CASEY’S THEOREM IN HYPERBOLIC GEOMETRY

N.V. ABROSIMOV, L.A. MIKAIYLOVA

Abstract. We obtain a hyperbolic version of Casey’s theorem. A similar result is obtained in spherical geometry as well.

Keywords: Casey’s theorem, Ptolemy’s theorem, hyperbolic plane, spherical plane.

1. Introduction

Let Q be a convex quadrilateral on the Euclidean plane \mathbb{E}^2, the hyperbolic plane \mathbb{H}^2 or the 2-sphere S^2. Let us denote the side lengths of Q by a, b, c, d and its diagonals by e, f as shown on Fig 1. We say Q is cyclic if it is circumscribed to a circle in \mathbb{E}^2, or S^2, or a curve of constant geodesic curvature in \mathbb{H}^2 (i.e. circle, horocycle or one branch of equidistant line).

Fig. 1

The work is supported by Russian Science Foundation (grant 15-11-20027).

Received May, 26, 2015, published June, 9, 2015.
Ptolemy’s classical theorem (see, for example, [4], pp. 42–43) states that if a quadrilateral is cyclic then the product of its diagonals is equal to the sum of the products of the pairs of opposite sides (Fig. 1)
\[ac + bd = ef. \]

In 1881 Irish mathematician John Casey generalized Ptolemy’s theorem in the following way (see [5], p. 103).

Casey’s theorem. Let circles \(O_1, O_2, O_3, O_4 \) on the Euclidean plane \(\mathbb{E}^2 \) are internally tangent to a circle \(O \) in prescribed order. Denote by \(t_{ij} \) the length of the common external tangent of the circles \(O_i, O_j \). Then
\[t_{12} t_{34} + t_{23} t_{14} = t_{13} t_{24}. \]

We say that a common tangent of two circles is **external** if it does not intersect the segment joining the centers of the circles (see Fig. 2).

A spherical version of Ptolemy’s theorem was established by Darboux and Frobenius. It can be also found in [8] (p. 180, proposition 4). In hyperbolic geometry the Ptolemy identity was proved by T. Kubota [6] and J.E. Valentine [11].

Many classical theorems of Euclidean geometry have natural analogs in non-Euclidean ones. Here are just some of them directly connected with quadrilaterals. The Brahmagupta formula expresses the area of cyclic quadrilateral in terms of its side lengths. Spherical and hyperbolic variants of this formula can be found in papers by W.J. M’Clelland, T. Preston [8] and A.D. Mednykh [9] respectively. Bretschneider’s formula relates the area of a convex quadrilateral and lengths of its sides and diagonals. Non-Euclidean analogs of Bretschneider’s formula are given in [2], [3] and [12]. A formula for the area of hyperbolic trapezoid in terms of side lengths was presented in [10]. Some relations for hyperbolic tangential quadrilateral in terms of distances between the vertices and the points of tangency were found in [7].

In the present paper, we produce hyperbolic and spherical versions of Casey’s theorem.

2. **Casey’s theorem in hyperbolic geometry**

Theorem 1. Let circles \(O_1, O_2, O_3, O_4 \) on the hyperbolic plane \(\mathbb{H}^2 \) be internally tangent to a circle \(O \) in the prescribed order. Denote by \(t_{ij} \) the length of the common external tangent of the circles \(O_i, O_j \). Then
\[\frac{\text{sh} t_{12}}{2} \frac{\text{sh} t_{34}}{2} + \frac{\text{sh} t_{23}}{2} \frac{\text{sh} t_{14}}{2} = \frac{\text{sh} t_{13}}{2} \frac{\text{sh} t_{24}}{2}. \]
Proof. Denote by O_i the centers of the circles respectively (Fig. 3). Let R_i be the radii of the circles O_i and K_i be the points of tangency with circle O.

