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Abstract. We show that a mapping with weighted bounded (p, q)-
distortion can be extended to the set whose family of asymptotic curves
has weighted modulus zero. We also state some results about asymptotic
values, in particular, the counterpart to Iversen’s theorem for mappings
with weighted bounded (n, n)-distortion.
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1. Introduction

In the 1960s and 1970s, Yu.G. Reshetnyak published a series of papers that
laid the foundations of the theory of mappings with bounded distortion (see the
monograph [1]). Let Ω be a domain in the Euclidean space Rn, n ≥ 2. A mapping
f = (f1, . . . , fn) : Ω → Rn of class W 1

n,loc(Ω) is called a mapping with bounded
distortion if there exists a constant K ∈ [1,∞) such that the inequality |Df(x)|n ≤
KJ(x, f) holds almost everywhere in Ω. The symbol |Df(x)| denotes the operator
norm of the Jacobi matrix Df(x) = ( ∂fi

∂xj
(x))i,j=1,...,n, and J(x, f) = detDf(x).

A number of investigations in quasiconformal analysis deal with the problem of
removable singularities. Let F ⊂ Ω be a closed set and f : Ω \ F → Rn a mapping
with bounded distortion. It is known [2, Theorem 4.1] that if cap(F ;W 1

n(Rn)) =
0 and cap(Rn \ f(Ω \ F );W 1

n(Rn)) > 0, then f admits a continuous extension
f̃ : Ω → Rn, where Rn = Rn ∪ {∞}. This result can be strengthened. Recall that a
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curve β : [0, 1) → Rn is said to be asymptotic for a point x ∈ F if there is a curve
α : [0, 1) → Ω \ F such that f ◦ α = β and lim

t→1−0
α(t) = x. E. A. Poletskĭı proved

the following

Proposition 1 ([3, Theorem 3]). Suppose f : Ω\F → Rn is a mapping with bounded
distortion, F ⊂ Ω is a closed set, dimF ≤ n − 2, and Γ̂ is a family of asymptotic
curves for the set F . If modn Γ̂ = 0 and cap(Rn \ f(Ω \ F );W 1

n(Rn)) > 0, then f

can be extended to a continuous mapping f̃ : Ω → Rn.

This assertion is stronger than [2, Theorem 4.1], since, as shown in [3, Example 1],
the following situation is possible: cap(F ;W 1

n(Rn)) > 0 but modn Γ̂ = 0.
Along with removal of singularities we are also interested in questions relating

to the notion of asymptotic value. A mapping f : Ω → Rn has an asymptotic value
c at a point b ∈ ∂Ω if c = lim

t→1−0
f(γ(t)) for some curve γ : [0, 1) → Ω with γ(t) → b

as t → 1− 0. We mention a couple of results concerning this notion.

Proposition 2 ([4, Theorem 2.4]). Let f : B(0, 1) → Rn be a mapping with bounded
distortion and cap(Rn \ f(B(0, 1));W 1

n(Rn)) > 0. If E ⊂ S(0, 1) is the set of points
at which f has some asymptotic value, then cap(E ∩ B(y, ε);W 1

n(Rn)) > 0 for all
y ∈ S(0, 1) and ε > 0.

Proposition 3 (the counterpart to Iversen’s theorem, [4, Theorem 2.6]). Let
f : Ω → Rn be a mapping with bounded distortion and b ∈ ∂Ω an isolated boundary
point. If b is an essential singularity of f , then every point in Rn \ f(Ω) is an
asymptotic value of f .

The aim of this paper is to establish the analogs of the above-stated propositions
for the class of mappings which have recently been introduced by S. K. Vodop’yanov.
This class serves as a natural generalization of the class of mappings in the Reshet-
nyak sense.

