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MATHEMATICAL MODEL OF WATER-OIL DISPLACEMENT
IN FRACTURED POROUS MEDIUM

A.A.KALINKIN, YU.M.LAEVSKY

Abstract. Within the mixed finite element method the numerical
model for two-phase incompressible fluid filtration is designed in the
terms "velocity-pressure-saturation". The main difficulty of the model
is caused by fractured porous medium. Our approach allows to resolve
difficulties wtith boundary condition degeneration for the saturation.
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Introduction

In this paper we present one of the existing approaches for numerical modeling
of filtration processes in fractured porous media of two-phase incompressible
fluid, which will henceforth be interpreted as a system of "oil-water" [1]–
[4]. Corresponding multidimensional mathematical model will be studied and
represented as a weak mixed formulation (see.[5] and references therein) in terms
of the "velocity-pressure-saturation". In this formulation, there is no problem
of singularity for the boundary conditions for saturation: in mixed formulation,
saturation is not required to meet any boundary conditions. At the same time there
is a feature of permeability functions such that at any moment the equation for
total velocity and pressure satisfies the coercivity condition on the set of solenoidal
functions. Note that mixed formulation was used for finding velocity and pressure
in a number of works of Yuvinga R. et al. (See, for example, [6] and references
therein). Unlike [6] in this paper complete mixed formulation is studied, the main
feature of which is the representation of all spatial derivatives of vector fields as

Kalinkin A.A., Laevsky Yu.M., Mathematical model of water-oil displacement in
fractured porous medium.

c⃝ 2015 Kalinkin A.A., Laevsky Yu.M.
The work is supported by Russian Science Foundation, Grant 15-11-10024.
Received September, 24, 2015, published October, 28, 2015.

743



744 A.A.KALINKIN, YU.M.LAEVSKY

divergences of unknown functions. Moreover, for approximations based on Raviart-
Thomas elements no problems arise with the description of the saturation front due
to the presence of capillary diffusion. For Laveretta-Buckley model (see., Eg, [3])
direct application of this approach would be justified only with the use of special L2

projectors, that result in a direct difference schemes. Finally, to avoid overloading,
here we do not address the simulation of injection and production wells. As for
the modeling of fractured porous medium, here we use a popular approach with
introduction of two complete sets of variables in each point - one corresponds to
a porous medium, another to fractured [1], [12]. Similarly to the above-mentioned
works the flow between the medias is considered to be proportional to the pressure
difference. And, despite the fact that such approach is quite popular in simulation
of fractured porous media, we could not find an approximation of these equations
in terms of the "velocity-pressure-saturation"in the literature, which is essential for
proper flow approximation.

The paper is organized as follows. The second paragraph provides basic relation-
ships that define the filtration process of two-phase incompressible fluid, the
problem of oil displacement with water is formulated as a system of equations of
first order with the corresponding boundary conditions. Special attention is given
to the discussion of impermeability conditions in the presence of gravity.

1. Equations for two-phase flow filtering

Suppose that the liquid flow occurs in domain Ω ⊂ Rd, d = 2, 3 of pore space.
We also assume that the flow of fluid takes place in fractured porous media and
the velocity of the fluid in the fractures is much higher than in the pores, while
the volumes of the spaces in the pores is significantly higher than in fractures. The
standard way to describe this kind of problem — the two sets of unknowns for each
point in space, the first is responsible for the movement of fluids in porous media,
and the second for the movement of fluid in the fractured media. Subsequently, the
variables with superscript 1 correspond porous medium, 2 — fractured.

The rate of flow of fluids between the media can be naturally defined in
proportion to the pressure difference between the medias:

(1) γ(P 2 − P 1) = q

The filtering process is determined by equation of conservation of mass written
for two components of the two-phase incompressible liquid:

(2) mj ∂s
j
i

∂t
+∇ · vj

i = qji , i = 1, 2

and equation of conservation of momentum, according to Darcy’s law:

(3) vj
i = −kji (s

j
i )∇ϕ

j
i , i = 1, 2.

