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Abstract. In this paper, we prove that there exists a non-regular
hyperelliptic covering of any odd degree over a hyperelliptic graph. Also,
some properties of a dihedral covering, with a rotation being of odd
degree, over a genus two hyperelliptic graph are derived. In the proof,
the Bass-Serre theory is employed.
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1. Introduction

In [1], R.D.M. Accola proved that for any odd n and any hyperelliptic Riemann
surface N , there exists a non-regular smooth degree n covering M → N , where M
is hyperelliptic. Also, he established there some properties of a dihedral covering
over a genus two Riemann surface. Namely, if the deck transformation group of
the covering is generated by the rotation of odd order and by an involution, then
the covering surface is 1-hyperelliptic, and the factor of covering surface by the
involution is hyperelliptic.

In this paper, we prove discrete analogues of those assertions. We substitute
finite connected graphs for Riemann surfaces, and harmonic maps between graphs
for holomorphic maps between Riemann surfaces. In this settings, the category of
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graphs, together with harmonic maps between them, closely mirrors the category
of Riemann surfaces, together with the holomorphic maps between them.

The existence of a non-regular hyperelliptic covering over a hyperelliptic graph
in the particular case, when a covered graph is of genus two and a covering is of
degree three, have been derived in [2].

In the proofs of the discrete versions, the Bass-Serre theory is employed to uni-
formize the coverings of a graph. The approach is suggested by A. Mednykh and
I. Mednykh in [3]. Also, we take advantage of some topological aspects of coverings
of graphs of groups developed by M.T. Green [4].

2. Preliminaries

2.1. Graphs. In this paper, a graph is a finite connected multigraph, possibly with
loops. Denote by V (X) and by E(X) the set of vertices and the set of directed
edges of X. Following J.-P. Serre [5], we introduce two maps ∂0, ∂1 : E(X) → V (X)
(endpoints) and a fixed point free involution e→ ē of E(X) (reversal of orientation)
such that ∂iē = ∂1−ie. We put

St(a) = StX(a) = ∂−1
0 (a) = {e ∈ E(X) | ∂0e = a},

the star of a, and call deg(a) = |St(a)| the degree (or valency) of a. A morphism
of graphs φ : X → Y carries vertices to vertices, edges to edges, and, for e ∈
E(X), φ(∂ie) = ∂iφ(e) (i = 0, 1) and φ(ē) = φ(e). Note that a morphism of graphs
maps loops to loops. One of the possible ways to deal with loops in a graph correctly
is developed in [6] and is based on the notion of semiedges.

For a ∈ X we have the local map

φa : StX(a) → StY (φ(a)).

A map φ is locally bijective if φa is bijective for all a ∈ X. We call φ a covering if φ
is surjective and locally bijective. A bijective morphism is called an isomorphism,
and an isomorphism φ : X → X is called an automorphism.

Remark 1. Note that M. Baker and S. Norine in [7] use another definition of
a morphism of graphs than we do here. Namely, let φ : X → Y be morphism
of graphs and for some edge e ∈ E(X) let φ(∂0e) = φ(∂1e) = b ∈ V (Y ). Then
morphism φ, in the sense of [7], sends edge e to vertex b. In our case, morphism φ
must send edge e to a loop based at vertex b.

2.2. Harmonic maps and harmonic actions. In this section, we specify the
class of morphisms of graphs, called harmonic maps, that share most properties
with holomorphic maps between Riemann surfaces. The notion of harmonic maps
between graphs was introduced by H. Urakawa [8] for simple graphs and was gen-
eralized by M. Baker and S. Norine [7] for multigraphs.

Definition 1. A morphism φ : X → Y of graphs is said to be a harmonic map or
branched covering if, for all x ∈ V (X), y ∈ V (Y ) such that y = φ(x), the quantity

|e ∈ E(X) : x = ∂0e, φ(e) = e′|

is the same for all edges e′ ∈ E(Y ) such that y = ∂0e
′.