Definition 1 ([5]). Let θ, σ : Rn → [0,∞] be locally integrable functions (called
weighted) such that θ > 0, σ > 0 almost everywhere. A mapping f : Ω → Rn is
called a mapping with (θ, σ)-weighted bounded (p, q)-distortion, n− 1 < q ≤ p < ∞,
if

1) f is continuous, open, and descrete;
2) f belongs to the Sobolev class W 1

q,loc(Ω);
3) J(x, f) ≥ 0 for almost all x ∈ Ω;
4) The mapping f has finite distortion, which means that for almost all x ∈ Ω

the equality J(x, f) = 0 implies Df(x) = 0;
5) The function of local (θ, σ)-weighted q-distortion

Ω ∋ x 7→ Kθ,σ
q (x, f) =

 θ
1
q (x)|Df(x)|

σ
1
p (f(x))J(x,f)

1
p
, if J(x, f) ̸= 0,

0, if J(x, f) = 0,

belongs to the class Lκ(Ω), where κ is determined from the condition 1
κ = 1

q − 1
p

(κ = ∞ for q = p).
Denote by Kθ,σ

q,p (f ; Ω) the quantity ∥Kθ,σ
q (·, f) | Lκ(Ω)∥.

In Section 3 we state and prove the theorems which generalize Propositions 1,
2, and 3 to the class of mappings satisfying Definition 1.
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2. Preliminaries

2.1. Sobolev classes. Throughout the text the symbol Ω denotes a domain (i. e.,
an open connected set) in Rn. For a domain U ⊂ Rn, we use the notation U b Ω
in order to indicate that U is bounded and U ⊂ Ω. Given x0 ∈ Rn and r > 0, let
B(x0, r) = {y ∈ Rn | |y − x0| < r}, S(x0, r) = ∂B(x0, r).

Suppose u : Ω → R is a function of class L1,loc(Ω). If there exists a function
vi ∈ L1,loc(Ω), i = 1, . . . , n, such that for every test function φ ∈ C∞

0 (Ω) the
equality ∫

Ω

u(x)
∂φ

∂xi
(x) dx = −

∫
Ω

vi(x)φ(x) dx

holds, then vi is called the generalized partial derivative of u with respect to xi and
written as ∂u

∂xi
. Denote by ∇u the vector-function ( ∂u

∂x1
, . . . , ∂u

∂xn
).

Let p ≥ 1. A mapping u : Ω → R that has in Ω the generalized partial derivatives
with respect to all variables belongs to the Sobolev space W 1

p (Ω) whenever u ∈ Lp(Ω)

and ∂u
∂xi

∈ Lp(Ω) for all i = 1, . . . , n.
We say that a mapping f = (f1, . . . , fn) : Ω → Rn lies in the Sobolev class W 1

p (Ω)

(W 1
p,loc(Ω)) if all fi ∈ W 1

p (Ω) (all fi ∈ W 1
p (U) for any domain U b Ω).

2.2. Dimension. In this section we recall the notion of topological dimension and
some of its properties.

Definition 2 ([6, Definition III 1]). Let F be a subset of Rn. The empty set and
only the empty set has dimension −1. The set F has dimension ≤ k, 0 ≤ k ≤ n,
at a point x ∈ F if x has arbitrarily small neighborhoods whose boundaries have
intersections with F of dimension ≤ n−1. The set F has dimension ≤ k, dimF ≤ k,
if F has dimension ≤ k at each of its points. The set F has dimension k at a point
x ∈ F if it is true that F has dimension ≤ k at x and it is false that F has
dimension ≤ k− 1 at x. Finally, the set F has dimension k, dimF = k, if it is true
that dimF ≤ k and it is false that dimF ≤ k − 1.

Proposition 4 ([6, Theorem IV 3]). Suppose U is a subset of Rn. Then dimU = n
if and only if U contains a non-empty set which is open in Rn.

Proposition 5 ([6, Ch. IV, Sec. 5, Corollary 1]). Let Ω be a domain in Rn and let
F ⊂ Ω. If dimF ≤ n− 2, then the set Ω \ F is connected.

Remark 1. In Rn the concept of Hausdorff dimension is widely used as well. It
follows from [6, Theorem VII 2] that the topological dimension of a set does not
exceed its Hausdorff dimension.

