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AUTOMORPHISM GROUPS OF CYCLOTOMIC SCHEMES

OVER FINITE NEAR-FIELDS

D.V. CHURIKOV, A.V. VASIL’EV

Abstract. We prove that apart from a finite number of known excep-
tions the automorphism group of a nontrivial cyclotomic scheme over a
finite near-field K is isomorphic to a subgroup of the group AΓL(1,F),
where F is a field with |F| = |K|. Moreover, we obtain that the automor-
phism group of such a scheme is solvable if the base group of the scheme
is solvable.
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1. Introduction

An algebraic structure K = ⟨K,+, ◦⟩ is called a (right) near-field if K+ = ⟨K,+⟩
is a group, K× = ⟨K\{0}, ◦⟩ is a group, (x+ y) ◦ z = x ◦ z+ y ◦ z for all x, y, z ∈ K,
and x ◦ 0 = 0 for all x ∈ K. Zassenhaus [1] established that finite near-fields are in
one-to-one correspondence with finite 2-transitive Frobenius permutation groups.
Namely, for every finite near-field K, the permutation group K+ oK× on K, where
K+ acts by right multiplications and K× acts by conjugations, is 2-transitive and
Frobenius with kernel K+ and complement K×; and vice versa, for every finite
2-transitive Frobenius group, its kernel and complement give the additive and mul-
tiplicative groups of some near-field. This correspondence allowed Zassenhaus to
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obtain the complete classification of finite near-fields. It turns out that apart from
7 exceptional near-fields (now they are called Zassenhaus near-fields), each finite
near-field is a Dickson near-field, i. e., it can be naturally constructed via an appro-
priate finite field F with F+ = K+. We refer to this field F as the field associated
with K (see Sect. 2.1).

Let K be a finite near-field. Given K ≤ K×, define RK = {RK(a) | a ∈ K},
where

RK(a) = {(x, y) ∈ K2 | y − x ∈ K ◦ a}.
As easily seen, RK coincides with the set Orb2(G) of the 2-orbits of the group

G = G(K,K) = {x 7→ x ◦ b+ c, x ∈ K | b ∈ K, c ∈ K+} ≃ K+ oK.

It follows that the pair ⟨K,RK⟩ forms an association scheme in the sense of [2]
(that is, commutative but not necessarily symmetric, cf. also [3]). Following [4], we
call this scheme the cyclotomic scheme over the near-field K with the base group K
and denote it by C = Cyc(K,K). The rank of C is equal to |RK | and a scheme is
called trivial if its rank equals 2. Obviously, C is trivial if and only if its base group
coincides with K×.

For a given cyclotomic scheme C, all permutations on K that fix setwise all
elements of RK form the automorphism group Aut(C) of the cyclotomic scheme C,
namely,

Aut(C) = {g ∈ Sym(K) | Rg = R for all R ∈ RK}.
By definition, Aut(C) coincides with the 2-closure of the permutation groupG(K,K)
(see Sect. 2.2 and 2.3).

If a cyclotomic scheme C = Cyc(K,K) is trivial, thenRK consists of two relations
(the diagonal of K2 and its complement), so Aut(C) = Sym(K). Further we are
interested only in nontrivial schemes.

If K = F is a field, then we come to cyclotomic schemes introduced by P.Delsarte
in [2]. A consequence of the main theorem in [5] is that the automorphism group
of a nontrivial scheme over a field F is a subgroup of

AΓL(1,F) = {x 7→ xσ · b+ c, x ∈ F | σ ∈ Aut(F), b ∈ F×, c ∈ F}
(see, e. g., the remark after Prop. 12.7.5 in [6], where it was also proved that such
schemes are pseudocyclic).

Cyclotomic schemes over near-fields (which are also pseudocyclic due to [7, Theo-
rem 1.1] and the fact that they arise from Frobenius groups) were introduced in [4].
The main result [4, Theorem 1.1] of that paper yields that Aut(C) ≤ AGL(VK),
where VK is the vector space over the prime field lying in the center of K and
VK = K+ (note that K+ is always elementary abelian for finite near-fields). More-
over, for Dickson near-fields K with some restrictions on the order of the base group
K, it was proved [4, Theorem 1.3] that Aut(C) ≤ AΓL(1,F), where F is the field
associated with K. It was also conjectured that the same is true for all finite near-
fields apart from a finite number of possible exceptions. The goal of the present
paper is to validate this conjecture.

