjoint sets,
related to ≤RK-sequences q (and not related to the other ≤RK-sequences) and
denoting the cardinalities of these sets by Iq, we have the equality

I(T, ω) =
∑
q

Iq = 2ω.

5. Three classes of countable models

Recall [25] that a model M of a theory T is called limit if M is not prime over
tuples and M =

∪
n∈ω

Mn for some elementary chain (Mn)n∈ω of prime models of

T over tuples. In this case, the model M is said to be limit over a sequence q of
types, where q = (qn)n∈ω, Mn = Mqn , n ∈ ω. If some type p is co-finite in q then
the limit model over q is said to be limit over the type p.

Consider a countable complete theory T . Denote by P and P(T ), L and L(T ),
and NPL and NPL(T ), respectively, the set of isomorphism types of prime over
tuples, limit, and other countable models of T , and by P (T ), L(T ), and NPL(T )
the cardinalities of these sets.
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By the definition, each value P (T ), L(T ), and NPL(T ) may vary from 0 to 2ω

and the following equality holds:

I(T, ω) = P (T ) + L(T ) + NPL(T ).

Since I(T, ω) = 2ω for theories T in Tc, some value P (T ), L(T ), or NPL(T ) is equal
to 2ω.

The tuple (P (T ), L(T ),NPL(T )) is called a triple of distribution of countable
models of T , or a spectrum triple of countable models of T , and is denoted by
cm3(T ).

Definition 5.1. A theory T is called p-zero (respectively l-zero, npl-zero) if P (T ) =
0 (L(T ) = 0, NPL(T ) = 0).

A theory T is called p-categorical (respectively l-categorical, npl-categorical) if
P (T ) = 1 (L(T ) = 1, NPL(T ) = 1).

A theory T is called p-Ehrenfeucht (respectively l-Ehrenfeucht, npl-Ehrenfeucht)
if 1 < P (T ) < ω (1 < L(T ) < ω, 1 < NPL(T ) < ω).

A theory T is called p-countable (respectively l-countable, npl-countable) if
P (T ) = ω (L(T ) = ω, NPL(T ) = ω).

A theory T is called p-continuum (respectively l-continuum, npl-continuum) if
P (T ) = 2ω (L(T ) = 2ω, NPL(T ) = 2ω).

By the definition, each p-zero theory is l-zero.
Recall [25] that the p-categoricity of a small theory T is equivalent to

its countable categoricity as well as to the absence of limit models. The p-
Ehrenfeuchtness of T means that the structure RK(T ) is finite and has at least
two elements. The theory T is Ehrenfeucht if and only if T is p-Ehrenfeucht and
L(T ) < ω. Besides, every small theory is npl-zero, i. e., each its countable model
is prime over a tuple or is limit. Since by Vaught’s and Morley’s theorems ([28],
[17]), I(T, ω) ∈ (ω \ {0, 2}) ∪ {ω, ω1, 2

ω} and for small theories T , the inequalities
1 ≤ P (T ) ≤ ω hold, we have the following

Theorem 5.2. For any small theory T , the triple cm3(T ) has one of the following
values:

(1) (1, 0, 0) (any p-categorical theory, being ω-categorical, is l-zero and npl-zero);
(2) (λ1, λ2, 0), where 2 ≤ λ1 ≤ ω, λ2 ∈ (ω \ {0}) ∪ {ω, ω1, 2

ω} (for non-ω-
categorical small theories).

As shown in [23], [24], [25], all values, pointed out in Theorem 5.2 (for λ2 ̸= ω1),
have realizations in the class of small theories.

Similarly to Theorem 5.2, for the classification of theories in the class Tc, the
problem arises for the description of all possible triples (λ1, λ2, λ3) realized by
cm3(T ) for theories T ∈ Tc.

Examples in Section 1 confirm the realizability of triples (0, 0, 2ω) and (2ω, 2ω, 0)
in the class Tc (by the p-zero, npl-continuum theory Tiup and the p-continuum, npl-
zero theory Tsdup respectively). Some fusion of theories Tiup and Tsdup substantiates
the realizability of triple (2ω, 2ω, 2ω). E. A. Palyutin noted that the theory Tsipe
realizes the triple (1, 0, 2ω). This triple is also realized by the theory Tsier.

The following theorem produces a characterization for the class of npl-zero
theories.
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Theorem 5.3. A countable model M of a theory T ∈ Tc is prime over a finite set
or limit if and only if each tuple ā ∈M can be extended to a tuple b̄ ∈M such that
every consistent formula φ(x̄, b̄) belongs to an isolated type over b̄.

Proof. If for a tuple b̄ ∈M , every consistent formula φ(x̄, b̄) belongs to an isolated
type over b̄, then there is a model M(b̄) 4 M. If any tuple ā can be extended to
a tuple b̄ of described form then repeating the proof of Proposition 4.1 in [25], we
obtain a representation of M as a union of elementary chain of prime models over
finite sets. Thus, M is prime over a finite set or limit.