Note that the composition of two harmonic morphisms is again harmonic, and
an arbitrary covering of graphs is a harmonic map.
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Let φ : X → Y be harmonic and x ∈ V (X). We define the multiplicity of φ at
x by

mφ(x) = |e ∈ E(X) : x = ∂0e, φ(e) = e′|
for any edge e′ ∈ E(X) such that φ(x) = ∂0e

′. By the definition of a harmonic
morphism, mφ(x) is independent of the choice of e′. If mφ(x) > 1 for some vertex
x ∈ V (X), such a vertex is called a ramification point of φ. The image φ(x) of a
ramification point is called a branch point.

Define the degree of a harmonic map φ : X → Y by the formula

deg(φ) ··= |e ∈ E(X) : φ(e) = e′| (1)

for any edge e′ ∈ E(Y ). From the definition of a harmonic map of graphs and
connectivity of the graphs, it follows that the right-hand side of (1) does not depend
on the choice of e′ and therefore deg(φ) is well defined.

Let G < Aut(X) be a group of automorphisms of a graph X. An edge e ∈ E(X)
is called invertible if there is h ∈ G such that h(e) = ē. Let G act without invertible
edges. Define the quotient graph X/G so that its vertices and edges are G-orbits
of the vertices and edges of X. Note that if the endpoints of an edge e ∈ E(X)
lie in the same G-orbit then the G-orbit of e is a loop in the quotient graph X/G.
Following S. Corry [9], we say that the group G acts harmonically on a graph X
if for all subgroups H < G, the canonical projection φH : X → X/H is harmonic.
If G acts harmonically and without invertible edges, we say that G acts purely
harmonically on X.

The genus of a graph is defined as the rank of the first homology group of the
graph (that is, its cyclomatic number). Let X, Y be graphs of genera g and γ
respectively, and φ : X → Y be a harmonic map. By the same arguments as in [7],
for the graph morphism under consideration we get an analogue of the Riemann-
Hurwitz relation:

g − 1 = deg(φ)(γ − 1) +
∑

a∈V (X)

(mφ(a)− 1), (2)

where mφ(a) is the multiplicity of map φ at vertex a.

Definition 2. A graph X of genus g ≥ 2 is said to be hyperelliptic, if there is a
degree 2 harmonic map F : X → Y , where graph Y is a tree (that is, a graph of
genus 0) and 1-hyperelliptic, if graph Y is of genus 1. Each edge of Y has two pre-
images under F and there is an order 2 automorphism τ of X, which swaps these
pre-images. This automorphism is called hyperelliptic involution (1-hyperelliptic
involution respectively).

Remark 2. Let X be a hyperelliptic graph and F be the corresponding harmonic
map onto a tree. Since at every ramification point x ∈ V (X) the multiplicity
mF (x) = 2, by (2) the number of ramification points of F is equal to g + 1.

Definition 3. Suppose that a harmonic map F : X → Y can be represented as a
canonical projection X → X/G = Y, where G acts purely harmonically. Then we
call it regular, and non-regular otherwise.

A finite group G is said to admit a partition {G1, . . . , Gs}, where Gi < G and
s ≥ 2, if G =

∪s
i=1Gi and Gi ∩Gj = {1}, i, j = 1, 2, . . . , s, i ̸= j. Let G < Aut(X)

act purely harmonically on a graph X and admit a partition {G1, · · · , Gs}. Recall
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that the Euler characteristic χ(X) of a graph X is related to the genus g(X) of X
via χ(X) = 1− g(X). By Corollary 1 in [10], we have

(s− 1) g(X) + |G| g(X/G) =
s∑

i=1

|Gi| g(X/Gi).