Theorem. Let K be a finite near-field, K a proper subgroup of K×. If C =
Cyc(K,K) is the cyclotomic scheme over K with the base group K, then exactly
one of the following hold:

(1) K is a Dickson near-field and Aut(C) ≤ AΓL(1,F), where F is the finite
field associated with K.
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(2) K is the Dickson near-field of order 72, K = ⟨a, b⟩ ≃ 3×Q8, and Aut(C) =
K+ oH, where H = ⟨K, c⟩ ≃ 3× SL(2, 3), and the action of a, b, and c on
K+ is represented respectively by the matrices(

2 2
1 −2

)
,

(
0 −2
−1 0

)
, and

(
0 1
−1 −1

)
.

(3) K is a Zassenhaus near-field, K is a subgroup of M , where M is a maximal
solvable subgroup of K×, Aut(C) is a subgroup of K+ o H, where K ≤
M ≤ H. The groups K+, M , H, and generators of M and H are listed in
Table 4.1 of Appendix.

(4) K is a Zassenhaus near-field of order either 292 or 592, K ≃ SL(2, 5), and
either Aut(C) = 292o(SL(2, 5)o2) or Aut(C) = 592oSL(2, 5), respectively.
The groups K+, K, H, and generators of K and H are listed in Table 4.2
of Appendix.

In particular, if the base group K is solvable, then so is Aut(C).

It is worth mentioning that the main reason why we were able to proceed fur-
ther than the authors of [4] is the recently completed classification of 3

2 -transitive
permutation groups [8] (see Sect. 2.4)

As the automorphism group of a scheme Cyc(K,K) coincides with the 2-closure
of the permutation group G(K,K), our result can be considered in the context of
the computational 2-closure problem: Given a finite permutation group G, find its
2-closure G(2). This problem was solved for nilpotent groups [9] and groups of odd
order [10] in time polynomial in the degree of G by using a technique from [11] and
the fact that the 2-closures of such groups are solvable [12, § 5]. In our case, for
every proper subgroup G of a 2-transitive Frobenius group of degree m containing
its kernel, we found the subgroup H of Sym(m) that has order polynomial in m
and contains G(2). This implies that using the same technique one can find H and,
consequently, G(2) in time polynomial in m.

Notations. In the paper, A × B, A o B, and A.B stand for a direct product,
a semidirect product, and a non-split extension of a group A by a group B, respec-
tively. We denote the (generalized) quaternion group and quasidihedral group of
order n by Qn and QDn, respectively. For a prime p and a positive integer n, we
briefly write pn for the elementary abelian p-group of order pn. We also use the
notation (n)p for the p-part of n, that is the largest power of p dividing n.

2. Preliminaries

2.1. Finite near-fields. Let K be a finite near-field. Then the group K+ is always
elementary abelian, and the group K× is abelian if and only if K is a field (as to
near-fields theory, we refer to [13]).

A finite near-field K is called a Dickson near-field, if exists a finite field F0 of order
q0 = pl and its extension F of order qn0 such that F+ = K+ and the multiplication
in K can be represented in the following way:

y ◦ x = yσx ·F x, x, y ∈ K, σx ∈ Aut(F/F0),

where ·F denotes the multiplication in F. The field F is said to be associated with K.
It is known that such a near-field exists whenever the pair (q0, n) forms a Dickson
pair, i. e., every prime factor of n is a divisor of q0 − 1 and 4|n implies 4|(q0 − 1).
In fact, for every Dickson pair (q0, n), there are φ(n)/k nonisomorphic Dickson
near-fields, where k is the order of p modulo n.
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As mentioned, apart from the Dickson near-fields there are 7 exceptional so-
called Zassenhaus finite near-fields. For every such near-field, Table 2.1 contains
the order of K and generators of K× as linear transformations of K+ (see, e.g., [13,
p. 373].

