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LIGHT NEIGHBORHOODS OF 5-VERTICES IN 3-POLYTOPES
WITH MINIMUM DEGREE 5

O.V.BORODIN, A.O. IVANOVA

Abstract. In 1940, in attempts to solve the Four Color Problem, Henry
Lebesgue gave an approximate description of the neighborhoods of 5-
vertices in the class P5 of 3-polytopes with minimum degree 5.

Given a 3-polytope P , by w(P ) (h(P )) we denote the minimum degree-
sum (minimum of the maximum degrees) of the neighborhoods of 5-
vertices in P .

A 5∗-vertex is a 5-vertex adjacent to four 5-vertices. It is known that
if a polytope P in P5 has a 5∗-vertex, then h(P ) can be arbitrarily large.

For each P without vertices of degrees from 6 to 9 and 5∗-vertices in
P5, it follows from Lebesgue’s Theorem that w(P ) ≤ 44 and h(P ) ≤ 14.

In this paper, we prove that every such polytope P satisfies w(P ) ≤ 42
and h(P ) ≤ 12, where both bounds are tight.

Keywords: planar map, planar graph, 3-polytope, structural properties,
height, weight.

1. Introduction

The degree of a vertex or face x in a convex finite 3-dimensional polytope (called
a 3-polytope) is denoted by d(x). A k-vertex is a vertex v with d(v) = k. A k+-
vertex (k−-vertex) is one of degree at least k (at most k). Similar notation is used
for the faces. A 3-polytope with minimum degree δ is denoted by Pδ. The weight
of a subgraph S of a 3-polytope is the sum of degrees of the vertices of S in the
3-polytope. The height of a subgraph S of a 3-polytope is the maximum degree
of the vertices of S in the 3-polytope. A k-star Sk(v) is minor if its center v has
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degree at most 5. In particular, the neighborhoods of 5-vertices are minor 5-stars
and vice versa. All stars considered in this note are minor. By w(Sk) and h(Sk) we
denote the minimum weight and height, respectively, of minor k-stars in a given
3-polytope.

In 1904, Wernicke [18] proved that every P5 has a 5-vertex adjacent to a 6−-
vertex. This result was strengthened by Franklin [11] in 1922 to the existence of a
5-vertex with two 6−-neighbors. In 1940, Lebesgue [17, p.36] gave an approximate
description of the neighborhoods of 5-vertices in P5’s. In particular, this description
implies the results in [18, 11] and shows that there is a 5-vertex with three 7−-
neighbors.

For P5’s, the bounds w(S1) ≤ 11 (Wernicke [18]) and w(S2) ≤ 17 (Franklin [11])
are tight. It was proved by Lebesgue [17] that w(S3) ≤ 24, which was improved in
1996 by Jendrol’ and Madaras [14] to the sharp bound w(S3) ≤ 23. Furthermore,
Jendrol’ and Madaras [14] gave a precise description of minor 3-stars in P5’s.
Lebesgue [17] proved w(S4) ≤ 31, which was strengthened by Borodin andWoodall [3]
to the tight bound w(S4) ≤ 30. Note that w(S3) ≤ 23 easily implies w(S2) ≤ 17 and
immediately follows from w(S4) ≤ 30 (in both cases, it suffices to delete a vertex of
maximum degree from a minor star of the minimum weight). Recently, we obtained
a precise description of 4-stars in P5’s [7].

For arbitrary 3-polytopes, that is for P3’s, the following results concerning (d−2)-
stars at d-vertices, d ≤ 5, are known. Van den Heuvel and McGuinness [13] proved
(in particular) that either w(S1(v)) ≤ 14 with d(v) = 3, or w(S2(v)) ≤ 22 with
d(v) = 4, or w(S3(v)) ≤ 29 with d(v) = 5. Balogh et al. [1] proved that there is a 5−-
vertex adjacent to at most two 11+-vertices. Harant and Jendrol’ [12] strengthened
these results by proving (in particular) that either w(S1(v)) ≤ 13 with d(v) = 3,
or w(S2(v)) ≤ 19 with d(v) = 4, or w(S3(v)) ≤ 23 with d(v) = 5. Recently, we
obtained a precise description of (d− 2)-stars in P3’s [6].

For P3’s, the problem of describing (d − 1)-stars at d-vertices, d ≤ 5, called
pre-complete stars, appears difficult. As follows from the double n-pyramid, the
minimum weight w(Sd−1) of pre-complete stars in P4’s can be arbitrarily large.
Even when w(Sd−1) is restricted by appropriate conditions, the tight upper bounds
on it are unknown. Borodin et al. [4, 5] proved (in particular) that if a planar
graph with δ ≥ 3 has no edge joining two 4−-vertices, then there is a star Sd−1(v)
with w(Sd−1(v)) ≤ 38 + d(v), where d(v) ≤ 5 (see [5, Theorem 2.A]). Jendrol’ and
Madaras [15] proved that if the weight w(S1) of every edge in an P3 is at least 9,
then there is a pre-complete star of height at most 20, where the bound of 20 is
best possible.