Suppose a graph Xp of genus p has a group of automorphisms isomorphic to the
Klein four-group V4 = {U,C,UC, e} which admits a partition into three subgroups
of order two. Let p1 be the genus of Xp/⟨U⟩; let p2 be the genus of Xp/⟨C⟩; let p3
be the genus of Xp/⟨UC⟩; and let p0 be the genus of Xp/V4. Then we rewrite the
formula above as

p+ 2p0 = p1 + p2 + p3. (3)

2.3. Graphs of groups. The theory of graphs of groups is employed in this paper
to uniformize the coverings of a graph. Following [11], we give the definition.

Definition 4. A graph of groups X = (X,A) consists of

(i) a connected graph X;
(ii) an assignment A to every vertex a ∈ V (X) a group Aa, and

to every edge e ∈ E(X) a group Ae = Aē;
(iii) monomorphisms αe : Ae → Aa, where a = ∂0e.

Here we use only graphs of groups having trivial groups Ae = {1} for all edges
e ∈ E(X) and finite groups Aa for all vertices a ∈ V (X). It will be enough to
uniformize the coverings of a graph.

One of the possible ways to define the fundamental group of a graph of groups
is as follows. Choose a spanning tree T in X. The fundamental group of X with
respect to T , denoted π1(X, T ), is defined as the quotient of the free product[(

∗
a∈V (X)

Aa

)
∗ F (E(X))

]
/R,

where F (E(X)) denotes the free group with basis E(X) and R is the following set
of relations:

(i) ē = e−1 for every e in E(X);
(ii) e = 1 for every e in E(T ).

Any other fundamental group π1(X, T
′), corresponding to a different choice of a

spanning tree T ′, will be isomorphic to π1(X, T ). In what follows, we will use
notation π1(X), ignoring the way the fundamental group was constructed.

It follows from the above definition that if X is a graph of genus g then Fg =
F (E(X))/R is the free group of rank g. Then

π1(X) =

(
∗

a∈V (X)
Aa

)
∗ Fg.

2.4. Coverings of graphs of groups and harmonic maps. Let us take graph
morphisms in the definition of a covering of graphs of groups, given in [4] or [11], to
be the class of all harmonic maps. Taking into consideration the fact that a trivial
group is assigned to any edge, the definition of a covering of graphs of groups can
be formulated as follows.

Definition 5. Let X = (X, A) and Y = (Y, B) be graphs of groups with trivial
edge groups. A covering F = (F, Φ) : X → Y of graphs of groups consists of
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(i) a harmonic morphism F : X → Y ;
(ii) a set Φ of monomorphisms Fa : Aa → BF (a), a ∈ V (X), such that

mF (a)|Aa| = |BF (a)|, where mF (a) is the multiplicity of F at the point a.

This definition was introduced in [3]. A covering F : X → Y of graphs of groups we
call smooth if underlying harmonic map F is a covering, and regular if F is regular.

According to [4], there is a one-to-one correspondence between coverings of
graphs of groups F : X → Y and subgroups of π1(Y). If a covering is regular,
then its deck transformation group is isomorphic to the factor of π1(Y) by the
defining subgroup of the covering.

3. Main results

In what follows, subscript q in graph Xq is a genus of the graph. For a regular
harmonic map X → Y of graphs, G(X,Y ) denotes its deck transformation group.
The following theorem claims the existence of a non-regular hyperelliptic covering
of any odd degree over a hyperelliptic graph. In the case when the degree equals 3,
and the covered graph has genus 2, one of two possible non-regular hyperelliptic
coverings of X2 is depicted in the Figure 1.

Theorem 1. Let Xq be a hyperelliptic graph, and let n be an odd positive number.
Then there exists a degree n non-regular covering Xp → Xq where Xp is hyperel-
liptic.

Proof. Let n be odd and positive. Let graph Xq be hyperelliptic, that is, there is
the order two harmonic automorphism τ ∈ Aut(Xq), such that the factor graph
X0 = Xq/⟨τ⟩ is a tree. Let ψ : Xq → X0 be the corresponding harmonic map.