If a tuple ā ∈M can not be extended to a tuple b̄ ∈M such that each consistent
formula φ(x̄, b̄) belongs to an isolated type over b̄, then ā is not contained in prime
models over tuples, being elementary submodels of M, whence the model M is
neither prime over a tuple nor limit. �

Theorem 5.3 implies

Corollary 5.4. A theory T ∈ Tc is npl-zero if and only if for any (countable)
model M of T , each tuple ā ∈M can be extended to a tuple b̄ ∈M such that every
consistent formula φ(x̄, b̄) belongs to an isolated type over b̄.

Below we describe some families of triples (λ1, λ2, λ3) that cannot be realized by
cm3(T ), where T ∈ Tc.
Proposition 5.5. There is no theory T ∈ Tc such that cm3(T ) has any of the
following:

(1) (λ1, 2
ω, λ3), where λ1, λ3 < 2ω;

(2) (2ω, λ2, λ3), where λ2, λ3 < 2ω.

Proof. (1) If P (T ) < 2ω and NPL(T ) < 2ω then there are less than continuum many
types realized in models representing isomorphism types in the classes P(T ) and
NPL(T ). Since each type, realized in a limit model, is also realized in a prime model
over a tuple, there are continuum many types not realized in countable models of
T , that is impossible.

(2) Assume that NPL(T ) < 2ω. Then there are < 2ω types in S(T ), over which
prime models do not exist. Therefore, for any type p ∈ S(T ) there are continuum
many types q ∈ S(T ) extending p and having models Mq. Since there are continuum
many types q and the model Mp is countable, then there are continuum many
these non-domination-equivalent types q dominating p and not dominated by p.
Hence, for any model Mp there are continuum many possibilities for elementary
extensions by pairwise non-isomorphic models Mq non-isomorphic to Mp. Since the
process of extension of models Mp by continuum many models Mq can be continued
unboundedly many times, there are continuum many pairwise non-isomorphic limit
models, i. e., L(T ) = 2ω. �

The following proposition gives a sufficient condition for the existence of
continuum many prime models over finite sets under the assumption of existence
of uncountably many models.

Proposition 5.6. Assume there are uncountably many types p(x̄) of a theory T ∈ Tc
such that for each consistent formula φ(ā, ȳ), |= p(ā), there is a principal formula
ψ(ā, ȳ) with ψ(ā, ȳ) ⊢ φ(ā, ȳ) and this formula can be chosen independently of the
types p. Then P (T ) = 2ω.
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Proof. Since there are uncountably many types p(x̄), we have neighbourhoods χδ(x̄)
of these types, δ ∈ 2<ω, each belonging to uncountably many given types p(x̄) and
satisfies the following conditions:

• χδ(x̄) ≡ (χδˆ0(x̄) ∨ χδˆ1(x̄));

• |= ¬∃x̄(χδˆ0(x̄) ∧ χδˆ1(x̄)).

For each sequence δ ∈ 2ω, the local consistency implies the consistency of the
set Φδ(x̄) of formulas χδ�n(x̄), n ∈ ω. Hence there are continuum many types in
Sl(x̄)(∅). Moreover, since the formulas ψ can be chosen independently of realizations
of types p, by compactness each set Φδ(x̄) has a completion q(x̄) ∈ S(∅) such that
for any consistent formula φ(ā, ȳ), |= q(ā), there is ψ(ā, ȳ) with ψ(ā, ȳ) ⊢ φ(ā, ȳ) and
this formula does not depend on q. Thus, there is a model Mq and P (T ) = 2ω. �

By Proposition 5.6, we have a partial solution of a variant of the Vaught’s
problem proposed by E. A. Palyutin as the implication P (T ) > ω ⇒ P (T ) = 2ω.
Namely, this implication is true for prime models over realizations of types p
having the specified, as in the proposition, uniform choice property of formulas
ψ by formulas φ.

6. Operators acting on a class of structures

Consider a non-principal 1-type p∞(x) and formulas φn(x) ∈ p∞(x), n ∈ ω,
such that φ0(x) = (x ≈ x), ⊢ φn+1(x) → φn(x), {φn(x) | n ∈ ω} ⊢ p∞(x). The
formula Coln(x) = φn(x) ∧ ¬φn+1(x) is the n-th approximation of p∞(x), or the
n-th color. Then the type p∞(x) is isolated by the set {¬Coln | n ∈ ω} of formulas.

The operator of continuum partition c-Partition(A,A0, Y, {R(2)
i }i∈ω) (a partition

of a set into continuum many disjoint sets providing the absence of prime model
over a type p∞(x)) takes for its input:

(1) a predicate structure A;
(2) a substructure A0 ⊂ A, where its universe is equal to an infinite set for

solutions of a formula ψ(x) in A, the substructure generates unique non-principal
1-type p∞(x) ∈ S(∅) and p∞(x) is realized in A0;

(3) an infinite set Y with Y ∩A = ∅;
(4) a sequence (R

(2)
i )i∈ω of binary predicate symbols.

We suppose that A0 is the domain of predicates Ri, Y is their range,

⊢ Ri(x, y) → R0(x, y), i > 0.