Table 2.1. Zassenhaus near-fields

|K| generators of K×

52
(
0 −1
1 0

)
,

(
1 −2
−1 −2

)
112

(
0 −1
1 0

)
,

(
1 5
−5 −2

)
,

(
4 0
0 4

)
72

(
0 −1
1 0

)
,

(
1 3
−1 −2

)
232

(
0 −1
1 0

)
,

(
1 −6
12 −2

)
,

(
2 0
0 2

)
112

(
0 −1
1 0

)
,

(
2 4
1 −3

)
292

(
0 −1
1 0

)
,

(
1 −7
12 −2

)
,

(
16 0
0 16

)
592

(
0 −1
1 0

)
,

(
9 15

−10 −10

)
,

(
4 0
0 4

)
Thus, the classification of finite near-fields is given by the following

Lemma 1 ([1]). A finite near-field is either a Dickson near-field, or a Zassenhaus
near-field.

2.2. 2-closure of permutation groups. Let G be a permutation group on a
finite set Ω. The action of G on Ω induces the componentwise action on Ω2:
(α, β)g = (αg, βg) for all α and β from Ω and g ∈ G. Denote the set of orbits of
this action on Ω2 by Orb2(G). The elements of Orb2(G) are called the 2-orbits
of G. The largest subgroup of Sym(Ω) with the same 2-orbits as G is called the
2-closure of G and denoted by G(2). Equivalently, G(2) is the automorphism group
of Orb2(G):

G(2) = Aut(Orb2(G)) = {g ∈ Sym(Ω) | Og = O,O ∈ Orb2(G)}.
In particular, G ≤ G(2). A group G is called 2-closed if G = G(2).

If G is transitive then {(α, α) | α ∈ Ω} is a 2-orbit. We refer to such an orbit as
trivial and to any other 2-orbits as nontrivial.

Lemma 2 ([12, Theorem 5.7]). If H ≤ G ≤ Sym(Ω) then H(2) ≤ G(2).

There is a natural bijection between the 2-orbits and the orbits of a point stabi-
lizer.

Lemma 3 ([12, p. 4]). If G is a transitive permutation group on Ω, then there
exists a bijection between the 2-orbits of G and the orbits of a point stabilizer Gα,
namely, for α, β ∈ Ω, the 2-orbit (α, β)G of G corresponds to the orbit βGα of Gα,
and |(α, β)G| = |Ω||βGα |.

Recall that a transitive permutation group G is called a Frobenius group if a
one-point stabilizer is nontrivial and the stabilizer of any two distinct points is
trivial.
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Lemma 4. Let G be a permutation group such that G(2) is a Frobenius group.
Then G is 2-closed.

Proof. Lemma 3 yields that

|Gα : Gαβ | = |βGα | = |(α, β)G|
|Ω|

=
|(α, β)G(2) |

|Ω|
= |β(G(2))α | = |(G(2))α : (G(2))αβ |

for α, β ∈ Ω with α ̸= β. Since G(2) is Frobenius and G ≤ G(2), both G and
G(2) are transitive. Hence |G : Gα| = |Ω| = |G(2) : (G(2))α|. Furthermore, Gαβ ≤
(G(2))αβ = 1, so |G| = |G(2)|. Thus G = G(2), as required. �

Lemma 5 ([14, Theorem 2.5.8]). An imprimitive Frobenius group is 2-closed.

2.3. Cyclotomic schemes over finite near-fields and their automorphisms.
Let K be a finite near-field, K ≤ K×, C = Cyc(K,K) = ⟨K,RK⟩. As observed,
RK coincides with Orb2(G), where G = G(K,K). It follows that G ≤ Aut(C) =
Aut(Orb2(G)) = G(2), so to find the automorphism group of a cyclotomic scheme
C = Cyc(K,K) it suffices to find the 2-closure of the group G = G(K,K).

Zassenhaus [1] proved that G(K,K×) is a 2-transitive Frobenius group for every
near-field K. So the 2-closure of G(K,K×), as well as Aut(C(K,K×)), is equal
to Sym(K). Furthermore, if K is a non-trivial subgroup of K× then G(K,K) is also
Frobenius.