Turn graphs Xq and X0 into graphs of groups as follows. Let Xq = (X,A) be a
graph of groups based on graph Xq, and where A assigns a trivial group Az = {1}
to each vertex and each edge z of Xq. Let X0 = (X0,B) be a graph of groups
based on tree X0, and where B assigns the group Bai = Z2 to each branch point
ai, i = 1, 2, . . . , q+ 1 of map ψ, and a trivial group Bz = {1} to every other vertex
and edge z of X0.

Let us denote by F the fundamental group π1(X0) of graph of groups X0. By
Section 2.3, group F is a free product of q+1 copies of Z2 and has the presentation

F =
⟨
γ1, γ2, . . . , γq+1 | γ21 = γ22 = . . . = γ2q+1 = 1

⟩
.

We now define a smooth regular coveringX2p−1 → Xq with covering transformation
group Dn, the dihedral group of order 2n. To do this we define a homomorphism

µ : F → Z2 ×Dn (∼= D2n since n is odd)

as follows. Let Z2 = ⟨C | C2 = 1⟩, Dn = ⟨V,R | V 2 = Rn = (V R)2 = 1⟩. Then ⟨C⟩
is the center of D2n, and ⟨CV,R⟩ is also isomorphic to Dn.

Each γi must correspond to an involution of X2p−1 having a fixed point in
V (X). Since the constructed covering is smooth, no one of γi can be mapped by
µ to involutions of ⟨V,R⟩. On the other hand, the images µ(γi) must generate all
D2n. So let

µ(γi) = C for i = 1, 2, . . . , q − 1,

µ(γq) = CV,

µ(γq+1) = CV R.
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µ then extends to a homomorphism onto D2n. The kernel Fq of the composition

F → Z2 ×Dn → ⟨C⟩

corresponds to Xq, and the kernel of µ, F2p−1, corresponds to a covering of graphs
of groups X2p−1 → Xq with deck transformation group isomorphic to Dn (∼=
Fq/F2p−1) acting onX2p−1 without fixed points. The genus of the underlying graph
X2p−1 is 2n(q−1)+1. The deck transformation group of the covering X2p−1 → X0,
and of the underlying harmonic map X2p−1 → X0, is isomorphic to Z2×Dn. In this
group of automorphisms let Z′

2 = ⟨C ′⟩ and let D′
n = ⟨V ′, R′⟩. (We use primes to

distinguish the automorphisms on X2p−1 from the elements of the abstract group
D2n.)

The central involution has branch points above ai, i = 1, 2, . . . , q − 1, so the
ramification for the harmonic map X2p−1 → X2p−1/⟨C ′⟩ is 2n(q − 1). By the
Riemann-Hurwitz formula the genus of X2p−1/⟨C ′⟩ is one.

According to the homomorphism construction, the deck transformation group
of covering X2p−1 → Xq is ⟨V ′, R′⟩. The other Dn is ⟨C ′V ′, R′⟩ which contains
n reflections, all of whose fixed points lie over the aq and aq+1. Thus each such
reflection has 2(2n)/n (= 4) fixed points. By the Riemann-Hurwitz formula the
genus of X2p−1/⟨C ′V ′⟩ is p− 2.

Now consider the Klein four-group H = {V ′, C ′, C ′V ′, e}. The genera of the
quotients with respect to ⟨V ′⟩, ⟨C ′⟩, ⟨C ′V ′⟩ are p, 1 and p − 2. By formula (3) the
genus of X2p−1/H is zero. Thus, Xp = X2p−1/⟨V ′⟩ is hyperelliptic and is a degree
n covering of Xq.

The subgroup of Fq corresponding to the covering of graphs Xp → Xq, group
Fp, coincides with µ−1(⟨V ⟩). So subgroup Fp is not normal in Fq, therefore, the
covering Xp → Xq is non-regular. �

Remark 3. The particular case n = 3 and q = 2 have been derived in [2] by
I. Mednykh.

To prove the next theorem, we need the following lemmas.

Lemma 1 ([2], [12]). Let a graph X3 be a degree 2 covering of a hyperelliptic
graph X2. Then X3 is hyperelliptic.