2.3. Capacity. Here we present several kinds of capacity. A more thorough exposition
can be found in [7, 8].

In what follows we shall assume that a function ω : Rn → [0,∞] (called weighted)
is different from zero almost everywhere and locally integrable.

Definition 3. By a condenser we understand a pair E = (U,K), where U ⊂ Rn

is open and K ⊂ U is compact. The number

capωp E = inf
u∈W0(U,K)

∫
U

|∇u(x)|pω(x) dx,

where W0(K,U) = {u ∈ C∞
0 (U) | 0 ≤ u ≤ 1, u|K = 1}, p ∈ [1,∞), is said to be the

ω-weighted p-capacity of the condenser E. For ω ≡ 1, we simply write capp E.



ON ASYMPTOTIC CURVES AND VALUES 691

Definition 4. Let U be a domain in Rn and let K ⊂ U be compact. The ω-weighted
p-capacity of the compact set K in the space W 1

p (U, ω) is the quantity

cap(K;W 1
p (U,ω)) = inf

u∈W0(K,U)

∫
U

up(x)ω(x) dx+

∫
U

|∇u(x)|pω(x) dx

 .

If ω ≡ 1, we write cap(K;W 1
p (U)). The notion of capacity (for ω ≡ 1) can be

extended to arbitrary sets in the well-known way (see, e. g., [7, Sec. 7.2.1]).

We shall consider separately the case when K is a one-point set. Let Ω be a
domain in Rn and x0 ∈ Ω. The point x0 is said to have ω-weighted p-capacity zero
in Ω if, for some open ball B(x0, R) ⊂ Ω, we have cap({x0};W 1

p (B(x0, R), ω)) = 0.
The latter relation, in view of Definition 3, 4, and [8, Theorem 2.2 (iv)], implies the
equalities

capωp ({x0}, B(x0, R)) = lim
r→0

capωp (B(x0, R), B(x0, r)) = 0.

The following statements will be needed below.

Proposition 6 ([4, Lemma III.2.6]). Let E be a compact set in Rn, cap(E;W 1
n(Rn)) >

0, and C a continuum in Rn \ E. Then, for every a > 0, there exists δ > 0 such
that capn(Rn \ E,C) ≥ δ, provided that diamC ≥ a.

Proposition 7 ([7, Sec. 9.1.2, Proposition 1]). Let C be a continuum in Rn and
p ∈ (n− 1, n). Then capp(Rn, C) ≥ λ(diamC)n−p, where a constant λ > 0 depends
only on p and n.

Next we state two assertions about the relationship between Hausdorff measures
and capacities. The symbol Hs stands for the usual s-dimensional Hausdorff measure
in Rn. In the unweighted case we have the following

Proposition 8 ([8, Theorem 2.26]). Suppose that E is a subset of Rn such that
cap(E;W 1

p (Rn)) = 0 , where 1 < p ≤ n. Then Hs(E) = 0 for all s > n− p.

In the weighted case we consider the Muckenhoupt class Ap, p ∈ (1,∞), which
consists of all locally integrable functions ω : Rn → [0,∞] such that

sup

 1

Hn(B)

∫
B

ω dx

 1

Hn(B)

∫
B

ω1/(1−p) dx

p−1

< ∞,

where the supremum is taken over all balls B in Rn.

Proposition 9 ([8, Corollary 2.33]). Let ω ∈ Ap and define p0 = inf{q | ω ∈ Aq}.
Then p0 < p. If cap(E;W 1

p (Rn, ω)) = 0, then Hs(E) = 0 for all s > n− p/p0.

A more detailed discussion of classes Ap can be found in, e. g., [8], [9, Ch. V].
2.4. Path lifting. Let I be an interval in R. This interval (possibly unbounded)
may be open, closed, or half-open. A curve in Rn is a continuous mapping α : I →
Rn. Set |α| = α(I).