Lemma 6. Let K be a Dickson near-field and K ≤ K×. Then G(K,K) ≤ AΓL(1,F),
where F is the field associated with K.

Proof. By the definition of the multiplication in the Dickson near-fields,

G = G(K,K) = {x 7→ x ◦ b+ c, x ∈ K | b ∈ K, c ∈ K+} =

= {x 7→ xσb ·F b+ c | x ∈ K, b ∈ K, c ∈ K+, σb ∈ Aut(F/F0)} ≤ AΓL(1,F),
as required. �

The next lemma follows from the main result in [5].

Lemma 7. If C = Cyc(F,K) is a nontrivial cyclotomic scheme over a finite field F,
then Aut(C) ≤ AΓL(1,F).

Lemma 8. Let K be a Dickson near-field. Suppose that a non-trivial subgroup
K of K× is abelian and G = G(K,K) is a primitive permutation group. Then
C = C(K,K) is a cyclotomic scheme over the field F associated with K.

Proof. Since G is a primitive Frobenius group, the base group K acts irreducibly
on K+ as a group of linear transformations. Now the lemma follows from [4,
Theorems 2.2 and 2.4]. �

2.4. 3
2 -transitive permutation groups. Recall that a permutation group on Ω is

1
2 -transitive if all its orbits on Ω have the same size greater than one. A permutation

group on Ω is 3
2 -transitive if it is transitive and a stabilizer of a point α ∈ Ω is 1

2 -
transitive on Ω \ {α} (see [15, § 10]).

Lemma 9. Let K be a near-field and 1 ̸= K ≤ K×. Then G = G(K,K) and G(2)

are 3
2 -transitive.
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Proof. The groups G and G(2) are transitive, because G is Frobenius and G ≤ G(2).
Since RK = Orb2(G) = Orb2(G

(2)) and all non-trivial relations from RK are of the
same size, Lemma 3 implies that all the orbits of Gα and, consequently, all orbits
of (G(2))α on K \ {α} have the same size. They cannot be of size one, because K
is non-trivial. �

The next two assertions from [8] give the classification of finite 3
2 -transitive per-

mutation groups and 1
2 -transitive linear groups.

Lemma 10 ([8, Corollary 3]). Let G be a 3
2 -transitive permutation group of de-

gree n. Then one of the following holds:

(a) G is 2-transitive,
(b) G is a Frobenius group,
(c) G is almost simple: either

(i) n = 21, G = A7 or S7 acting on the set of pairs in {1, ..., 7}, or
(ii) n = 1

2q(q − 1), where q = 2f ≥ 8, and either G = PSL(2, q), or
G = PΓL(2, q) with f prime,

(d) G is of affine type: G = NH ≤ AGL(V ), where N is group of translations
of vector space V , H ≤ GL(V ), and H is a 1

2 -transitive group, given by
Lemma 11.

Lemma 11 ([8, Corollary 2]). If H ≤ GL(V ) = GL(d, p) is 1
2 -transitive on V ♯ =

V \ {0̄}, then one of the following holds:

(a) H is transitive on V ♯,
(b) H ≤ ΓL(1, pd),
(c) H is a Frobenius complement acting semiregularly on V ♯,
(d) H = S0(p

d/2) with p odd,
(e) H is solvable and pd = 32, 52, 72, 112, 172 or 34,
(f) SL(2, 5) ▹ H ≤ ΓL(2, pd/2), where pd/2 = 9, 11, 19, 29 or 169.

In the lemma, S0(p
d/2) stands for the subgroup of GL(2, pd/2) of order 4(pd/2−1)

consisting of all monomial matrices of determinant ±1.

Lemma 12. [15, Theorem 10.4] If G is a finite 3
2 -transitive permutation group,

then G is either primitive, or Frobenius.

The socle Soc(G) of a group G is the subgroup generated by all its minimal
normal subgroups.

Lemma 13. Let G be a 3
2 -transitive but not 2-transitive permutation group of affine

type. Then Soc(G) = Soc(G(2)).