The more general problem of describing d-stars at d-vertices, d ≤ 5, called
complete stars, at the moment seems untractable for arbitrary 3-polytopes and
difficult even for P5’s.

Lebesgue [17] proved that if a P5 has no 5-vertices adjacent to two 5-vertices and
two 6−-vertices, then w(S5) ≤ 68 and h(S5) ≤ 41. Recently, Borodin, Ivanova, and
Jensen [9] lowered these bounds to w(S5) ≤ 55 and h(S5) ≤ 28, and then Borodin
and Ivanova [8] to 51 and 23.

A 5∗-vertex is a 5-vertex adjacent to four 5-vertices. Jendrol’ and Madaras [14]
showed that if a polytope P in P5 has a 5∗-vertex, then h(P ) can be arbitrarily
large.
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For each P5 with neither vertices of degrees from 6 to 9 nor 5∗-vertices, it follows
from Lebesgue’s Theorem that w(P5) ≤ 44 and h(P5) ≤ 14. It is known that if
6-vertices are allowed in P5, then h(P5) can be arbitrarily large (see [9]), and if only
8-vertices are allowed, then h(P5) can reach 14 (see [10]).

The purpose of this note is to prove the following fact.

Theorem 1. Every 3-polytope P with minimum degree 5 having neither vertices
of degrees from 6 to 9 nor 5-vertices adjacent to four 5-vertices satisfies w(P ) ≤ 42
and h(P ) ≤ 12, where both bounds are tight.

2. Proof of Theorem 1

The tightness of the bounds 42 and 12.

We put a 5-vertex into each 5-face of dodecahedron. This yields a triangulation
with only vertices of degrees five and six such that each 5-vertex is surrounded by
6-vertices. The vertex-face dual of this triangulation is a cubic graph in which every
5-face is surrounded by 6-faces. We now replace each 3-vertex by a small 3-face, so
as to make each k-face into a 2k-face. Finally, we put a vertex inside each 10+-face
and join it to the boundary vertices of this face.

In the resulting triangulation, every 5-vertex has a 12-neighbor, a 10-neighbor,
and three 5-neighbors, as desired.

Discharging.

It suffices to prove the theorem for plane graphs in which no 4+-face is incident
with two non-consecutive 10+-vertices, since adding a diagonal between such vertices
cannot create a forbidden 5-star, nor can it reduce the weight or height of any
existing minor 5-star.

So suppose that a 3-polytope P5, with its sets of vertices, edges, and faces
denoted by V , E, and F , respectively, is a counterexample to the main statement
of Theorem 1.

By assumption, each minor 5-star in P5 either is of weight at least 43 or contains
a 13+-vertex. Also, recall that no 5-vertex has four 5-neighbors.

Euler’s formula |V | − |E|+ |F | = 2 for P5 implies

(1)
∑
v∈V

(d(v)− 6) +
∑
f∈F

(2d(f)− 6) = −12.

We assign an initial charge µ(v) = d(v)− 6 to each v ∈ V and µ(f) = 2d(f)− 6
to each f ∈ F , so that only 5-vertices have negative initial charge. Using the
properties of P5 as a counterexample to Theorem 1, we define a local redistribution
of charges, preserving their sum, such that the final charge µ(x) is non-negative for
all x ∈ V ∪ F . This will contradict the fact that the sum of the final charges is, by
(1), equal to −12.

The final charge µ′(x) whenever x ∈ V ∪ F is defined by applying the rules
R1–R6 below (see Fig. 1).

We put ξ(v) = 2
5 if d(v) = 10, ξ(v) = 1

2 if 11 ≤ d(v) ≤ 12, and ξ(v) = 11
20 if

d(v) ≥ 13. For a vertex v let v1, . . . , vd(v) be the vertices adjacent to v in a fixed
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cyclic order. If f is a face, then v1, . . . , vd(f) are the vertices incident with f in the
same cyclic order. A vertex is simplicial if it is completely surrounded by 3-faces.

R1. Each 4+-face f gives the following charge to a 5-vertex v2:
(a) 1

2 if d(v1) = d(v3) = 5 or
(b) 3

4 if d(v1) ≥ 10.

R2. If f = v1v2v3 . . . is a face such that d(v1) = 5 and v2 satisfies d(v2) ∈
{10, 12, 14+}, then v2 gives v1 the following charge through f :

(a) ξ(v)
2 if d(v3) = 5 or

(b) ξ(v) if d(v3) ≥ 10.

