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Abstract. The paper presents two methods for statistical simulation
of deformation bands distribution for reservoir modelling purposes based
on analysis of field data. The proposed algorithms reproduce spatial
density distribution and clustering of deformation bands observed in fault
damage zones. Application and precision of the algorithms for different
parameter values have been checked numerically.
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1. Introduction

This paper addresses a method for statistical simulation of the spatial distribution
of deformation bands in fault damage zones. Deformation bands, an intrinsic element
of fault zones in porous rock, affect subsurface fluid flow by acting as barriers or
baffles ([1], [11], [12], [21]). Forecasting deformation band distribution in sub-surface
reservoirs has, therefore, significant value for petroleum exploration and production
purposes, as well as for the evaluation of potential sites for CO2 sequestration.

The geometry and spatial distribution of deformation bands in fault zones resemble
to a certain extent those of fractures, a topic of a number of previous studies.
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Statistical analysis of extensive fracture datasets was carried out by Odling et al.
[17], [18]. Fractal and multifractal description ([3], [4], [7]) have been proposed for
scaling of observed fracture systems. An unbiased method for multifractal analysis
that takes into account the finite domain size and boundary effects was developed
by Ouillon and Sornette [19].

Simulation of fracture networks for modelling purposes has been addressed by
several authors ([8], [23]). A statistical model of fracture distribution in fault damage
zone was presented by Harris et al. [15]. Belfield [2] used a multifractal model
of strain distribution in rock masses to simulate the spatial distribution of the
fractures.

Compared to the number of studies dedicated to fractures, less attention has
been paid to the spatial distribution of deformation bands in fault damage zones.
Statistical analysis of extensive datasets collected from outcrops has been carried
out by Du Bernard et al. [9], Kolyukhin et al. [16], and Schueller et al. [22]. Their
approaches resemble that used by Odling et al. [17], [18] for studying fracture
networks.

The simulation of the spatial distribution of deformation bands is performed in
[9], [16]. A deterministic statistical model for damage zone growth based on the
deformation bands simulation is suggested in [22]. As well as in previous studies,
the algorithms presented in this paper are based on using a multiplicative cascade
technique described in [7]. The purpose of this study is to extend this approach and
adapt a simulation algorithm for a more thorough use of available results of the
statistical analysis. The simulation (or sampling) algorithm proposed here is based
on the results of the statistical analysis of outcrop data presented by Schueller et
al. [22].

At the end of Introduction I want to notice that modeling of spatial distribution
of deformation bands plays the important role in the modeling of fault damage zone.
In general a fault zone has very complex structure and consists of many structural
elements [5]. In [24] it was proposed to employ the fault facies technique to overcome
these difficulties. Suggested method allows to perform an explicit three-dimensional
statistical simulation of fault damage zone. Further this approach was developed
e.g. in [10], [20]. The key point of these models is a distribution of deformation
bands estimated from analysis of outcrop data.

2. Statistical method

Here we consider a one-dimensional model of band density along a straight line
starting at a fault core boundary and running perpendicular to the fault plane (or
more precisely to the fault strike). The frequency of deformation bands decreases
with distance from the fault [9]. The relationship between band frequency, fault
throw and distance from the fault core was considered by Schueller et al. [22] who
recognized a logarithmic decrease of band frequency at increasing distance from a
fault

(1) Y = A+ L lnx

where Y represents the frequency of deformation bands per meter and x the distance
from the fault core. Then the probability density of band distribution is proportional
to Y from (1) and has a form:
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(2) p(x) ∝ 1−B lnx, B = −L

A
, x ∈ [xmin, xmax].

Here x, xmin, xmax have dimension meter (m), other variables are dimensionless.
Model parameters B, xmin, xmax allow consideration of a wide range of logarithmically
decreasing functions described in [16] and [22]. However, this relation alone does
not capture the observed clustering of bands, described in [9], [16], [22], which is
characterized by a multifractal correlation dimension.