The action of the operator is defined by the following schemes of formulas:
(1) ∀x∃∞y(Col0(x) → R0(x, y));
(2) ∀x, x′ (¬(x ≈ x′) → ¬∃y(R0(x, y) ∧ R0(x

′, y))), i. e., R0-images of distinct
element satisfying ψ(x) are disjoint and an equivalence relation on Y with infinitely
many infinite classes is refined by the formula R0(x, y);

(3) ∀x(Coln(x) → ∃∞y(R0(x, y)∧
n∧

i=1

Rδi
i (x, y))∧¬∃z

∨
i>n

Ri(x, z)) for all possible

binary tuples (δ1, . . . , δn), i. e., for any element a ∈ A0 of color n, the set of solutions
for the formula R0(a, y) is divided, by Rn(x, y), into 2n disjoint sets, each of which
is infinite.

Thus, the set of solutions for the formula R0(a, y), where a |= p∞(x), is divided
by Rn(x, y) into continuum many disjoint sets similar to the example with unary
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independent predicates. For output of the operator, we obtain a structure B with
continuum many non-principal types {Rδi

i (a, y) | i ∈ ω \ {0}}, and there are no
prime models over the type p∞(x).

The operator of allocation for a countable subset ω-Alloc(A,qω,A0, {R(2)
j }j∈ω)

(which among all types selects a countable family of types, connected in a natural
way, providing the existence of a prime model, over a finite set, which realizes the
chosen family of types) takes for its input:

(1) a predicate structure A with a continuum-set q of non-principal 1-types;
(2) a countable subset qω ⊂ q;
(3) a substructure A0 ⊂ A with unique non-principal 1-type p∞(x) ∈ S(∅) and

such that p∞(x) is realized in A0;
(4) a sequence (R

(2)
j )j∈ω of binary predicate symbols.

Denote by Colij(x) approximations of types qj(x) ∈ qω, j ∈ ω. Then the type qj
is isolated by the set of formulas {¬Colij(x) | i ∈ ω}. At the operator’s action, we
assume that A0 is the domain of predicates Rij and their range contains the set of
realizations for types in qω. The action of the operator is defined by the following
schemes of formulas:

(1) ∀x(Coli(x) →
∧
k≥i

∃∞y(Rj(x, y) ∧ Colkj(y)) ∧
∧
k<i

¬∃y(Rj(x, y) ∧ Colkj(y))),

i. e., for any element a ∈ A0 of the i-th color, there are infinitely many images of
each color k, k ≥ i, and there are no images of colors k, k < i;

(2) ∀x, x′(¬(x ≈ x′) → ¬∃y(Rj(x, y) ∧ Rj(x
′, y))), i. e., images of distinct

elements belonging to A0 are disjoint.
If the continuum-set q of non-principal types is obtained by the operator

c-Partition (and there are no prime models over each type in q) then after passing
all colors Col by all predicates Rj , the countable subset qω is selected and, using a
generic construction for a structure with required properties, there exists a prime
model Mp∞ over a realization of p∞ and realizing exactly all types in qω. If qω is
dense in q with respect to natural topology then, assuming that types in qω are
free (are not connected with a ∈ A0), we can remove elements in qω and obtain new
prime model Mp∞,q̃ω , q̃ω ⊂ qω, an elementary submodel of Mp∞,qω . But having
links of the dense set qω with the type p∞ by predicates, the removing of a type
in qω leads to the removing of p∞. Hence applying the operator ω-Alloc with input
parameters, satisfying the conditions above, there are no other (non-isomorphic)
prime models being an elementary submodel of Mp∞,qω . Thus if we focus on this
property, the given operator is called the operator of ban for downward movement
and it is denoted by banDown with the same input parameters.

The operator of ban for upward movement banUp(A,A1,A2, Z, {R(3)
n }n∈ω)

(which produces the absence of prime model over a type of a pair) takes for its
input:

(1) a predicate structure A;
(2) two disjoint substructures A1 and A2 of A with unique non-principal 1-types

p1 and p2, being realized in A1 and A2 respectively;
(3) an infinite set Z such that A1 ∩ Z = ∅ and A2 ∩ Z = ∅;
(4) a sequence (R

(3)
n )n∈ω of ternary predicate symbols.

We denote approximations of p1 and p2 by Coli1 and Coli2, i ∈ ω, respectively.
The set A1×A2 is the domain of predicates Rn, and Z is their range, ⊢ Rn(x, y, z) →
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R0(x, y, z), i > 0. The action of the operator is defined by the following schemes of
formulas:

(1) ∀x, y(Col01(x) ∧ Col02(y) → ∃∞zR0(x, y, z));
(2) ∀x, y, x′, y′(¬(x ≈ x′) ∧ ¬(y ≈ y′) → ¬∃z(Rn(x, y, z) ∧ Rn(x

′, y′, z))), i. e.,
Rn-images of distinct pairs (a1, a2) ∈ A1 ×A2 are disjoint and the set Z is divided
into infinitely many infinite equivalence classes;

(3) ∀x, y(Colk1(x) ∧ Coln2(y) →

→ ∃∞z(R0(x, y, z) ∧
∧

1≤i≤min(k,n)

Rδi
i (x, y, z)) ∧ ¬∃z

∨
i>min(k,n)

Ri(x, y, z))

for all possible binary tuples (δ1, . . . , δmin(k,n)).
Hence, if a pair (a1, a2) has the (∞,∞)-color, the set of solutions for the formula

R0(a1, a2, z) is divided on continuum many parts. Thus, there is a prime model over
each realization of p1(x) and of p2(y), but there are no prime models over types
q(x, y) ⊃ p1(x) ∪ p2(y).