If v with d(v) ∈ {11, 13} is non-simplicial, then one of its incident 4+-faces is
declared special for v, and the other 3+-faces are non-special for v.

R3. If f = v1v2v3 . . . is a non-special face such that d(v1) = 5 and non-simplicial
v2 satisfies d(v2) ∈ {11, 13}, then v2 gives v1 the following charge through f :

(a) ξ(v)
2 if d(v3) = 5 or

(b) ξ(v) if d(v3) ≥ 10.

R4. If v is a simplicial vertex with d(v) ∈ {11, 13} such that d(v2) = 5, then v
gives v2 the following charge through the face v1vv2:

(a) 1
4 if d(v1) ≥ 10 and d(v3) ≥ 10,

(b) ξ(v) if d(v1) ≥ 10 and d(v3) = 5,
(c) ξ(v)

2 if d(v1) = d(v3) = 5.

R5. If v is a simplicial vertex with d(v) ∈ {11, 13} such that d(vi) = 5, whenever
1 ≤ i ≤ d(v), then v receives the following charge:

(a) 1
4 from each of v1 and v2 if there is a 4+-face v1v2 . . .,

(b) 1
2 from v2 if v2 is simplicial and adjacent to three 10+-vertices.

We precede stating our last rule of discharging by two definitions (see Fig. 1,
R6).

A simplicial 5-vertex v is poor if d(v1) = d(v3) = d(v4) = 5, d(v2) = 10, and
d(v5) ≥ 13. The latter inequality follows from w(P5) ≥ 43 and h(P5) ≥ 13.

Now let x be the neighbor of v4 different from v and next to v3 (around v4). If
d(x) = 5 or d(x) ≥ 13, then v4 is rich for v. If 10 ≤ d(x) ≤ 12, then v3 is rich for
v. Hence every poor vertex has precisely one rich neighbor.

R6. Each poor vertex receives 1
20 from its rich neighbor.

Checking µ′(x) ≥ 0 whenever x ∈ V ∪ F except for 5-vertices.

Case 1. Suppose f is a 4+-face. If f has at least one 10+-vertex, then f gives
nothing to it, and so we have µ′(f) ≥ 2d(f)−6−2× 3

4 − (d−3)× 1
2 = 3(d(f)−4)

2 ≥ 0

by R1. Otherwise, µ′(f) ≥ 2d(f)− 6− d(f)× 1
2 = 3(d(f)−4)

2 ≥ 0.

Case 2. v ∈ V .

Subcase 2.1. d(v) ∈ {10, 12, 14+}. Note that v gives ξ(v) through each incident
face by R2. Namely, d(v) = 10 implies µ′(v) ≥ 10−6−10× 2

5 = 0, for d(v) = 12 we
have µ′(v) ≥ 6− 12× 1

2 = 0, and if d(v) ≥ 14, then µ′(v) ≥ d(v)− 6− d(v)× 11
20 =

9(d−14)+6
20 > 0.
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Рис. 1. Rules of discharging.

Subcase 2.2. d(v) ∈ {11, 13}. Note that v gives at most ξ(v) through each
incident face by R3 and R4. If v is non-simplicial, then there is a special face at v
that receives nothing from v; so we have µ′(v) ≥ 5 − 10 × 1

2 = 0 for an 11-vertex
and µ′(v) ≥ 7− 12× 11

20 > 0 for a 13-vertex.
Now suppose that v is simplicial. If v has two consecutive 10+-neighbors, then

again µ′(v) ≥ 0 by the formulas in the previous paragraph. Suppose otherwise. Now
if d(v1) ≥ 10, d(v2) = 5, and d(v3) ≥ 10, then we have µ′(v) ≥ 5−2× 1

4 −9× 1
2 = 0

for an 11-vertex and µ′(v) ≥ 7 − 2 × 1
4 − 11 × 11

20 > 0 for a 13-vertex according to
R4a.
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So we can assume from now one that every two consecutive 10+-neighbors of v
round v are separated from each other by at least two 5-neighbors of v. If d(v1) ≥ 10,
d(v2) = d(v3) = 5, then v gives nothing to v2 through v2vv3 and ξ(v) through v1vv2
by R4b, and at most ξ(v)

2 to v3 through v2vv3 by R4c.
This means that v sends away at most 3ξ(v)

2 through the faces v1vv2 and v2vv3
together. By symmetry, v also sends at most 3ξ(v)

2 through the two faces from the
other side of the edge vv1 round v. This implies that µ′(v) ≥ 5− 2× 3

4 − 7× 1
2 = 0

for an 11-vertex and µ′(v) ≥ 7− 2× 33
40 − 9× 11

20 > 0 for a 13-vertex.

Lemma 1. If a simplicial vertex v of degree 11 or 13 is completely surrounded by
5-vertices, then µ′(v) ≥ 0.