Consider the quadrilateral with sides O_iO_j, R_i, R_j and t_{ij} (Fig. 4). Denote by d the diagonal which divides the quadrilateral into triangles 1 and 2. Since radii R_i and R_j are orthogonal to common tangent t_{ij}, we can apply the hyperbolic Pythagorean theorem for triangle 1 (see, e.g., [1])

$$ch d = ch R_i \ ch t_{ij}. $$

(1)

Denote the angle between diagonal d and tangent t_{ij} by δ. Then by the Sine rule for hyperbolic triangle 1 we have

$$
\frac{sh d}{\sin \pi/2} = \frac{sh R_i}{\sin \delta}
$$

or

$$
\sin \delta = \frac{sh R_i}{sh d}.
$$

We use the second Cosine rule for hyperbolic triangle 2 (see, e.g., [1])

$$
ch O_iO_j = ch R_j \ ch d - sh R_j \ sh R_i
$$

and get

$$
ch d = \frac{ch O_iO_j + sh R_j \ sh R_i}{ch R_j}.
$$
Substituting \(ch \) in (1) we obtain
\[
ch t_{ij} = \frac{ch O_i O_j + sh R_j sh R_i}{ch R_j ch R_i}
\]
or
(2)
\[
ch O_i O_j = ch t_{ij} ch R_j ch R_i - sh R_j sh R_i.
\]

\[\text{Fig. 5}\]

We apply the first Cosine rule for triangle \(OK_i K_j \) where \(OK_i = OK_j = R \) (see Fig. 5)
\[
ch K_i K_j = ch^2 R - sh^2 R \cos \angle K_i OK_j
\]
or
(3)
\[
\cos \angle K_i OK_j = \frac{ch^2 R - ch K_i K_j}{sh^2 R}.
\]

Using the first Cosine rule for hyperbolic triangle \(OO_i O_j \), where \(OO_i = R - R_i \), \(OO_j = R - R_j \), we have
\[
ch O_i O_j = ch(R - R_i) ch(R - R_j) - sh(R - R_i) sh(R - R_j) \cos \angle O_i OO_j.
\]

Since \(\angle O_i OO_j = \angle K_i OK_j \) then by (3) the latter expression takes the following form
\[
ch O_i O_j = ch(R - R_i) ch(R - R_j) - sh(R - R_i) sh(R - R_j) \frac{ch^2 R - ch K_i K_j}{sh^2 R}.
\]

Using (2) for the left-hand side, we get
\[
ch t_{ij} ch R_j ch R_i - sh R_j sh R_i
\]
\[
= ch(R - R_i) ch(R - R_j) - sh(R - R_i) sh(R - R_j) \frac{ch^2 R - ch K_i K_j}{sh^2 R}.
\]

Hence,
\[
ch K_i K_j
\]
\[
= \frac{sh^2 R (ch t_{ij} ch R_j ch R_i - sh R_j sh R_i - ch(R - R_i) ch(R - R_j))}{sh(R - R_i) sh(R - R_j)} + ch^2 R.
\]
So, as \(\text{sh}^2 \frac{x}{2} = \frac{\text{ch} x - 1}{2} \), we have

\[
\frac{\text{sh}^2 K_i K_j}{2} = \frac{\text{sh}^2 R \left(\text{ch} t_{ij} \text{ch} R_i \text{ch} R_j - \text{sh} R_i \text{sh} R_j - \text{ch}(R - R_i) \text{ch}(R - R_j) \right)}{2 \text{sh}(R - R_i) \text{sh}(R - R_j)} + \frac{\text{ch}^2 R - 1}{2}.
\]

We reduce the right-hand side to common denominator and use the difference formula for hyperbolic cosine; then the latter expression is simplified (4)

\[
\frac{\text{sh}^2 K_i K_j}{2} = \frac{\text{sh}^2 R}{2 \text{sh}(R - R_i) \text{sh}(R - R_j)} \cdot \left[\text{ch} t_{ij} \text{ch} R_i \text{ch} R_j - \text{sh} R_i \text{sh} R_j - \text{ch}(R - R_i - R + R_j) \right]
\]

\[
= \frac{\text{sh}^2 R}{2 \text{sh}(R - R_i) \text{sh}(R - R_j)} \cdot \left(\text{ch} t_{ij} \text{ch} R_i \text{ch} R_j - \text{sh} R_i \text{sh} R_j - \text{ch}(R - R_i) \text{ch}(R - R_j) + \text{sh} R_i \text{sh} R_j \right)
\]

\[
= \frac{\text{sh}^2 R \text{ch} R_i \text{ch} R_j}{2 \text{sh}(R - R_i) \text{sh}(R - R_j)} (\text{ch} t_{ij} - 1).
\]