Following [9], [22], the intersections of Ndb deformation bands with scanline are
considered in this work as a multifractal set Θ = {X1, . . . , XNdb

}. Multifractals are
generalizations of fractals. In general, their spatial distribution is characterized by
the infinite multifractal spectrum [25]:

D−∞ ≥ . . . ≥ D0 ≥ D1 ≥ . . . ≥ D−∞.

The segment is covered by a regular grid of mesh size ϵ. i− th cell is characterised
by probability p(ϵ) that arbitrary deformation band xj , 1 ≤ j ≤ Ndb falls in this
cell. Multifractal dimensions can be defined as [19], [25]

(3) Dq =

 1
q−1 limϵ→0

∑N(ϵ)
i=1 pq

i (ϵ)

ln ϵ , q ̸= 1

limϵ→0

∑N(ϵ)
i=1 ln pi(ϵ)pi(ϵ)

ln ϵ , q = 1

where N(ϵ) is the number of non-empty cells at scale ϵ.
D2 is also called the correlation dimension and can be estimated by using (4),

(5) suggested by Grassberger and Procaccia [14] and used in [9], [22].

(4) C2(r) = lim
Ndb→∞

2

Ndb(Ndb − 1)

∑
i<j

θ(r − |xi − xj |).

(5) Dc = lim
r→0

lnC2(r)

ln r
.

Here, Ndb is a total number of deformation bands, x is a band’s position, r is a
distance, C2(r) is a pair correlation function, θ(x) is the Heaviside function whose
value is zero for a negative argument and one otherwise, Dc is an approximation of
D2. For Dc the values estimated in Du Bernard et al. [9] and Schueller et al. [22]
are 0.87± 0.05 and 0.84± 0.06, respectively.

An iterative algorithm for simulation of random fields with multifractal probability
density distribution is described by Darcel et al. [7]. The studied domain is divided
into cells and a probability value corresponding to the frequency of deformation
bands is assigned to each cell. At the start of any iteration, each subdomain
dimension is divided into l equal parts. In Fig. 1 the isotropic fragmentation procedure
is illustrated for first and second iterations with l = 2. If the probability of the
original subdomain equals P , then the probabilities of the resulting subdomains
are P1P , P2P in random order. The probabilities P1, . . . , Pn are defined by the
following equation:

(6)
n∑

i=1

P q
i

(1/l)(q−1)Dq
= 1.
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Fig. 1. The two first iterations of the general multifractal
simulation scheme. Here l = 2.

Here we consider a one-dimensional case, therefore n = l.
Dependence of correlation dimensions estimated by (5) (D̂c) and (3) (D̂2) on

true value of D2 is presented in Fig. 2. Here, Ndb = 100 deformation bands are
generated by the method illustrated in Fig. 1. Probability pi(ϵ) in (3) is estimated
as a ratio of a number of deformation bands sampled in the i − th cell to a total
number of deformation bands Ndb.

The aim of this work is to provide a method for statistical simulation (or sampling
by Monte Carlo method) of band distributions with certain values of D2. The
iterative algorithm described above provides a means to do so. For n = 2, probabilities
P1 and P2 are uniquely defined by (6). However, increasing n provides additional
degrees of freedom that can be employed to approximate density p(x) in (2). In
this work n = 4. In the first suggested algorithm P1, P2, P3, P4 are calculated as
a solution for the optimization problem defined by (7) as long as (6) is satisfied
exactly.

(7) ∥F−P∥+
(
(F1 − P1)

2 + (F2 − P2)
2 + (F3 − P3)

2 + (F4 − P4)
2)
)0.5 → min,

where xi, xi+1 - the left and right borders of a corresponding cell at current iteration
and

Fi(x) =

∫ xi+1

xi

p(x)dx.

Here and below a bold font is used for vectors.
Thus, the probability density function F (x) is a stepwise approximation of p(x).