The operator for construction of limit models over a type,
typeLim(p, λ, {R(2)

i }i∈ω) (which produces a limit model over given type) takes for
its input:

(1) a non-principal 1-type p(x);
(2) a number λ ∈ ω + 1 of limit models over p(x);
(3) a sequence (R

(2)
i )i∈ω of binary predicate symbols.

We suppose that predicates Ri act on a set of realizations of p(x) so that
Ri(a, y) ⊢ p(y) and |= ∃yRi(a, y) and realizations of Ri(a, y) do not semi-isolate a,
where a |= p(x). We construct a tree of Ri-extensions over a realization a0 of p.
Consider sequences i0, . . . , in, . . . ∈ 2ω corresponding to paths defined by formulas
Ri0(a1, a0) ∧ . . . ∧ Rin(an+1, an) ∧ . . .. There are 2ω extensions. As shown in [23],
[24], given finite or countable number λ of limit models can be obtained by some
family of identities (see [23], [24] for details).

If λ = n ∈ ω \ {0} we use the following identities:
(1) n− 1 ≈ m, m ≥ n;
(2) mm ≈ m, m < n;
(3) n1n2 . . . ns ≈ ns, min{n1, n2, . . . , ns−1} > ns.
If λ = ω we introduce identities:
(1) nn ≈ n, n ∈ ω;
(2) n1n2 . . . ns ≈ ns, min{n1, n2, . . . , ns−1} > ns;
(3) n1n2 ≈ n1(n1 + 1)(n2 + 2) . . . (n2 − 1)n2, n1 < n2.

The operator for construction of limit models over a ≤RK-sequence

seqLim((qn)n∈ω, λ, {R(2)
i }i∈ω)

(which produces a limit model over a RK-sequence of types) takes for its input:
(1) a ≤RK-sequence (qn)n∈ω;
(2) a number λ ∈ ω + 1 of limit models over the sequence (qn)n∈ω;
(3) a sequence (R

(2)
i )i∈ω of binary predicate symbols.

Consider types qn and qn+1. Since they belong to the ≤RK-sequence, there is a
formula φ(x, y) such that qn+1(y)∪{φ(x, y)} is consistent and qn+1(y)∪{φ(x, y)} ⊢
qn(x). We assume that predicates Ri act so that Ri(x, y) ⊢ φ(x, y) and for every
a |= qn+1(y), Ri(x, a) ⊢ qn(x). Below we consider numbers i instead of predicates
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Ri. Then for the ≤RK-sequence (qn)n∈ω, there are ωω sequences s = i1, . . . , in, . . .
corresponding to Ri1(a

s
1, a

s
0) ∧ . . . ∧Rin(a

s
n, a

s
n−1) ∧ . . ., where asn |= qn(x), n ∈ ω.

By the sequence (qn)n∈ω, we construct sequences of prime models Mqn over
realizations of qn, where (n+1)-th model is an elementary extension of n-th one. Any
limit model is a union of countable chain of a sequence of prime models over tuples.
Predicates Ri, i ∈ ω, connect realizations of types in (qn) and produce required
number of limit models. As shown in [25], the problem of extension of a theory
producing a given number of limit models over (qn) is reduced to a quotient of the
set ωω by an identification of some words such that the result of this factorization
contains as many classes as there are limit models.

For n ∈ ω \ {0} limit models, we use the following identities (as in [25]):
(1) n− 1 ≈ m, m ≥ n;
(2) n0n1 . . . ns ≈ ns . . . ns︸ ︷︷ ︸

s+1 times

, max{n0, n1, . . . , ns−1} < ns.

For countably many limit models, we take identities:
(1) n0n1 . . . ns ≈ ns . . . ns︸ ︷︷ ︸

s+1 times

, max{n0, n1, . . . , ns−1} < ns;

(2) n0n1 . . . ns ≈ n0(n0 + 1) . . . (n0 + s), n0 + s ≤ ns;
(3) n0n1 . . . ns ≈ n0(n0 + 1) . . . (n0 + t) (n0 + t) . . . (n0 + t)︸ ︷︷ ︸

s−t times

, n0 + s, n0 + t = ns,

t > 0, s > t.

7. Distributions of prime and limit models for finite Rudin–Keisler
preorders

If M̃ is a ∼RK-class containing an isomorphism type M of a prime model over a
tuple, then as usual we denote by IL(M̃) the number of limit models, being unions
of elementary chains of models, whose isomorphism types belong to the class M̃.

Clearly, for theories T with finite structures RK(T ), any limit model is limit over
a type.

The following two theorems show that for p-Ehrenfeucht small theories, the
number of countable models is defined by the number of prime models over tuples
and by the distribution function IL of numbers of limit models over types. Assuming
the Continuum Hypothesis, all possible basic characteristics are realized.