Hereinafter, the index i is the number of phase, with i = 1 corresponding to the
displaced phase (oil), i = 2 – the displacing phase (water). In (3) and (4) standard
notation: si – saturation of the phase is used that satisfies the following equation:

(4) sj1 + sj2 ≡ 1,

m = m(x) - porosity, vi – velocity vector for each filtration phase ϕi – potential in
each phase that satisfies

(5) ϕi = pi + ρigH, i = 1, 2,
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here pi – phase pressure, ρi - phase density, assumed constant due to incompress-
ibility that was used earlier in (3), g – gravitational acceleration (hereinafter, a
scalar), H – the distance from a point of the medium to a fixed reference surface
in the direction of the gravity force. In two-dimensional case, when modelled plane
contains the direction of gravity force, and in three-dimensional case we assume
H(x) = xd, where point x ∈ Rd is x = (x1, x2) for d = 2 and x = (x1, x2, x3) for
d = 3. In planar problem, when a modelled plane is orthogonal to the direction of
gravity, we assume H = 0. By qji we mean the additional weight in the i-th phase
in the j-th media obtained as a consequence of flow between environments. Then,
following series of equations can be written:

(6) q1i + q2i ≡ 0,

(7) q1i =

{
qs1i q > 0,
qs2i q < 0.

Here the first equation is a rather obvious consequence of the law of conservation
of mass, and the second is built taking into consideration the equality of concentra-
tions in phases in the domain of higher pressure and flow between the environments.
By pressure in the domain we understand the direct sum of the partial pressures:

(8) P j = sj1p
j
1 + sj2p

j
2

Phase permeabilities kji (s
j
i ) are set by equalities

(9) kji (s
j
i ) = kj0

fi(s
j
i )

µi
,

here k0 - absolute permeability, µi - coefficients of dynamic viscosity, functions
fi(si) in accordance to [3] are determined by equalities:

(10) fi(s
j
i ) =


0 0 < si < s(
sji−s

s−s

)3

s ≤ sji ≤ s

1 s < si < 1,

, i = 1, 2.

Here 0 < s < 1/2 and s = 1 − s. Finally, the difference in phase pressures caused
by the presence of capillary diffusion is assumed:

(11) pj1 − pj2 = P j
k (s

j
2),

here Pk(s
j
2) – some empirically defined piecewise smooth function that satisfies

P ′
k(s

j
2) ≤ 0 and P ′

k(s2) = 0 for 0 < sj2 ≤ s. Negative sign of the derivative P ′
k

corresponds to the assumption that water’s wettability is higher than that of oil.
According to (4) variable sj1 can be excluded, and thereafter we denote sj = sj2,

pj = pj2, ϕ
j = ϕj2 = pj + ρ2gH. Thus according to (11), (5)

pj1 = pj + P j
k (s

j), ϕj1 = ϕj + P j
k (s

j)− (ρ2 − ρ1)gH .

Further, it is easy to derive that

(12) k(sj) ≡ k1(1− sj) + k2(s
j) ≥ k0

(
√
µ1 +

√
µ2)2

> 0, 0 < sj < 1.
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It is this inequality that ensures ellipticity of the equation for pressure or coercivity
condition on the set of solenoidal functions for mixed formulation. The model of
oil displacement with water we represent as a system of first order differential
equations and functional dependencies of type "notation". For this purpose, we
introduce function

(13) σ(sj) =

sj∫
s

k1(1− ξ)

k(ξ)
|P ′

k(ξ)|dξ, s ≤ sj ≤ s.

The correctness of this formula immediately implies from (12). Similar approaches
that use functions of the same type were used earlier (see para. [3]). As a new
independent variable we introduce generalized potential of the displacing phase

(14) ψj = ϕj − σ(sj).