Proof. According to Lemma 12, every 3
2 -transitive group is either primitive or

Frobenius. If G is an imprimitive Frobenius group, then G = G(2) due to Lemma 5,
so the lemma follows trivially. If G is primitive, then Soc(G) = Soc(G(2)) by [4,
Theorem 3.2]. �

3. Proof of the theorem

Let K be a finite near-field of order q, q = pd, p a prime, K a proper subgroup
of K×, G = G(K,K), and C = Cyc(K,K).
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Recall that Aut(C) = G(2). If K = 1 then G is regular, so G(2) = G ≃ K+ and
the theorem obviously holds. Therefore, we may further assume that K is non-
trivial. By Lemma 9, both G and G(2) are 3

2 -transitive. Furthermore, they cannot

be 2-transitive because K ̸= K×, so Lemma 13 yields Soc(G(2)) = Soc(G) ≃ K+.
It follows that both G = K+ o K and G(2) = K+ o H are of affine type, where
K,H ≤ GL(VK), so K and H are 1

2 -transitive on K+ \ {0}. Moreover, K ≤ H

because G ≤ G(2).
Lemma 1 implies that K is either a Dickson near-filed, or a Zassenhaus near-field,

and we deal with these two cases separately.

3.1. Dickson near-fields. Let K be a Dickson near-field corresponding to a Dick-
son pair (q0, n), where q0 = pl, F0 the central subfield of K of order q0, and F the
field of order q = qn0 associated with K (see Sect. 2.1). Here we are going to prove
that apart from the one particular exception, Aut(C) = G(2) ≤ AΓL(1,F). Observe
that if G is imprimitive, then G(2), being Frobenius by Lemma 12, is 2-closed, so
in this case G(2) lies in AΓL(1,F) due to Lemma 6. Further we suppose that G is
primitive. We may also assume that K is nonabelian, otherwise we are done by
Lemmas 7 and 8. In particular, we may assume that K is not a field, so q0 < q and
n > 1.

The inclusion G(2) ≤ AΓL(1,F) holds if and only if H ≤ ΓL(1,F). Since H acts
1
2 -transitively on K+ \ {0}, it appears in one of the cases of Lemma 11. Let us
consider them in turn.

(a) If H is transitive on K+ \ {0}, then both G(2) and G are 2-transitive, so
K = K×, a contradiction.

(b) If H ≤ ΓL(1,F) then we are obviously done.
(c) If H is a Frobenius complement acting semiregularly on K+ \ {0}, then G(2)

is a Frobenius group, so it is 2-closed in view of Lemma 4. Therefore, G(2) = G ≤
AΓL(1,F), as required, where the last inclusion follows from Lemma 6.

(d) Let H = S0(u) ≤ GL(2, u), u = pc, q = u2, p odd. The group H is solvable,
has the order 4(u − 1) and, as a subgroup of GL(2,Fu), can be represented in the
following way (see [16]):

H =

{(
α 0
0 ±α−1

)
,

(
0 α

±α−1 0

) ∣∣∣∣ α ∈ F×
u

}
.

As easily seen, each nontrivial orbit of H on K+ is of size 2(u− 1).
Since K, as a Frobenius complement, acts semiregularly on K+, it is a proper

subgroup of H of order 2(u− 1). Furthermore, K does not contain the element

t =

(
0 1
1 0

)
,

which fixes the non-zero vector (1, 1) (we consider this vector as an element of K+).
Since t ∈ H, the vectors (1, 0) and (0, 1), as elements of K+, lie in the same orbit

of H, so K contains the elements

s =

(
0 −1
1 0

)
and − s.

It follows that K, as a subgroup of H, can be represented as follows:

K =

⟨(
θ 0
0 θ−1

)
,

(
0 −1
1 0

)⟩
,
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where θ generates F×
u .

If u = p = 3 then q = 9. However, if q = 9 then K is a cyclic group of order 4, so
G(2) ≤ AΓL(1,F) and we are done. Therefore, we may assume that q > 9, whence
K is nonabelian and Z(K) is of order 2.