Points of tangency of circles \(O_1, O_2, O_3, O_4 \) by circle \(O \) form a cyclic quadrilateral \(K_1 K_2 K_3 K_4 \) in \(\mathbb{H}^2 \). According to hyperbolic Ptolemy’s theorem (see [11]), segments \(K_i K_j \) satisfy the equation

\[
\text{sh} \frac{K_1 K_3}{2} \text{sh} \frac{K_2 K_4}{2} = \text{sh} \frac{K_1 K_2}{2} \text{sh} \frac{K_3 K_4}{2} + \text{sh} \frac{K_2 K_3}{2} \text{sh} \frac{K_1 K_4}{2}.
\]

We take the square root in (4) and substitute expressions for \(\frac{K_i K_j}{2} \) in (5). Then we divide the resulting equation by

\[
\text{sh}^2 R \sqrt{\frac{\text{ch} R_1 \text{ch} R_2 \text{ch} R_3 \text{ch} R_4}{2 \text{sh}(R - R_1) \text{sh}(R - R_2) \text{sh}(R - R_3) \text{sh}(R - R_4)}}
\]

to obtain

\[
\sqrt{\text{ch} t_{13} - 1} \sqrt{\text{ch} t_{24} - 1} = \sqrt{\text{ch} t_{12} - 1} \sqrt{\text{ch} t_{34} - 1} + \sqrt{\text{ch} t_{23} - 1} \sqrt{\text{ch} t_{14} - 1}.
\]

Using the power reduction formula for hyperbolic sine we find

\[
\text{sh} \frac{t_{13}}{2} \text{sh} \frac{t_{24}}{2} = \text{sh} \frac{t_{12}}{2} \text{sh} \frac{t_{34}}{2} + \text{sh} \frac{t_{23}}{2} \text{sh} \frac{t_{14}}{2}.
\]

\(\square \)

3. **Casey’s theorem in spherical geometry**

The analog of Casey’s theorem holds in spherical geometry as well.
Theorem 2. Let circles O_1, O_2, O_3, O_4 on the sphere S^2 be internally tangent to a circle O in the prescribed order. Denote by t_{ij} the length of the common external tangent of the circles O_i, O_j. Then

$$\sin \frac{t_{12}}{2} \sin \frac{t_{34}}{2} + \sin \frac{t_{23}}{2} \sin \frac{t_{14}}{2} = \sin \frac{t_{13}}{2} \sin \frac{t_{24}}{2}$$

One can prove the spherical version of the theorem using the same arguments as in the hyperbolic case. The only difference is to replace hyperbolic trigonometry relations by corresponding spherical ones.

4. ACKNOWLEDGMENTS

We are grateful to Feng Luo, who turned our attention to this subject. We are also grateful to Vladislav Aseev for his ideas which should be useful for possible generalizations of this result. We thank Alexander Mednykh and Alexey Staroletov for their attention to this work.

REFERENCES

Nikolay Vladimirovich Abrosimov
Sobolev Institute of Mathematics,
pr. Koptyuga, 4,
630090, Novosibirsk, Russia
Novosibirsk State University,
Pirogova st., 2,
630090, Novosibirsk, Russia
Laboratory of Quantum Topology, Chelyabinsk State University,
Brat’ev Kashirinykh st., 129,
454001, Chelyabinsk, Russia
E-mail address: abrosimov@math.nsc.ru

Liudmila Adilovna Mikaiylova
Novosibirsk State University,
Pirogova st., 2,
630090, Novosibirsk, Russia
E-mail address: mikaiylova.ludmila@gmail.com