The fact that equation (6) holds in the process of modelling, ensures the adequate
simulation of deformation bands clustering determined by a given value of D2.
However, it can be a problem to satisfy the condition described by (2) even for
n = 4. To overcome this difficulty in the second algorithm an additional term is
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Fig. 2. Dependence of correlation dimensions estimated by (5)
(D̂c) and (3) (D̂2) on true D2.

involved in the minimizing function (8) in order to control the balance between the
two main model requirements (p(x) and D2)

(8) ∥F−P∥+ exp(−α · it2)

∥∥∥∥∥
4∑

i=1

P 2
i −

(
1

l

)D2

∥∥∥∥∥ → min

where it is an order number of current iteration.
The second algorithm (8) relaxes conditions defined by (6) in the first iterations

which are the most important to satisfy (2). Here, α is a turning parameter which
allows to control the balance between (2) and (6). The first iteration of a numerical
procedure defined by (7) and (8) is illustrated in Fig. 3 for D2 = 0.6, B = 0.34, xmin =
0, xmax = 10m,α = 0.1. Probability density p(x) defined by (2) compares with
approximation defined by vector P. Norm ∥F−P∥ equals 0.17 and 0.002 for the
first and second algorithms respectively. On the other hand, the corresponding
values of ratio ln (

∑N(ϵ)
i=1 p2i (ϵ))/ ln ϵ which should tend to D2 equal 0.6 and 0.83

(see Table 3). The comparison of corresponding algorithms is studied in the next
section.

3. Results

The results of the numerical testing of the first and second simulation methods
(methods defined by (7) and (8) respectively) are presented in Figs. 4 and 5 and
Figs. 6 and 7 respectively. The curves shown in Figs. 4 and 6 are sampled for
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Fig. 3. Illustration of the first iteration of numerical procedure
defined by (7) and (8). D2 = 0.6, B = 0.34, xmin = 0, xmax = 10m.

D2 = 0.84 obtained as result of the statistical analysis in [22]; those in Figs. 5
and 7 are sampled for D2 = 0.6. Theoretical probability density p(x) and the
estimated density of sampled deformation bands are presented in Figs. 4a, 5a, 6a
and 7a. Agreement between simulated data and theoretical density p(x) is checked
by using the Kolmogorov-Smirnov test. The pair correlation function C2(r) and its
approximation are presented in Figs. 4b, 5b, 6b and 7b. Computations presented in
Figs. 4-7 are performed for B = 0.34 obtained as a result of the statistical analysis
in [22]. In each example presented in this section Ndb = 100, xmin = 0, xmax = 10m,
the number of iterations in the second method (8) is T = 4.

More detailed information about results of the statistical analysis of these and
other computations is presented in Table 1. Numerical results of simulations are
performed by using two developed methods ((7) and (8)) for different values of D2.
Statistical validation was performed by considering the corresponding p − values.
The p − value is the probability of obtaining the test statistic equal or more
extreme than what was actually observed [13]. If the p − value is less than the
significance level, the null hypothesis is rejected. In all considered cases a p−values
of the samples simulated by using (8) are greater than a usually used significance
level 0.05. Corresponding p − values are estimated after the last T − th iteration
by using Kolmоgorov-Smirnov test. Thus, the hypothesis claiming that simulated
deformation bands are distributed according to probability density p(x) is accepted.
On the other hand, the same hypothesis should be rejected for the deformation
bands sampled by using (7) for D2 = 0.6, 0.7. This example shows that employment
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Fig. 4. (a) Theoretical (solid line) and estimated (dash line)
density of deformation bands sampled by first method (7).
Kolmogorov-Smirnov test p − value = 0.11. (b) Correlation
function C2(x) and its approximation. D̂c = 0.86, D2 = 0.84, B =
0.34, xmin = 0, xmax = 10m.
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Fig. 5. (a) Theoretical (solid line) and estimated (dash line)
density of deformation bands sampled by first method (7).
Kolmogorov-Smirnov test p − value = 3.1E − 9. (b) Correlation
function C2(x) and its approximation. D̂c = 0.6, D2 = 0.6, B =
0.34, xmin = 0, xmax = 10m.
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Table 1. Numerical results of simulations performed by using
two developed methods (Eqs. (7) and (8))) for different values of
D2. p − values estimated by using Kolmоgorov-Smirnov test and
correlation dimensions estimated by (5) (D̂c) and (3) (D̂2) are
presented. p − values of resulting D̂2 are estimated by using (9).
B = 0.34, xmin = 0, xmax = 10m