Definition 5 ([4, Ch. II, Sec. 3]). Suppose f : Ω → Rn is a continuous, discrete,
open, and sense-preserving mapping, β : [a, b) → Rn is a curve and x ∈ f−1(β(a)).
A curve α : [a, c) → Ω is called a maximal f -lifting of β starting at x if (i) α(a) = x;
(ii) f ◦α = β|[a,c); (iii) if c < c′ ≤ b, then there does not exist a curve α′ : [a, c′) → Ω
such that α = α′|[a,c) and f ◦ α′ = β|[a,c′).
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Remark 2. Analogously, we may define a maximal f -lifting of β terminating at x
in the case β : (b, a] → Rn and x ∈ f−1(β(a)).

Proposition 10 ([4, Corollary II.3.3]). Let f : Ω → Rn be continuous, discrete,
open, and sense-preserving, let β : [a, b) → Rn (respectively, β : (b, a] → Rn) be a
curve and let x ∈ f−1(β(a)). Then β has a maximal f -lifting starting (respectively,
terminating) at x.

Remark 3. A mapping with (θ, σ)-weighted bounded (p, q)-distortion is sense-
preserving, since its Jacobian is nonnegative.

2.5. Modulus. Let Γ be a family of curves in Rn, n ≥ 2. A Borel function ρ : Rn →
[0,∞] is called admissible for Γ if

∫
γ
ρ ds ≥ 1 for every locally rectifiable curve γ ∈ Γ.

The collection of all admissible functions is denoted by admΓ. Let p ∈ [1,∞).

Definition 6. The ω-weighted p-modulus of the family Γ is the number

modωp Γ = inf
ρ∈admΓ

∫
Rn

ρpω dx.

For ω ≡ 1, we write modp Γ.

A more detailed information about (unweighted) moduli can be found in [4,
Ch. II] or [10, Ch. 1].

It is useful to point out one simple property. We shall write Γ1 < Γ2 if each curve
γ ∈ Γ2 has a subcurve which belongs to Γ1. If Γ1 < Γ2, then modωp Γ1 ≥ modωp Γ2.
Notice that Γ1 ⊃ Γ2 implies Γ1 < Γ2.

The following assertion is of great importance.

Proposition 11 ([4, Proposition II.10.2]). Let E = (U,K) be a condenser and
let ΓE be the family of all curves of the form γ : [a, b) → U with γ(a) ∈ K and
|γ| ∩ (U \ C) ̸= ∅ for every compact set C ⊂ U . Then capp E = modp ΓE.

Next we formulate the analog of Poletskĭı’s inequality for the class of mappings
from Definition 1.

Proposition 12 ([11, Theorem 1]). Suppose that f : Ω → Rn is a mapping with
(θ, 1)-weighted bounded (p, q)-distortion, n − 1 < q ≤ p < ∞, and the weighted
function ω(x) = θ−

n−1
q−(n−1) (x) is locally integrable. If Γ is a family of curves in Ω,

then
(modp′ f(Γ))1/p

′
≤ Kθ,1

p,q (f ; Ω)
n−1(modωq′ Γ)

1/q′ ,

where p′ = p
p−(n−1) , q

′ = q
q−(n−1) .

2.6. Essential singularities. An isolated boundary point b ∈ ∂Ω is said to be an
essential singularity of a mapping f : Ω → Rn if f has no limit at b.

The following proposition is the analog of the Sokhotskĭı—Weierstrass theorem.

Proposition 13 ([5, Corollary 6]). Let f : Ω → Rn be a nonconstant mapping with
(θ, 1)-weighted bounded (n, n)-distortion, and let b ∈ ∂Ω be an isolated boundary
point which has ω-weighted n-capacity zero in Ω ∪ {b}, where ω(x) = θ1−n(x). If b
is an essential singularity of f , then cap(Rn \ f(U \ {b});W 1

n(Rn)) = 0 for every
neighborhood U ⊂ Ω ∪ {b} of b.
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3. Statement and proof of main results

Unlike Section 1, in Theorem 1 a curve γ : [0, 1) → Ω \F is called asymptotic for
the set F if dist(γ(tk), F ) → 0 for some sequence tk → 1− 0 as k → ∞.