The central subfield F0 of K has the order q0 (see, e. g., [13, pp. 370–371]), so
|Z(K×)| = q0 − 1 = pl − 1. Suppose that r is an odd prime dividing p(l,c) − 1 =
(q0 − 1, u − 1). Then (u − 1)r = (q − 1)r, so a Sylow r-subgroup of K is a Sylow
r-subgroup of K×. Since Z(K) ≥ K ∩ Z(K×), it follows that r divides |Z(K)|,
which is impossible. Thus, p is a Fermat prime, and either (l, c) = 1, or p = 3 and
(l, c) = 2.

If p > 3 or (l, c) = 2, then 4 divides u− 1, so 2(u− 1)2 = (q − 1)2 and a Sylow
2-subgroup of K is a Sylow 2-subgroup of K×. It follows that Z(K) is a multiple
of 4, a contradiction. Thus, p = 3 and (l, c) = 1. Together with the equalities
3ln = qn0 = q = u2 = 32c, this leaves us with two possibilities: either l = 1 and
n = 2c, or l = 2 and n = c. Taking into account that (q0, n) is a Dickson pair (see
Sect. 2.1), we easily derive that l = 1 and n = 2, so q = 9, which contradicts our
assumption.

(e) H is solvable and q is one of the numbers 32, 34, 52, 72, 112, and 172.
We are going to check the inclusion Aut(C) ≤ AΓL(1,F). As mentioned above,

this is always true when K is abelian, so we may restrict ourself to the case of
nonabelian base groups. Moreover, if the inclusion holds for all maximal subgroups
of K×, then it holds for all proper subgroups of K× in view of Lemma 2. Since we
have only finite number of possibilities for K, our strategy will be as follows.

Using MAGMA [17], we obtain permutation group K+oK×. Then applying the
package IRREDSOL for GAP [18], we get K× as a group of linear transformations
of VK. In the next step, with the help of GAP, we construct the group Q ≤
GL(VK) such that Q ≃ ΓL(1,F) and K× ≤ Q. Then we find all (up to conjugation)
nonabelian maximal subgroups M of K× and for every such M , we construct the
permutation group K+ oM by the right regular action. Finally, using the package
COCO for GAP [19], we find the 2-closure of K+ o M and check its inclusion in
K+ oQ.

Let |K| = 32. There is only one Dickson field of this order and it corresponds
to the Dickson pair (3, 2). In this case, K× ≃ Q8. All maximal subgroups of Q8

are abelian, so for every proper subgroup of K×, the inclusion Aut(C) ≤ AΓL(1,F)
holds.

Suppose |K| = 34. Since (3, 4) is not a Dickson pair, again there is just one
Dickson field K of such order and it corresponds to the pair (9, 2). In this case,
K× ≃ 5o 16 and all maximal subgroups of K× are abelian.

Since n = 2 for all remaining cases, we always have the only Dickson near-field
for each possible q.

If q = 52 then K× ≃ 3o 8. Again all maximal subgroups of K× are abelian.
Assume that q = 72. In this case, K× ≃ 3×Q16. Representatives of the conjugacy

classes of maximal subgroups of K× are M1, M2, and M3, where M1 ≃ Q16,
M2 ≃ M3 ≃ 3×Q8 (in fact, M2 and M3, as well as their 2-closures, are conjugated
in GL(VK)). If G = G(K,M1), then G(2) ≃ 72o(Q16o2) and G(2) ≤ AΓL(1,F). In
the case G = G(K,M2) (or G = G(K,M3)), we have G

(2) = 72o (3×SL(2, 3)), and
the statement (2) of the theorem holds. Note that G(2) � AΓL(1,F), as the order

of G(2) does not divide the order of AΓL(1, 72). It is worth mentioning that this
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2-closure appears as a subgroup of index 2 in the exceptional solvable 2-transitive
group of degree 49 (all such groups were classified in [20]). IfK is a proper subgroup
of either M2 or M3, then it is conjugated to a subgroup of M1, so G(2) ≤ AΓL(1,F)
for all such K.