Type of suggested True Kolmogorov-Smirnov test D̂c D̂2 (p− value estimated
method D2 p− value by using (9))
Eq. (7) 0.6 3.1E-9 0.6 0.58 (0.61)
Eq. (7) 0.7 1,88E-4 0.62 0.66 (0.51)
Eq. (7) 0.8 0.11 0.84 0.75 (0.64)
Eq. (7) 0.84 0.11 0.86 0.79 (0.76)
Eq. (7) 0.9 0.14 0.88 0.82 (0.60)

Eq. (8), α = 0.075 0.6 0.09 0.69 0.58 (0.62)
Eq. (8), α = 0.15 0.7 0.13 0.71 0.69 (0.84)
Eq. (8), α = 0.2 0.8 0.25 0.84 0.81 (0.13)
Eq. (8), α = 0.2 0.84 0.10 0.84 0.78 (0.67)
Eq. (8), α = 0.25 0.9 0.13 0.87 0.82 (0.59)

of the first algorithm (7) can not ensure the fulfillment of the conditions defined by
(1) and (2).

The correlation dimensions estimated by (5) (D̂c) and (3) (D̂2) are also presented
in Table 1. An agreement between D̂2 and D2 can be checked by using the bootstrap
method [6]. For this purpose Nbs realizations of spatial distributions of deformation
bands are generated by using an iterative cascade method [7] described in Section 2.
For each realization i an approximation D̂i

2 is evaluated by (3). Then the corresponding
p− values can be estimated as fraction

(9) p− value =
#
{
|D̂2 −D2| < |D̂i

2 −D2|
}

Nbs
, i = 1, . . . , Nbs.

From Table 1 it is seen that the accuracy of estimation D̂c is comparable with the
accuracy of estimation D̂2 for which p-value calculated by using (9) is greater than
significance value 0.05 for all considered cases for the both developed methods. In
all computations performed in this section Nbs = 104. Note that in order to satisfy
each of the conditions defined by (1) and (2) and the condition defined by (3) and
(5) for different D2 values different α values are used in the second method (8).

Accuracy of estimations D̂c and D̂2 depends on implementation of (6) in the
developed methods. In the first method (7) the conditions defined by (6) are satisfied
automatically. In the second method (8) ln (

∑N(ϵ)
i=1 p2i (ϵ))/ ln ϵ can differ significantly

from required D2 in the first iterations (corresponding dependencies are presented
in Tables 2 and 3). However, in the last iterations these values are practically equal.

The dependence of simulation results on parameter B is illustrated in Tables
4 and 5 for D2 = 0.84 and D2 = 0.6 respectively. p − values estimated by using
Kolmоgorov-Smirnov test and correlation dimensions estimated by (5) (D̂c) and



474 D.R. KOLYUKHIN

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

x

A

 

 

p(x)

pe(x)

−3 −2 −1 0 1
−4

−3

−2

−1

0

ln r

B

 

 

ln C
2
 (ln r)

0.84 ln r −1.41

Fig. 6. (a) Theoretical (solid line) and estimated (dash line)
density of deformation bands sampled by first method (8).
Kolmogorov-Smirnov test p−value = 0.1. (b) Correlation function
C2(x) and its approximation. D̂c = 0.84, D2 = 0.84, B =
0.34, xmin = 0, xmax = 10m,α = 0.2.
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Fig. 7. (a) Theoretical (solid line) and estimated (dash line)
density of deformation bands sampled by first method (8).
Kolmogorov-Smirnov test p − value = 0.09. (b) Correlation
function C2(x) and its approximation. D̂c = 0.69, D2 = 0.6, B =
0.34, xmin = 0, xmax = 10m,α = 0.075.
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Table 2. Dependence of correlation dimension estimated by
using (3) on iteration number for the second simulation method
(8). D2 = 0.84, B = 0.34, xmin = 0, xmax = 10m

Iteration ln (
∑N(ϵ)

i=1 p2i (ϵ))/ ln ϵ
1 0.83
2 0.89
3 0.84
4 0.84

Table 3. Dependence of correlation dimension estimated by
using (3) on iteration number for the second simulation method
(8). D2 = 0.6, B = 0.34, xmin = 0, xmax = 10m