Lemma 2. Let Xp → Xq be a cyclic covering of graphs degree n and Xq is hyperel-
liptic. Then the harmonic map Xp → Xq → X0 is regular with deck transformation
group isomorphic to Dn.

Proof. The harmonic map Xp → Xq → X0 is regular if and only if the hyperelliptic
involution on Xq lifts to an involution on Xp. The general theory tells us that
an automorphism can be lifted to a smooth covering provided the automorphism
preserves the defining subgroup of the covering. Our coveringXp → Xq is cyclic and
so abelian. In this case the defining subgroup contains the commutator subgroup of
the fundamental group. Therefore, we can consider the action of the hyperelliptic
involution on the image of the defining subgroup in the first homology group of the
graph Xq which is isomorphic to the fundamental group factored by its commutator
subgroup. The hyperelliptic involution acts as minus the identity on the homology
group; so all subgroups are preserved.

If U is a lift of the hyperelliptic involution u on Xq and the deck transformation
group ofXp → Xq is ⟨R |Rn = 1⟩, thenRU is a lift of u as well. Since (RU)2 = 1, the
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deck transformation group of Xp → Xq → X0 generated by R and U is isomorphic
to Dn. �

Figure 1. An illustration to Theorem 1 and Theorem 2 in the
case q = 2 and n = 3. The notation U∗ stand for an involution on
X3 which is a projection of U acting on X7.
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Using the arguments in the proof of Theorem 1 with q = 2, we prove the following
theorem. A scheme of coverings from the proof of the theorem in case n = 3 is
depicted in the Figure 1.

Theorem 2. Let X2n+1 → X2 be a dihedral covering of graphs where n is odd.
Then X2n+1 is 1-hyperelliptic. If G(X2n+1, X2) = ⟨V ′, R′⟩ (∼= Dn), then the quo-
tient graph X2n+1/⟨V ′⟩ is hyperelliptic.

Proof. By relation (2), the genus of the quotient graph X3 = X2n+1/⟨R′⟩ is three.
By Lemma 1, X3 is hyperelliptic. We apply Lemma 2 to see that the degree 2n
harmonic map X2n+1 → X3 → X ′

0 is dihedral. Its covering transformation group
G(X2n+1, X

′
0) = ⟨U ′, R′⟩, where U ′ is a lift of the hyperelliptic involution of X3 to

graph X2n+1. We have the following array of coverings:

X2

  B
BB

BB
BB

BB

X2n+1
// X3

>>|||||||||
//

  A
AA

AA
AA

AA
X1

// X0

X ′
0

>>}}}}}}}}}

The hyperelliptic involution of X2 lifts to X2n+1 through X3, and so the entire
array is regular with covering transformation group isomorphic to Z2×Dn (∼= D2n

since n is odd). Then central element, C, of order 2 in D2n is unique. We may
assume C ′ = U ′V ′ by replacing V ′ by V ′R′α for suitable α.

We are now in the situation considered in the proof of Theorem 1 with q = 2
and µ : F → D2n where D2n = ⟨C, V,R⟩ with CV = U. Since µ(γi) has order
2 for all i and all µ(γi)’s lie outside one of the Dn’s in D2n, say ⟨V,R⟩, the pos-
sibilities for µ(γi) are C and CV Rα. Since ⟨CV,R⟩ ∼= Dn one of µ(γi)’s must be
C to get all of D2n. We have that X2n+1 coincides with X2p−1 from the proof of
Theorem 1. Therefore, in the degree 2 harmonic map X2n+1 → X2n+1/⟨C ′⟩, the
graph X2n+1/⟨C ′⟩ is of genus 1 and so X2n+1 is 1-hyperelliptic. Also, X2p−1/⟨V ′⟩
is hyperelliptic. �

Remark 4. In the book [13] by W. S. Massey, the regular covering X7 → X2

(Example 7.1) and the non-regular covering X4 → X2 (Example 7.2) are presented.
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