Next, we introduce the gravity vector

(15) G(sj) =
k1(1− sj)

k(sj)
(ρ2 − ρ1)g ed,

here e2 = (0, 1)T and e3 = (0, 0, 1)T . It worth noting that in "oil-water"system
water is a heavy phase: ρ2 > ρ1, so the gravity vector causes emersion of oil. To
denote total flow velocity we use notation vj = vj

1+vj
2. According to (3) vector vj

is solenoidal. In view of equalities (13) - (15) and the fact that ∇H = ed, equalities
(3), (4) can be rewritten as the following system:

1

k(sj)
vj +∇ψj = G(sj),

∇ · vj = qj1 + qj2,

1

k(sj)
wj = ∇σ(sj),(16)

vj
2 −

k2(s
j)

k(sj)
(vj −wj) = −k2(sj)G(sj),

m
∂sj

∂t
+∇ · vj

2 = qji .

γ(P 2 − P 1) = q.

q1i + q22 ≡ 0

q1i =

{
qs1i q > 0,
qs2i q < 0,

P j = sj1p
j
1 + sj2p

j
2

Here, the third and fourth equalities do not represent differential equations. The
third equality is simply another definition of w. The reason for introducing this
notation will become clear below while obtaining the integral form of the reduced
system of equations. The fourth equation establishes a relationship between the
total velocity v and the velocity of the displacing phase v2. Note that as the rest
of the equations of system (16) third and fourth equalities "work" only within the
domain Ω, and on the border, generally speaking, can be not satisfied. In the future,
these equalities will be considered in a weak form.
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Let us define the boundary conditions for the system (16). Suppose Γ = ∂Ω –
piecewise smooth boundary of the domain Ω, Γent Γex – disjoint parts of the border
Γ:

Γent ∪ Γex ⊂ Γ, Γent ∩ Γex = ∅.
We denote Γ0 = Γ\ (Γent∪Γex) and assume mes(Γ0) > 0 and the distance between
Γent and Γex is positive. Further, suppose lent = mes(Γent), lex = mes(Γex), n =
n(x) – unit outer-pointing (with respect to Ω) normal, defined almost everywhere
on Γ.

It is reasonable to assume that water enters the the oil-bearing layer as well as
oil comes out in the production well exclusively through the fractured media. Also
we assume that oil flows from the area of Ω through the boundary Γex at a rate
of qex1 (t,x), and on the remaining part of the boundary impermeability condition
takes place:

v2
1 · n = qex1 (t,x), x ∈ Γex, v2

1 · n = 0, x ∈ Γ0 ∪ Γent,(17)
v1
1 · n = 0, x ∈ Γ(18)

At the same time the total flow rate of the oil flowing out is Qex
1 (t) =∫

Γex q
ex
1 (t,x) dγ. Further, let q = const be a given flow rate, entering the domain

Ω through the border Γent. Part of the water flows through the boundary Γex at a
rate qex2 (t,x). On the remaining part of the boundary impermeability condition is
fulfilled:

(19) v2
2 · n = −q, x ∈ Γent, v2

2 · n = qex2 (t,x), x ∈ Γex,

v2
2 · n = 0, x ∈ Γ0.

(20) v1
2 · n = 0, x ∈ Γ

Total amount of water flowing in and out is Q = lentq (analogue of the well
production rate) and Qex

2 (t) =
∫
Γex q

ex
2 (t,x) dγ respectively. Total flow discharges

Q, Qex
1 (t)and Qex

2 (t) have a physical dimension [m2/sec] for d = 2 and [m3/sec]
for d = 3. The boundary conditions for the total velocity v are followed from (18),
(20):

(21) v2 · n = −q, x ∈ Γent, v2 · n = qex1 (t,x) + qex2 (t,x), x ∈ Γex,

v2 · n = 0, x ∈ Γ0.