Theorem 7.1 ([22], [24]). Any small theory T with a finite Rudin–Keisler preorder
satisfies the following conditions:

(a) RK(T ) contains a least element M0 (the isomorphism type of a prime model),
and IL(M̃0) = 0;

(b) RK(T ) contains the greatest ∼RK-class M̃1 (the class of isomorphism types
of all prime models over realizations of powerful types), and |RK(T )| > 1 implies
IL(M̃1) ≥ 1;

(c) if |M̃| > 1, then IL(M̃) ≥ 1.
Moreover, we have the following decomposition formula:

I(T, ω) = |RK(T )|+
|RK(T )/∼RK|−1∑

i=0

IL(M̃i),
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where M̃0, . . . , ˜M|RK(T )/∼RK|−1 are all elements of the partially ordered set
RK(T )/∼RK and IL(M̃i) ∈ ω ∪ {ω, ω1, 2

ω} for each i.

Theorem 7.2 ([23], [24]). For any finite preordered set ⟨X;≤⟩ with a least element
x0 and the greatest class x̃1 in the ordered factor set ⟨X;≤⟩/∼ with respect to ∼
(where x ∼ y ⇔ x ≤ y and y ≤ x), and for any function f : X/∼ → ω ∪ {ω, 2ω},
satisfying the conditions f(x̃0) = 0, f(x̃1) > 0 for |X| > 1, and f(ỹ) > 0 for
|ỹ| > 1, there exist a small theory T and an isomorphism g: ⟨X;≤⟩ →̃RK(T ) such
that IL(g(ỹ)) = f(ỹ) for any ỹ ∈ X/∼.

Note that by criterion of existence of a prime model, a theory T with continuum
many types is p-categorical if and only if there is a unique ≡RK-class S ⊂ S(T )
such that for any realization ā of some (any) type in S every consistent formula
φ(x̄, ā) is implied by an isolated formula with parameters ā.

Similarly, a theory T with continuum many types is p-Ehrenfeucht if and only
if there are finitely many pairwise non-≡RK-equivalent types pj , j < n, 1 < n < ω,
such that for any j and for some (any) realization āj of pj every consistent formula
φ(x̄, āj) is implied by an isolated formula with parameters ā.

The proofs of the following assertions are identical to corresponding proofs for
the class of small theories ([1], [22].

Proposition 7.3. If Mp and Mq are domination-equivalent non-isomorphic
models then there exists a model that is limit over the type p and a model that
is limit over the type q.

Proposition 7.4. If types p and q are domination-equivalent, and there exist a
limit model over p and a prime model over q, then there exists a model that is limit
both over p and over q.

Theorem 7.5. Let p(x̄) be a complete type of a countable theory T . The following
conditions are equivalent:

(1) there exists a limit model over p;
(2) there exists a model Mp and the relation Ip of isolation on a set of realizations

of p in a (any) model M |= T realizing p is non-symmetric;
(3) there exists a model Mp and, in some (any) model M |= T realizing p, there

exist realizations ā and b̄ of p such that the type tp(b̄/ā) is principal and b̄ does not
semi-isolate ā and, in particular, SIp is non-symmetric on the set of realizations of
p in M.

By Proposition 7.3, we have the following analogue of Theorem 7.1 for the class
Tc.
Proposition 7.6. Every theory T ∈ Tc with a finite Rudin–Keisler preorder satisfies
the following: if |M̃| > 1 then IL(M̃) ≥ 1. Moreover, we have the following
decomposition formula:

I(T, ω) = |RK(T )|+
|RK(T )/∼RK|−1∑

i=0

IL(M̃i) + NPL(T ),

where M̃0, . . . , ˜M|RK(T )/∼RK|−1 are all elements of the partially ordered set
RK(T )/∼RK and IL(M̃i) ∈ ω ∪ {ω, ω1, 2

ω} for each i, 0 ≤ NPL(T ) ≤ 2ω.

The following theorem is an analogue of Theorem 7.2 for the class Tc.
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Theorem 7.7. For any finite preordered set ⟨X;≤⟩ and for any function

f : X/∼→ ω ∪ {ω, 2ω}
such that f(x̃) > 0 for |x̃| > 1 (where x ∼ y ⇔ x ≤ y and y ≤ x), there exists
a theory T ∈ Tc (without prime models) and an isomorphism g: ⟨X;≤⟩ →̃ RK(T )
such that IL(g(x̃)) = f(x̃) for any x̃ ∈ X/∼.

Proof. Denote the cardinality of X by m and consider the theory T0 of unary
predicates Pi, i < m, forming a partition of a set A intom disjoint infinite sets with a
coloring Col: A→ ω∪{∞} such that for any i < m, j ∈ ω, there are infinitely many
realizations for each type {Colj(x) ∧ Pi(x)}, {¬Colj(x) | j ∈ ω} ∪ {Pi(x)} = pi(x).
In this case, each set of formulas isolates a complete type.

LetX1, . . . , Xn be connected components of the preordered set ⟨X;≤⟩, consisting
of m1, . . . ,mn elements respectively, m1+ . . .+mn = m. Now we assume that each
element in X corresponds to a predicate Pi, i < m.