Theorem 1. Suppose that f : Ω\F → Rn is a mapping with (θ, 1)-weighted bounded
(p, q)-distortion, F ⊂ Ω is closed, dimF ≤ n− 2, n− 1 < q < n ≤ p < (n−1)2

n−2 , and

the weighted function ω(x) = θ−
n−1

q−(n−1) (x) is locally integrable. Let Γ be a family
of asymptotic curves for the set F . If modωq′ Γ = 0 and each point of F has ω-
weighted q′-capacity zero in Ω, where q′ = q

q−(n−1) , then the mapping f extends to
a continuous mapping f̃ : Ω → Rn for p ̸= n. If in addition, for p=n, the inequality
cap(Rn \ f(Ω \ F );W 1

n(Rn)) > 0 holds, then f extends to a continuous mapping
f̃ : Ω → Rn.

Proof. Case p ̸= n. Fix any point x0 ∈ F and take R > 0 such that B(x0, R)\F ⊂
Ω. By virtue of Proposition 4 the set B(x0, R)\F is non-empty open. Consequently,
there exists a sequence {xi}∞i=1 ⊂ B(x0, R)\F that converges to x0. Fix an arbitrary
i ∈ N. By virtue of Proposition 5 we can connect xi and xj with j ≥ i by a curve
γij lying in the domain B(x0, ri) \ F for all j ≥ i, where ri ∈ (0, R). Undoubtedly,
we may assume that ri → 0 as i → ∞.

Consider the condensers Eij = (B(x0, R) \ F, γij) and f(Eij) = (f(B(x0, R) \
F ), f(γij)), as well as the families of curves ΓEij and Γf(Eij) corresponding to these
condensers in the sense of Proposition 11. Let Γij be the family of maximal f -
liftings of the curves from Γf(Eij) starting at γij (see Proposition 10). It is easy to
see that f(Γij) < Γf(Eij). Also, Γij ⊂ ΓEij (see the proof of [12, Lemma 1.4.1]).
Therefore,

modp′(Γf(Eij)) ≤ modp′ f(Γij) ≤ modp′ f(ΓEij ),

where p′ = p
p−(n−1) . Taking into account Proposition 11, we get

(1) capp′ f(Eij) ≤ modp′ f(ΓEij ).

Clearly, the family ΓEij
can be represented in the form

(2) ΓEij = ΓEij ,1 ∪ ΓEij ,2,

where ΓEij ,1 is the family of curves α : [a, b) → B(x0, R)\F such that α(a) ∈ γij and
dist(α(tk), F ) → 0 for some sequence tk → b−0 as k → ∞ , and ΓEij ,2 is the family
of curves α : [a, b) → B(x0, R)\F such that α(a) ∈ γij and dist(α(τk), ∂B(x0, R)) →
0 for some sequence τk → b− 0 as k → ∞.

We deduce from (1), (2), subadditivity of modulus (see [4, Proposition II.1.5
(1)]) and Proposition 12 that

capp′ f(Eij) ≤

Kθ,1
p,q (f ; Ω \ F )p

′(n−1)
(
(modωq′ ΓEij ,1)

p′/q′ + (modωq′ ΓEij ,2)
p′/q′

)
.

(3)

Since ΓEij ,1 ⊂ Γ, it follows that

(4) modωq′ ΓEij ,1 = 0.

Denote by Γ∗
Eij ,2

the family of curves corresponding to the condenser (B(x0, R), γij)

in the sense of Proposition 11. Obviously, ΓEij ,2 ⊂ Γ∗
Eij ,2

. Definition 6, Definition 3,
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and the inclusion |γij | ⊂ B(x0, ri) yield

modωq′ ΓEij ,2 ≤ modωq′ Γ
∗
Eij ,2 ≤

capωq′(B(x0, R), γij) ≤ capωq′(B(x0, R), B(x0, ri)).
(5)

Combining (4), (5), and (3), we obtain

(6) capp′ f(Eij) ≤ Kθ,1
p,q (f ; Ω \ F )p

′(n−1)
(
capωq′(B(x0, R), B(x0, ri))

)p′/q′

.