(22) v1 · n = 0, x ∈ Γ

In equalities (18)-(22) the only set value is the total flow Q. At the same time
q = Q/lent. Here we introduce one of several ways to introduce flow rates qex1 (t,x)
and qex2 (t,x). Due to the solenoidal vector field v2 the following equality takes place∫
Γ
v · n dγ = 0. Then

Qex
1 (t) =

∫
Γ

v2
1 · n dγ = −

∫
Γ

v2
2 · n dγ = Q−Qex

2 (t),
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which implies that

(23) Qex
1 (t) +Qex

2 (t) = Q, t > 0.

Suppose that for x ∈ Γex

(24) qex1 (t,x) =
k1(1− s)

k(s)

lent

lex
q + k2(s)G(s) · n,

(25) qex2 (t,x) =
k2(s)

k(s)

lent

lex
q − k2(s)G(s) · n.

Then

(26) qex1 (t,x) + qex2 (t,x) ≡ 1

lex
Q,

and Qex
1 (t), Qex

2 (t) satisfy the equality (23). Formulas (24) and (25) are modified
relations between the total flow discharges Qex

1 and Qex
2 , presented in [3]. The main

idea of modification is to take into account gravity on the outlet of the reservoir.
In case of rectangular area when Γex lies entirely on the side surface, the terms
corresponding to the force of gravity are absent, because in this case ed · n = 0.
Until the breakthrough of water, when s ≤ s at x ∈ Γex, the situation becomes
much simpler. In this case k2(s)G(s) · n = 0, and formulas (24), (25) take form:
qex1 (t,x) = lentq/lex, qex2 (t,x) = 0. That ensures equalities for total discharges
Qex

1 (t) = Q, Qex
2 (t) = 0. Thus, according to (20), (22), (25) and (26) the total

velocity of the two-phase fluid and the velocity of the water are defined at the
boundary Γ by the following equations

(27) v · n = − Q

lent
, x ∈ Γent, v · n =

Q

lex
, x ∈ Γex, v · n = 0, x ∈ Γ0,

(28) v2 · n = − Q

lent
, x ∈ Γent, v2 · n =

k2(s
2)

k(s2)

Q

lex
− k2(s

2)G(s2) · n, x ∈ Γex,

v2 · n = 0, x ∈ Γ0.

Since k1(1− s2) = 0 on Γent, ie movement of oil is absent, according to formula
(15) G(s2) = 0 on Γent. Therefore, on Γent ∪ Γex an equality takes place

v2 · n =
k2(s

2)

k(s2)
v · n− k2(s

2)G(s2) · n,

which coincides with the continuous extension of the fourth equality from (16) on
the boundary region, in case of w · n = 0 on Γent ∪ Γex. Consider a part of the
border Γ0, where for each vector v and v2 impermeability conditions are set. In
the case of the zero capillary pressure the fourth equation of system (16) takes the
form

v2 =
k2(s

2)

k(s2)
v − k2(s

2)G(s2).

Continuous extension of this equation on Γ0 can contradict the the impermeability
conditions (for s2 > s and ed ·n(x) ̸= 0). However, this only means the impossibility
of such an extension, in the sense that the latter equality takes place strictly within
the domain Ω, and the function v2 has infinitely thin boundary layer. Physically, it
is fully justified: in rectangular area, when two phases of oil are moving, oil can not
float above the upper limit but on arbitrarily small distance from the boundary the
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oil is effected by gravity vector, causing it to float. On the other hand, the source of
descending by gravity water is not a border area, but the transportation of water
along the border under the influence of a pressure drop. A similar situation holds
for the bottom boundary if in the above reasoning water and oil changed places.
The presence of capillary forces will not be reflected in the described mechanism,
and therefore, it is natural to set w · n = 0, x ∈ Γ0. Then, taking into account
conditions on Γent ∪ Γex assume

(29) w · n = 0, x ∈ Γ.

Note that (28) and (29) are not the boundary conditions for differential equations
(the third and fourth equalities (16) are just reformulations) and their main purpose
is to point out the set of functions, in which L2 -projection will be performed in
the formulation of the generalized problem.