We expand the theory T0 to a theory T1 by binary predicates Qkl, whose domain
coincides with the set of solutions for the formula Pk(x) and the range is the set
of solutions for the formula Pl(x); we connect types pk and pl if corresponding
elements xk and xl in X belong to a common connected component and xl covers
xk. Moreover, the coloring Col will be 1-inessential and Qkl-ordered [22]:

(1) for any i ≥ j, there are elements x, y ∈M such that

|= Coli(x) ∧ Colj(y) ∧Qkl(x, y) ∧ Pk(x) ∧ Pl(y);

(2) if i < j then there are no elements u, v ∈M such that

|= Coli(u) ∧ Colj(v) ∧Qkl(u, v) ∧ Pk(u) ∧ Pl(v).

Applying a generic construction we get that if a |= pl(y) then the formula
Qkl(x, a) is isolating and pl(y) ∪ Qkl(x, y) ⊢ pk(x), moreover, realizations of pk
do not semi-isolate realizations of pl. Thus the set of non-principal 1-types pi(x)
has a preorder corresponding to the preorder ≤.

We construct, by induction, an expansion of T1 to a required theory T .
On initial step, we expand the theory T1 by binary predicates {R(2)

i }i∈ω and
apply the operator of continuum partition c-Partition(A,A � P0, Y, {R(2)

i }i∈ω) = B,
where A is a model of T1. We consider an arbitrary connected component Xi and
enumerate its elements so that if xk > xl then k > l. On further mi steps, we apply
the operator of allocation for a countable subset ω-Alloc(B,qω,A � Pli , {R

(2)
j }j∈ω),

where l1, . . . , li are numbers of elements forming the connected component Xi, qω

is a countable dense subset of set q of 1-types for the structure B. We organize a
similar process for all connected components in X. Now for all types corresponding
to elements in distinct connected components and to maximal elements in a common
component, we apply the operator of ban for upward movement banUp(A,A �
Pi,A � Pj , {R(3)

∆ }), expanding the theory by disjoint families ternary predicates
R

(3)
n , n ∈ ω.
The required number of limit models can be done applying for each g(x̃) the

operator typeLim(g(x̃), f(x̃), {Rg(x̃)
i }i∈ω) expanding the theory by predicates Rg(x̃)

i .
�

By the proof of Theorem 7.7, positive values P (T ) for the class Tc can be defined
by prime models not prime over ∅. Modifying the proof, one can realize an arbitrary
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finite preordered set ⟨X;≤⟩ with a least element by RK(T ) for a theory T ∈ Tc
with a prime model over ∅.

By the construction for the proof of Theorem 7.7, we get

Corollary 7.8. For any cardinalities λ1 ∈ ω \ {0} and λ2 ∈ ω ∪ {ω, 2ω}, there is a
theory T ∈ Tc such that cm3(T ) = (λ1, λ2, 2

ω).

Proof. Constructing the required theory T ∈ Tc we take a set X in Theorem 7.7
with |X| = λ1 and use the operator typeLim with input parameters such that the
sum of f(x̃) is equal to λ2. �

8. Distributions of prime and limit models for countable
Rudin–Keisler preorders

We say (as in [25]) that a family Q of ≤RK-sequences q of types represents a
≤RK-sequence q′ of types if any limit model over q′ is limit over some q ∈ Q.

Theorem 8.1 ([25]). Any small theory T satisfies the following conditions:
(a) the structure RK(T ) is upward directed and has a least element M0 (the

isomorphism type of prime model of T ), IL(M̃0) = 0;
(b) if q is a ≤RK-sequence of non-principal types qn, n ∈ ω, such that each type

q of T is related by q ≤RK qn for some n, then there exists a limit model over q; in
particular, Il(T ) ≥ 1 and the countable saturated model is limit over q, if q exists;

(c) if q is a ≤RK-sequence of types qn, n ∈ ω, and (Mqn)n∈ω is an elementary
chain such that any co-finite subchain does not consist of pairwise isomorphic
models, then there exists a limit model over q;

(d) if q′ = (q′n)n∈ω is a subsequence of ≤RK-sequence q, then any limit model
over q is limit over q′;

(e) if q = (qn)n∈ω and q′ = (q′n)n∈ω are ≤RK-sequences of types such that for
some k,m ∈ ω, since some n, any types qk+n and q′m+n are related by Mqk+n

≃
Mq′m+n

, then any model M is limit over q if and only if M is limit over q′.
Moreover, the following decomposition formula holds:

I(T, ω) = |RK(T )|+
∑
q∈Q

ILq,

where ILq ∈ ω ∪ {ω, ω1, 2
ω} is the number of limit models related to the ≤RK-

sequence q and not related to extensions and to restrictions of q that used for the
counting of all limit models of T , and the family Q of ≤RK-sequences of types
represents all ≤RK-sequences, over which limit models exist.

Theorem 8.2 ([25]). Let ⟨X,≤⟩ be at most countable upward directed preordered set
with a least element x0, f : Y → ω∪{ω, 2ω} be a function with at most countable set
Y of ≤0-sequences, i. e., of sequences in X \{x0} forming ≤-chains, and satisfying
the following conditions:

(a) f(y) ≥ 1 if for any x ∈ X there exists some x′ in the sequence y such that
x ≤ x′;

(b) f(y) ≥ 1 if any co-finite subsequence of y does not contain pairwise equal
elements;

(c) f(y) ≤ f(y′) if y′ is a subsequence of y;
(d) f(y) = f(y′) if y = (yn)n∈ω and y′ = (y′n)n∈ω are sequences such that there

exist some k,m ∈ ω for which yk+n = y′m+n since some n.
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Then there exists a small theory T and an isomorphism g: ⟨X,≤⟩ →̃ RK(T )
such that any value f(y) is equal to the number of limit models over ≤RK-
sequence (qn)n∈ω, corresponding to the ≤0-sequence y = (yn)n∈ω, where g(yn) is
the isomorphism type of the model Mqn , n ∈ ω.