Using the estimate capp′(Rn, f(γij)) ≤ capp′ f(Eij) and Proposition 7 (the condition

n < p < (n−1)2

n−2 ensures that p′ ∈ (n− 1, n)), we infer from (6) that

λ(diam f(γij))
n−p′

≤ Kθ,1
p,q (f ; Ω \ F )p

′(n−1)
(
capωq′(B(x0, R), B(x0, ri))

)p′/q′

.

The latter relation and the fact that the point x0 ∈ F has ω-weighted q′-capacity
zero yield |f(xi)− f(xj)| → 0 as i, j → ∞. By Cauchy’s criterion, lim

i→∞
f(xi) exists

and is finite. Since the sequence {xi}∞i=1 was chosen arbitrarily, Heine’s definition
of limit of a function allows us to conclude that the limit lim

x→x0

f(x) exists and is

finite.
Case p = n. Keeping in mind the previous case we shall omit some details here.

Let x0 ∈ F . Assume that f fails to have a limit in Rn ∪ {∞} at x0. Then for
some R > 0 we can find in B(x0, R) \ F ⊂ Ω two sequences {xi}∞i=1 and {x′

i}∞i=1

converging to x0 such that dist(f(xi), f(x
′
i)) ≥ a > 0 for all i ∈ N.

By virtue of Proposition 5 we can connect xi and x′
i by a curve γi lying in

B(x0, ri) \ F , ri ∈ (0, R). Again we may assume that ri → 0 as i → ∞
Consider the condensers Ei = (B(x0, R) \ F, γi) and f(Ei) = (f(B(x0, R) \

F ), f(γi)), as well as the family of curves ΓEi and Γf(Ei) corresponding to these
condensers in the sense of Proposition 11. Arguing as in the preceding case, we
arrive at the inequality of the form (6):

capn f(Eij) ≤ Kθ,1
n,q(f ; Ω \ F )n(n−1)

(
capωq′(B(x0, R), B(x0, ri))

)n/q′

.

Since diam f(γi) ≥ a and cap(Rn\f(Ω\F );W 1
n(Rn)) > 0, in view of Proposition 6

and the inclusion f(B(x0, R) \ F ) ⊂ f(Ω \ F ) we conclude that

0 < δ ≤ Kθ,1
n,q(f ; Ω \ F )n(n−1)

(
capωq′(B(x0, R), B(x0, ri))

)n/q′

.

Passing to the limit as i → ∞ in the latter inequality and taking into account that
x0 has ω-weighted q′-capacity zero, we get a contradiction. �

Before stating the further assertions we recall that a mapping f : Ω → Rn has
an asymptotic value c at a point b ∈ ∂Ω if c = lim

t→1−0
f(γ(t)) for some curve

γ : [0, 1) → Ω with γ(t) → b as t → 1− 0.

Theorem 2. Suppose that f : B(0, 1) → Rn is a mapping with (θ, 1)-weighted
bounded (p, q)-distortion, n−1 < q < n ≤ p < (n−1)2

n−2 . Suppose also that the weighted

function ω(x) = θ−
n−1

q−(n−1) (x) is locally integrable and belongs to the Muckenhoupt
class Aq′ . Let E ⊂ S(0, 1) be the set of points at which f has some asymptotic
value. Assume that every point of S(0, 1) has ω-weighted q′-capacity zero, where
q′ = q

q−(n−1) . If p ̸= n, then cap(E ∩B(y, ε);W 1
q′(Rn, ω)) > 0 whenever y ∈ B(0, 1)
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and ε > 0. If p = n, the latter conclusion is valid under the additional condition
cap(Rn \ f(Ω \ F );W 1

n(Rn)) > 0.