2. Mixed formulation

Similar to previous paper [10] we are going to apply mixed Finite Element
Method so in this paragraph weak mixed formulation is presented. Let us proceed
to the construction of the projection form of the equations (16) which is the basis
for the application of the finite mixed elements. The main feature of the system
given below is that integral analogues of third and fourth equations of (16) are
not differential equations. Corresponding integral identities define the procedure of
projection in the space of vector-functions L2(Ω) = (L2(Ω))

d on a closed subspace

H(div,Ω) = {u ∈ L2(Ω) | ∇ · u ∈ L2(Ω)} ,

norm in which is given by

∥u∥2div =

∫
Ω

(
u · u+ (∇ · u)2

)
dx.

Further, let H0(div,Ω) be a closure corresponding to this norm of smooth vector
functions, such that almost everywhere on Γ the following equality takes place
u · n = 0. In a standard way (see [5]) from problem (16), (28)-(29) we get the
following weak mixed formulation for the Neumann problem: for a given water
saturation s0 ∈ L2(Ω) find continuous in parameter t > 0 functions s(t) ∈ L2(Ω),
ψ(t) ∈ L2(Ω)/const, v(t), w(t), v2(t) ∈ H(div,Ω) such as s(0) = s0, ∂s/∂t(t) ∈
L2(Ω), boundary condition (2.21)-(2.23) holds, and for any t > 0 following integral
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identities take place∫
Ω

1

k(sj)
vj · udx−

∫
Ω

ψj ∇ · udx =

∫
Ω

G(sj) · u dx ∀u ∈ H0(div,Ω),∫
Ω

ξ∇ · vj dx =

∫
Ω

ξ (qj
1 + qj

2) dx ∀ ξ ∈ L2(Ω)/const,∫
Ω

1

k(sj)
wj · udx = −

∫
Ω

σ(sj)∇ · u dx ∀u ∈ H0(div,Ω),

∫
Ω

vj
2 · u dx−

∫
Ω

k2(s
j)

k(sj)
(vj −wj) · udx

=

∫
Ω

k2(s
j)G(sj) · u dx ∀u ∈ H0(div,Ω),(30)

∫
Ω

m
∂sj

∂t
ξ dx+

∫
Ω

ξ∇ · vj
2 dx =

∫
Ω

ξ qj2 dx ∀ ξ ∈ L2(Ω),∫
Ω

γ(P 2 − P 1) dx =

∫
Ω

q dx,

∫
Ω

(q1i + q22) dx = 0,

∫
Ω

P j dx =

∫
Ω

(sj1p
j
1 + sj2p

j
2) dx,

q1i =

{
qs1i , q > 0,
qs2i , q < 0.

Note that the vector function w(t) is actually sought as the element of the
subspace H0(div,Ω). All spatial derivatives are included in the system (30) as the
only divergence of unknown vector fields. This opens the way to the application of
the mixed finite element method. It should be emphasized that an important step
in the preparation of (30) having this property, was the introduction of the notation
w (third equality in (16)). It is this step that allows us to search the saturation s(t)
as a function from L2(Ω). Finally, inequality (12) provides a coercivity condition
on the set of solenoidal functions: for an arbitrary vector function u ∈ H(div,Ω)
such as divu = 0, the following inequality takes place∫

Ω

1

k(s)
u · u dx ≥ k0

(
√
µ1 +

√
µ2)2

∥u∥2div,

which, in addition to inf–sup condition (see [5]), is the key to investigation of the
unique solvability of problem(30).

3. Conclusion

We introduce a model that describes motion of a two-phase fluid in fractured
porous media. The key difference of constructed equations from existing analogues
is introduction of a two-speed medium such that in each point unknowns
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corresponding to both cracked and pore medium are presented. Exchange(motion)
between mediums is described by analogue of Newton’s law of heat transfer. All
first-degree equations are written in terms of the saturation-pressure.
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