Repeating the proof of Theorem 8.1 we obtain

Theorem 8.3. Any theory T ∈ Tc satisfies the following conditions:
(a) if q is a ≤RK-sequence of types qn, n ∈ ω, and (Mqn)n∈ω is an elementary

chain such that any co-finite subchain does not consist of pairwise isomorphic
models, then there exists a limit model over q;

(b) if q′ = (q′n)n∈ω is a subsequence of ≤RK-sequence q, then any limit model
over q is limit over q′;

(c) if q = (qn)n∈ω and q′ = (q′n)n∈ω are ≤RK-sequences of types such that for
some k,m ∈ ω, since some n, any types qk+n and q′m+n are related by Mqk+n

≃
Mq′m+n

, then any model M is limit over q if and only if M is limit over q′.
Moreover, the following decomposition formula holds:

I(T, ω) = |RK(T )|+
∑
q∈Q

ILq +NPL(T ),

where ILq ∈ ω ∪ {ω, ω1, 2
ω} is the number of limit models related to the ≤RK-

sequence q and not related to extensions and to restrictions of q that used for the
counting of all limit models of T , and the family Q of ≤RK-sequences of types
represents all ≤RK-sequences, over which limit models exist.

Similarly Theorem 7.2, Theorem 8.2 has a generalization for the class Tc:

Theorem 8.4. Let ⟨X,≤⟩ be at most countable preordered set, f : Y → ω ∪{ω, 2ω}
be a function with at most countable set Y of ≤-sequences, i. e., of sequences in X
forming ≤-chains, and satisfying the following conditions:

(a) f(y) ≥ 1 if any co-finite subsequence of y does not contain pairwise equal
elements;

(b) f(y) ≤ f(y′) if y′ is a subsequence of y;
(c) f(y) = f(y′) if y = (yn)n∈ω and y′ = (y′n)n∈ω are sequences such that there

exist some k,m ∈ ω for which yk+n = y′m+n since some n.
Then there exists a theory T ∈ Tc and an isomorphism g: ⟨X,≤⟩ →̃ RK(T )

such that any value f(y) is equal to the number of limit models over ≤RK-
sequence (qn)n∈ω, corresponding to the ≤-sequence y = (yn)n∈ω, where g(yn) is
the isomorphism type of the model Mqn , n ∈ ω.

Proof. We assume that X is countable since for a finite X the proof repeats the
construction for the proof of Theorem 7.7. Now we consider the theory T0 of unary
predicates Pi, i ∈ ω, forming, with the type p∞(x) = {¬Pi(x) | i ∈ ω}, a partition
of a set A into disjoint infinite classes with a coloring Col: A→ ω ∪ {∞} such that
for any i, j ∈ ω, there are infinitely many realizations of types {Colj(x) ∧ Pi(x)},
{¬Colj(x) | i ∈ ω}∪{Pi(x)} = pi(x), {Colj(x)}∪p∞(x), {¬Colj(x) | j ∈ ω}∪p∞(x).
Here, each set of formulas isolates a complete type. We connect the type {¬Colj(x) |
j ∈ ω} ∪ p∞(x) with the type p0(x) by an extension of T0 to a theory T1 with a
binary predicate Q0 such that for all j ∈ ω, we have:

(1) ∀x, y (Colj(x) ∧ P0(x) ∧Q0(x, y) → Colj(y) ∧ Pj(y)) ;
(2) ∀x, y (Colj(y) ∧ Pj(y) ∧Q0(x, y) → Colj(x) ∧ P0(x)) ;
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(3) Q0 is a bijection between sets of solutions for the formulas Colj(x) ∧ P0(x)
and Colj(y) ∧ Pj(y).

These conditions allow not to care about the type p∞(x) with respect to existence
of a prime model over it, because p0(x) and p∞(x) are strongly RK-equivalent.

Let X1, . . . , Xn, . . . be connected components in the preordered set ⟨X,≤⟩. We
consider a one-to-one correspondence between X and the set of predicates Pi(x),
i ∈ ω.

Similar to the proof of Theorem 7.7, we expand the theory T1 to a theory T2
by binary predicates Qkl with domains Pk(x) and ranges Pl, and connect types
pk and pn if corresponding elements in X lay in common connected component
and an element xl corresponding to pl covers an element xk corresponding to pk.
Moreover, using a generic construction, the coloring Col should be 1-inessential and
Qkl-ordered.

The rest of the proof repeats arguments for the proof of Theorem 7.7, where the
operator ω-Alloc of allocation for a countable set is applied countably many times,
for non-principal types corresponding to elements in X. In this case, if non-principal
types are not exhausted, we apply the operator c-Partition of continuum partition
for remaining types.