Proof. Case p ̸= n. Assume, on the contrary, that there are y ∈ S(0, 1) and
ε > 0 such that cap(E ∩ B(y, ε);W 1

q′(Rn, ω)) = 0. By Proposition 9, we have
that Hn−1(E ∩ B(y, ε)) = 0. Hence, there is a curve γ : [0, 1) → B(0, 1) such
that γ(t) → c ∈ S(0, 1) ∩ B(y, ε/2) as t → 1 − 0 and lim

t→1−0
f(γ(t)) fails to exist.

Consequently, we can take a sequence t1 < t2 < . . . of positive numbers such that
ti → 1− 0 and lim

k→∞
f(γ(t2k)) ̸= lim

k→∞
f(γ(t2k+1)). Therefore, we may assume that

there exists a > 0 such that diamFk ≥ a for all k, where Fk = f(γ([t2k, t2k+1])).
Denote by Γk the family of curves β : [0, 1) → Rn such that β(0) ∈ Fk and there
is lim

t→1−0
β(t) ∈ Rn \ f(B(0, 1)). Consider the condenser (Rn, Fk), as well as the

family of curves Γ̃k corresponding to this condenser in the sense of Proposition 11.
Evidently, Γk < Γ̃k, and therefore, modp′ Γk ≥ modp′ Γ̃k, where p′ = p

p−(n−1) .

The condition n < p < (n−1)2

n−2 ensures that p′ ∈ (n − 1, n). The application of
Proposition 7 yields

(7) modp′ Γk ≥ modp′ Γ̃k = capp′(Rn, Fk) ≥ λan−p′

for all k, where λ > 0 is a constant.
Since the point c has ω-weighted q′-capacity zero, we can choose r > 0 such that

(8) capωq′(B(c, ε/2), B(c, r)) ≤

(
λan−p′

)q′/p′

2Kθ,1
p,q (f ;B(0, 1))q′(n−1)

.

We claim that B(c, ε/2) ⊂ B(y, ε). Indeed, if z ∈ B(c, ε/2), then

|z − y| ≤ |z − c|+ |c− y| ≤ ε/2 + ε/2 = ε.

Denote by Γ̂k the family of maximal f -liftings of the curves from Γk starting at
γ([t2k, t2k+1]). Let l be the first k such that γ([t2k, t2k+1]) ⊂ B(c, r) and let Γ̂∗

l be
the curves from Γ̂l that go outside B(y, ε). If Γ̂r is the family of curves corresponding
to the condenser (B(c, ε/2), B(c, r)) in the sense of Proposition 11, then Γ̂r < Γ̂∗

l ,
since B(c, ε/2) ⊂ B(y, ε). From (8) and the easily verified inequality

modωq′ Γ̂r ≤ capωq′(B(c, ε/2), B(c, r))

we infer

(9) modωq′ Γ̂
∗
l ≤

(
λan−p′

)q′/p′

2Kθ,1
p,q (f ;B(0, 1))q′(n−1)

.

Using (7) and Proposition 12, we obtain

λan−p′
≤ modp′ Γl ≤ modp′(f(Γ̂l)) ≤ Kθ,1

p,q (f ;B(0, 1))p
′(n−1)

(
modωq′ Γ̂l

)p′/q′

,

and hence

(10) modωq′ Γ̂l ≥

(
λan−p′

)q′/p′

Kθ,1
p,q (f ;B(0, 1))q′(n−1)

.
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From (9) and (10) we get modωq′(Γ̂l \ Γ̂∗
l ) ≥ const > 0. Set

A =

{
x ∈ Rn | there is a curve α ∈ Γ̂l \ Γ̂∗

l such that x = lim
t→1−0

α(t)

}
.

It follows from the definition of Γk that A ⊂ B(y, ε) ∩ S(0, 1). Then we have
cap(A;W 1

q′(Rn, ω)) ≥ const > 0. To get a contradiction, it remains to note that f

has a limit along every curve from Γ̂l \ Γ̂∗
l .