Iteration ln (
∑N(ϵ)

i=1 p2i (ϵ))/ ln ϵ
1 0.83
2 0.89
3 0.6
4 0.6

Table 4. Numerical results of simulations performed by using
two developed methods (Eqs. (7) and (8)) for different values of
B. p − values estimated by using Kolmоgorov-Smirnov test and
correlation dimensions estimated by (5) (D̂c) and (3) (D̂2) are
presented. p − values of resulting D̂2 are estimated by using (9).
D = 0.84, xmin = 0, xmax = 10m

Type of suggested B Kolmogorov-Smirnov test D̂c D̂2 (p− value estimated
method p− value by using (9))
Eq. (7) 0.2 0.0062 0.85 0.82 (0.98)
Eq. (7) 0.3 0.27 0.8 0.79 (0.80)
Eq. (7) 0.43 0.10 0.85 0.75 (0.28)

Eq. (8), α = 0.075 0.2 0.16 0.8 0.76 (0.41)
Eq. (8), α = 0.075 0.3 0.68 0.88 0.82 (0.95)
Eq. (8), α = 0.075 0.43 0.6 0.87 0.78 (0.66)

(3) (D̂2) are presented. p− values of resulting D̂2 are estimated by using (9). From
Table 5 it is seen that in case of small D2 value the first method can not satisfy the
agreement between sampled data and theoretical density ((1) and (2)) for any values
of B. Moreover, as it is clear from Table 4 that for the first method this condition
is also not satisfied for small values of B. On the other hand, in all considered cases
it is possible to choose the value of parameter α which allows to perform statistical
simulations fulfilling all required conditions.

Note that estimation of p − values for Kolmogorov-Smirnov test and Eq. (9)
allows to check the quality of sampled realizations and chose best of them. This
approach was used to acheive sufficiently accurate results presented in this section.
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Table 5. Numerical results of simulations performed by using
two developed methods (Eqs. (7) and (8)) for different values of
B. p − values estimated by using Kolmоgorov-Smirnov test and
correlation dimensions estimated by (5) (D̂c) and (3) (D̂2) are
presented. p − values of resulting D̂2 are estimated by using (9).
D = 0.6, xmin = 0, xmax = 10m

Type of suggested B Kolmogorov-Smirnov test D̂c D̂2 (p− value estimated
method p− value by using (9))
Eq. (7) 0.2 7.31e-010 0.67 0.63 (0.48)
Eq. (7) 0.3 1.83e-007 0.61 0.61 (0.85)
Eq. (7) 0.43 3.24e-007 0.53 0.54 (0.22)

Eq. (8) α = 0.05 0.2 0.59 0.74 0.59 (0.76)
Eq. (8) α = 0.05 0.3 0.16 0.70 0.57 (0.56)
Eq. (8) α = 0.075 0.43 0.22 0.71 0.55 (0.32)

4. Conclusions

Two methods for statistically simulating the distribution of deformation bands
are presented. Suggested algorithms are based on statistical analysis of field data by
Schueller et al. [22]. Both of them are extension of a simulation technique described
in [7] which has been used, for instance, in [9], [22]. The proposed approach captures
key features of deformation band distributions in fault damage zones such as a
decrease in deformation band frequency with increasing distance from the fault
core and clustering of bands governed by multifractal correlation dimension D2.
The fulfillment of these two conditions is compared for both developed methods
defined by (7) and (8). Numerical tests show that the second condition ((3) and
(5)) is satisfied with sufficiently high accuracy for both methods, whereas the first
condition ((1) and (2)) is not satisfied for the first method for small values of D2 and
B. In turn the right choice of the parameter alpha allows to satisfy this condition
for the second method in all considered cases.

In this paper we consider D2 only, but the suggested approach can be extended to
incorporate several required multifractal dimensions Di. Lower and upper bounds
of fractal characteristics in nature [3] can also be taken into account. Developed
methods can be also generalised on 2D or 3D cases.
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