For the required number of limit models with respect to a sequence (qn)n∈ω, we
expand the theory by predicates R(qn)

i , i ∈ ω, and apply the operator

seqLim((qn)n∈ω, f(y), {R(qn)
i }i∈ω),

where y is a sequence in Y corresponding to the sequence (qn)n∈ω. �

By the construction for the proof of Theorem 8.4, we obtain

Corollary 8.5. For any cardinality λ ∈ ω ∪ {ω, 2ω}, there is a theory T ∈ Tc such
that cm3(T ) = (ω, λ, 2ω).

Proof. Constructing the required theory T ∈ Tc we take a set X in Theorem 8.4
with |X| = ω and the operator seqLim such that the sum of f(y) is equal to λ. �

9. Interrelations of classes P, L, and NPL in theories with
continuum many types. Distributions of triples cm3(T ) in the class

Tc
Theorem 9.1. Let ⟨X,≤⟩ be at most countable preordered set, where X is a disjoint
union of some sets P and NPL, f : Y → ω ∪ {ω, 2ω} be a function with at most
countable set Y of (P,≤)-sequences, i. e., of sequences in P forming ≤-chains, and
satisfying the following conditions:

(a) f(y) ≥ 1 if any co-finite subsequence of y does not contain pairwise equal
elements;

(b) f(y) ≤ f(y′) if y′ is a subsequence of y;
(c) f(y) = f(y′) if y = (yn)n∈ω and y′ = (y′n)n∈ω are sequences such that there

exist some k,m ∈ ω for which yk+n = y′m+n since some n.
Then there is a theory T ∈ Tc and an isomorphism g: ⟨X,≤⟩ →̃ CM0(T ) to

a substructure CM0(T ) = ⟨CM0(T );≤RK⟩ of CM(T ), with CM0(T ) ⊂ P(T ) ∪
NPL(T ) and satisfying the following:

(1) g(P ) = P(T ), g(NPL) = CM0(T ) ∩NPL(T );
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(2) each value f(y) is equal to the number of limit models over a ≤RK-
sequence (qn)n∈ω corresponding to the ≤-sequence y = (yn)n∈ω, where g(yn) is
the isomorphism type of the model Mqn , n ∈ ω.

Proof. The construction of a preordered set of types, isomorphic to the structure
⟨X,≤⟩ and without prime models over the type p0, is similar to the proof of Theorem
8.4. Then for each non-principal type pi, corresponding to an element in P , we apply
the operator of allocation for a countable subset dss(A,qω,A � Pi, {Rn}n∈ω). If
there are types pi, corresponding to elements in NPL, we apply, for these types, the
operator of continuum partition c-Partition(A,A � Pi, Z, {Rn}n∈ω). For all types,
corresponding to elements in distinct connected components in ⟨X,≤⟩ as well as
to maximal elements in a common component, we apply the operator of ban for
upward movement. For removing of prime models over remaining continuum many
types, we apply, for n-tuples of elements, the operator of continuum partition,
using (n + 1)-ary predicates. The required number of limit models is obtained by
the operator for construction of limit models over a sequence of types. �

Theorem 9.2. In the conditions of Theorem 9.1, there is a theory T ∈ Tc and an
isomorphism g: ⟨X,≤⟩ →̃ CM0(T ) to a substructure CM0(T ) = ⟨CM0(T );≤RK⟩
of CM(T ), with CM0(T ) ⊂ P(T ) ∪NPL(T ) and satisfying the following:

(1) g(P ) = CM0(T ) ∩P(T ), g(NPL) = NPL(T );
(2) each value f(y) is equal to the number of limit models over a ≤RK-

sequence (qn)n∈ω corresponding to the ≤-sequence y = (yn)n∈ω, where g(yn) is
the isomorphism type of the model Mqn , n ∈ ω.

Proof. It is similar to the proof of Theorem 9.1 with the only difference that before
we use the operator of continuum partition and then, if non-principal types pi are
not exhausted, we apply the operator of allocation for a countable set. For getting
prime models over remaining continuum many types, we apply, for n-tuples of
elements, the operator of allocation for a countable set, using (n+1)-ary predicates.
The required number of limit models is obtained by the operator for construction
of limit models over a sequence of types. �

By the construction for the proof of Theorem 9.2, we obtain

Corollary 9.3. For any cardinalities λ ∈ ω ∪{ω, 2ω} there is a theory T ∈ Tc such
that cm3(T ) = (2ω, 2ω, λ).

Proof. It suffices to apply the operator ω-Alloc for n-tuples of elements in the proof
of Theorem 9.2. For the operator seqLim we put the values 2ω for the second input
parameter. �

Proposition 5.5 and Corollaries 7.8, 8.5, 9.3 imply the following analogue of
Theorem 5.2 for the class Tc.

Theorem 9.4. Under the assumption of Continuum Hypothesis, for any theory T
in the class Tc, the triple cm3(T ) has one of the following values:

(1) (2ω, 2ω, λ), where λ ∈ ω ∪ {ω, 2ω};
(2) (0, 0, 2ω);
(3) (λ1, λ2, 2

ω), where λ1 ≥ 1, λ1, λ2 ∈ ω ∪ {ω, 2ω}.
All these values have realizations in the class Tc.
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