Let q = 112. In this case, K× ≃ 5× (3oQ8). Representatives of the conjugacy
classes of nonabelian maximal subgroups and the corresponding 2-closures are as
follows:

M1 ≃ 5× (3o 4) and G(2) = G;
M2 ≃ M1 and G(2) = G;
M3 ≃ 3oQ8 and G(2) = 112 o (24o 2) ≤ AΓL(1, 112);
M4 ≃ 5×Q8 and G(2) = G.
If q = 172 then K× ≃ 9 o 32. There is only one class of nonabelian maximal

subgroups of K× with the representative M ≃ 3o 32 and G(2) = G for it.
(f) SL(2, 5) ▹ H ≤ ΓL(2, pd/2), where pd/2 = 9, 11, 19, 29, or 169. Similarly, for

all possible Dickson near-fields K and all nonabelian maximal subgroups M of K×,
we construct G = G(K,M) and find G(2), thereby proving that G(2) = K+ oH is
solvable, so H does not contain SL(2, 5).

If q = pd is equal to 34 or 112, then the required assertion was proved above.
Suppose that q = 192. In this case, K× ≃ 9 × (5 oQ8). Representatives of the

conjugacy classes of nonabelian maximal subgroups of K× and the corresponding
2-closures are as follows:

M1 ≃ 9× (5o 4) and G(2) = G;
M2 ≃ M1 and G(2) = G;
M3 ≃ 3× (5oQ8) and G(2) = 192 o (3× (40o 2));
M4 ≃ 9×Q8 and G(2) = G.
For q = 292, we have K× ≃ 7×(15o8). Representatives of the conjugacy classes

of nonabelian maximal subgroups and the corresponding 2-closures are:
M1 ≃ 15o 8 and G(2) = 292 o (120o 2);
M2 ≃ 7× (5o 8) and G(2) = G;
M3 ≃ M2 and G(2) = G.
Let q = 134. There exist three nonisomorphic Dickson near-fields of this order.
For the Dickson pair (13, 4), there are 2 nonisomorphic near-fields K1 and K2.

However, K×
1 ≃ K×

2 ≃ 3×(595o16), andM1
i ≃ M2

i , i ∈ {1..5} for the corresponding
representatives of the conjugacy classes of nonabelian maximal subgroups. Here we
have

M1
1 ≃ M2

1 ≃ 21× (85o 8) and G(2) = 134 o (3× (4760o 4));
M1

2 ≃ M2
2 ≃ 595o 16 and G(2) = 134 o (9520o 4);

M1
3 ≃ M2

3 ≃ 3× (119o 16) and G(2) = G;
M1

4 ≃ M2
4 ≃ 3× (85o 16) and G(2) = 132 o (3× ((85o 16)o 2));

M1
5 ≃ M2

5 ≃ 3× (35o 16) and G(2) = G.
For the Dickson pair (169, 2), K× ≃ 21× (85o 16). Representatives of the con-

jugacy classes of nonabelian maximal subgroups and the corresponding 2-closures
are:

M1 ≃ 7× (85o 16) and G(2) = 134 o (9520o 4);
M2 ≃ 3× (85o 16) and G(2) = 134 o (3× (1360o 16));
M3 ≃ 21× (17o 16) and G(2) = G;
M4 ≃ 21× (5o 16) and G(2) = G.
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All 2-closures that we found here turn out to be solvable, so H does not contain
SL(2, 5), as stated.

Finally, if K is a Dickson near-field, K is a proper subgroup of K×, then state-
ments (1) and (2) of the theorem hold. In particular, the automorphism group of
the nontrivial scheme C = Cyc(K,K) is solvable for every Dickson near-field K.

3.2. Zassenhaus near-fields. Let K be a Zassenhaus near-field. Suppose first
that K is a solvable subgroup of K×. By Lemma 2, it suffices to find the 2-closures
of the groups G = G(K,M), where M is a maximal solvable subgroup of K× (a
solvable subgroup that is not contained in any other proper solvable subgroup).
For every such M (up to conjugation), we obtain the permutation group G using
MAGMA and find its 2-closure with the help of the package COCO for GAP,
thereby proving the statement (3) of the theorem. Results are listed in Table 4.1 of
Appendix. In particular, it follows that for every finite near-fieldK and every proper
solvable subgroup K of K×, the automorphism group of the scheme C = Cyc(K,K)
is solvable.

Let, finally, consider the cyclotomic schemes Cyc(K,K) with a nonsolvable base
group K. In fact, there are only two such possibilities.