Case p = n. We use the same arguments as in the previous case. The difference
is that the condition cap(Rn \ f(Ω \ F );W 1

n(Rn)) > 0 and Proposition 6 yield
modp′ Γk ≥ δ for some δ > 0. �

Theorem 3. Suppose that f : Ω → Rn is a nonconstant mapping with (θ, 1)-
weighted bounded (n, n)-distortion, and b ∈ ∂Ω is an isolated boundary point that
has ω-weighted n-capacity zero in Ω∪{b}, where ω(x) = θ1−n(x). If b is an essential
singularity of f , then every point of Rn \ f(Ω) is an asymptotic value of f .

Proof. Let z ∈ Rn \ f(Ω). Without loss of generality it can be assumed that z = 0.
Take r > 0 such that B(b, r) ⊂ Ω ∪ {b}. Set U = B(b, r) \ {b}.

We claim that there exists r′ ∈ (0, 1) such that

(11) B(0, r′) ∩ f(S(b, r)) = ∅.

Indeed, if this is not the case, then 0 belongs to the closure of the closed set
f(S(b, r)), and hence, 0 ∈ f(S(b, r)), which is impossible, since 0 ̸∈ f(Ω).

By Proposition 13, cap(Rn \ f(U);W 1
n(Rn)) = 0. In view of Proposition 8 we

have Hn−1(Rn \ f(U)) = 0. Consequently, Hn−1-almost all points of S(0, r′) lie in
f(U). In virtue of condition (11) the set f−1(S(0, r′)) has a connected component
C such that C ⊂ U .

For y ∈ S(0, 1), we define the curve βy : (0, r
′] → B(0, r′) by the rule βy(t) = ty.

Denote by αy the maximal f -lifting of βy terminating at C. Arguing as in [12,
p. 128–129], we can show that the curve αy is a mapping αy : (ry, r

′] → U such that
αy(t) → b as t → ry + 0. If we prove that ry = 0 for at least one y, then this will
imply that z = 0 is an asymptotic value of f . Below we establish the stronger fact:
ry = 0 for Hn−1-almost all y ∈ S(0, 1).

Consider the sets Ei = {y ∈ S(0, 1) | ry > 1/i}, i ∈ N. We shall prove that
Hn−1(Ei) = 0 for all i. To do this fix an arbitrary i and introduce the family
Γi = {αy | y ∈ Ei}. As mentioned above, all curves of this family tend to b.
Because of the fact that b has ω-weighted n-capacity zero, we have modωn Γi = 0.
Proposition 12 yields modn f(Γi) = 0.

Since ry > 1/i, every curve γy : [1/i, r
′] → Rn, γy(t) = ty, y ∈ Ei, has a subcurve

that belongs to the family f(Γi). Applying Hölder’s inequality and taking into
account the conditions ρ ∈ adm f(Γi), y ∈ Ei (whence |γ̇y(t)| = |y| = 1), and
r′ ∈ (0, 1), we obtain

1 ≤
r′∫

1/i

ρ(ty) dt ≤

 r′∫
1/i

ρn(ty) dt


1/n (

r′ − 1

i

)(n−1)/n

≤

 r′∫
1/i

ρn(ty) dt


1/n

.
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From this it easily follows that

(12)
r′∫

1/i

ρ(ty) dt ≤
r′∫

1/i

ρn(ty) dt.

After computing the integral in polar coordinates and using (12), we get∫
Rn

ρn(x) dx ≥
∫

S(0,1)

 r′∫
1/i

tn−1ρn(ty) dt

 dHn−1(y) ≥

1

in−1

∫
S(0,1)

r′∫
1/i

ρn(ty) dt dHn−1(y) ≥ 1

in−1

∫
S(0,1)

r′∫
1/i

ρ(ty) dt dHn−1(y) ≥

1

in−1
Hn−1(Eρ),

(13)

where Eρ = {y ∈ S(0, 1) |
∫ r′

1/i
ρ(ty) dt ≥ 1}. From the above arguments we

deduce that Ei ⊂ Eρ. It follows from (13) that the quantity Hn−1(Eρ) can be
made arbitrarily small, since modn f(Γi) = 0. Thus, Hn−1(Ei) = 0. �
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