If K is the Zassenhaus near-field of order 292 then K× ≃ 7× SL(2, 5). There is,
up to conjugacy, only one proper nonsolvable subgroup K ≃ SL(2, 5) of K×, and
we have G(2) = 292 o (SL(2, 5)o 2).

If K is the Zassenhaus near-field of order 592 then K× ≃ 29×SL(2, 5). The only,
up to conjugacy, proper nonsolvable subgroup K of K× is isomorphic to SL(2, 5).
In this case, G(2) = G.

Thus, the statement (4) of the theorem holds (we summarize these results in
Table 4.2 of Appendix). This completes the proof of the theorem.

4. Appendix

Table 4.1. The automorphism groups of schemes over Zassenhaus
near-fields with maximal solvable base group

K+ M H Generators of M Generators ofH

52 Q8 (4× 2)o 2

(
0 −1
1 0

)
,

(
2 0
0 −2

)
M,

(
0 1
1 0

)
52 6 D12

(
1 1
−1 0

)
M,

(
0 1
1 0

)
112 5×Q8 5×Q8

(
0 −1
1 0

)
,

(
1 1
1 −1

)
M

112 SL(2, 3) GL(2, 3)

(
5 −2
−1 5

)
,

(
0 −1
1 0

)
M,

(
0 1
1 0

)
112 30 30

(
−5 1
2 −1

)
M

72 SL(2, 3) 3× SL(2, 3)

(
−1 −1
1 0

)
,

(
−2 −2
−1 2

)
M,

(
0 1
3 0

)
72 Q16 QD32

(
2 2
1 −2

)
,

(
1 −2
1 −1

)
M,

(
0 1
1 0

)
72 3o 4 (6× 2)o 2

(
3 2
2 −3

)
,

(
−3 0
−3 2

)
M,

(
1 0
−3 −1

)
to be continued
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Table 4.1, continued

K+ M H Generators of M Generators ofH

232 11×SL(2, 3) 11×SL(2, 3)

(
−8 10
−2 −4

)
,

(
−10 9
−1 10

)
M

232 2.S4 2.S4

(
−7 −6
11 6

)
,

(
9 1
10 −9

)
M

232 11×Q16 11×Q16

(
−10 5
2 −8

)
,

(
−2 6
6 2

)
M

232 11× (3o 4) 11× (3o 4)

(
0 1
−1 −1

)
,

(
7 −1
−8 −7

)
M

112 SL(2, 3) GL(2, 3)

(
−1 −1
1 0

)
,

(
−5 −2
2 5

)
M,

(
0 1
1 0

)
112 5o 4 (10× 2)o 2

(
−1 −1
2 0

)
,

(
0 −1
1 3

)
M,

(
0 1
1 0

)
112 3o 4 3o 4

(
−4 1
5 4

)
,

(
−1 −1
1 0

)
M

292 7× SL(2, 3) 7× SL(2, 3)

(
7 6
13 2

)
,

(
9 −6
4 −9

)
M

292 7× (5o 4) 7× (5o 4)

(
8 0
10 −8

)
,

(
−6 −1
1 0

)
M

292 7× (3o 4) 7× (3o 4)

(
0 1
−1 −1

)
,

(
−3 −9
−6 3

)
M

592 29×SL(2, 3) 29×SL(2, 3)

(
−1 22
−23 −14

)
,

(
4 29

−25 −4

)
M

592 29× (5o 4) 29× (5o 4)

(
−18 26
22 18

)
,

(
−26 −1
1 0

)
M

592 29× (3o 4) 29× (3o 4)

(
−24 6
16 23

)
,

(
19 −16
−15 −19

)
M

Table 4.2. The automorphism groups of schemes over Zassenhaus
near-fields with nonsolvable base group

K+ M H Generators of M Generators ofH

292 SL(2, 5) SL(2, 5)o 2

(
2 −5
1 −2

)
,

(
12 4
3 −11

)
M,

(
0 1
1 0

)
592 SL(2, 5) SL(2, 5)

(
4 −1
−1 −29

)
,

(
−29 10
−5 28

)
M
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