Proof. If the edge v1v2 is incident with a 4+-face, then v receives 1
4 + 1

4 from
v1 and v2 by R5a, so we have µ′(v) ≥ 5 + 2 × 1

4 − 11 × 1
2 = 0 for d(v) = 11 and

µ′(v) ≥ 7 + 2× 1
4 − 13× 11

20 > 0 for d(v) = 13.
Suppose there exist 3-faces viwivi+1 (addition modulo d(v)) such that wi 6= v

whenever 1 ≤ i ≤ d(v). Note that there are wi and wi+1 with d(wi) ≥ 10 and
d(wi+1) ≥ 10 due to the absence of 5∗-vertices in our counterexample P5 combined
with the oddness of d(v). Recall that vi+1 is simplicial as mentioned above. Hence,
v receives 1

2 from vi+1 by R5b, so we are done as in the previous paragraph. �

Checking µ′(v) ≥ 0 for a 5-vertex v.

Case 1. v gives 1
2 by R5b. This means that v is simplicial with d(v1) = d(v3) = 5,

d(v4) ≥ 10, d(v5) ≥ 10, and d(v2) ∈ {11, 13}. Note that v is neither poor nor giving
1
20 by R6 to v1 or v3. Hence v receives at least 1

2 from each of v4 and v5 by R2b, R3b,
R4b, and 1

2 from v2 by R3a, R4c, and as a result we have µ′(v) ≥ −1+3× 1
2− 1

2 = 0.

Case 2. v gives 1
4 by R5a. This means that v is not simplicial with d(v1) =

d(v3) = 5, d(v2) ∈ {11, 13}, and edge vv1 lies in the boundary of 4+-face f =
v1vv5 . . ..

Subcase 2.1. d(v5) = 5. Now v receives 1
2 from f by R1a and d(v4) ≥ 10.

Again v is neither poor nor giving 1
20 by R6, and hence receives 1

2 from v2. Note
that v4 gives at least 1

2 to v also and can take back 1
4 from v by R5a. Hence

µ′(v) ≥ −1 + 3× 1
2 − 2× 1

4 = 0.

Subcase 2.2. d(v5) ≥ 10. Now our v receives 3
4 from f by R1b and still receives

1
2 from v2. Furthermore, v receives at least 1

5 from v5 by our rules, and gives away
at most 2× 1

20 by R6, and so µ′(v) ≥ −1 + 3
4 + 1

2 + 1
5 − 1

4 − 2× 1
20 > 0.

Thus we can assume due to Cases 1 and 2 that v does not participate in R5 in
what follows.

Case 3. v is incident with at least three 4+-faces. Here, µ′(v) > −1 + 3 × 1
2 −

3× 1
20 > 0 by R1 and R6.

Case 4. v is incident with precisely two 4+-faces f1, f2. If one of f1 and f2 is
incident with a 10+-neighbor of v, then µ′(v) > −1 + 3

4 + 1
2 − 3 × 1

20 > 0 by R1
and R6. Otherwise, v has two 10+-neighbors adjacent to each other, hence does not
give charge by R6; so µ′(v) > −1 + 2× 1

2 = 0.
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Case 5. v is incident with precisely one 4+-face f . If f is incident with a 10+-
neighbor of v, then v receives at least 2

5 from the other 10+-neighbor by R2–R4, so
µ′(v) > −1+ 3

4 +
2
5 − 3× 1

20 > 0 due to R1 and R6. Otherwise, each of at least two
10+-neighbors of v gives at least 2

5 to it by R2–R4, while f gives 1
2 by R1, and we

have µ′(v) ≥ −1 + 1
2 + 2× 2

5 − 3× 1
20 > 0.

Case 6. v is simplicial.

Subcase 6.1. v has at least three 10+-neighbors. Here µ′(v) ≥ −1+3× 2
5 − 2×

1
20 > 0 by R2, R4, and R6.

Subcase 6.2. v has precisely two 10+-neighbors. First suppose d(v1) ≥ 10 and
d(v3) ≥ 10. If d(v1) = 10, then d(v3) ≥ 13 and v is poor. Here, µ′(v) = −1 + 2 ×
1
5 + 2× 11

40 + 1
20 = 0 by R2a, R4c, and R6, as desired.

Suppose d(v1) ≥ 11 and d(v3) ≥ 11. Note that v2 is not poor and each of v1, v3
gives at least 1

2 to v. If d(v1) ∈ {11, 12} and d(v3) ∈ {11, 12}, then neither v4 nor
v5 is poor, so µ′(v) = −1 + 2 × 1

2 = 0. If d(v1) ∈ {11, 12} and d(v3) ≥ 13, then v5
is not poor, and we have µ′(v) ≥ −1 + 1

2 + 11
20 − 1

20 = 0. Finally, if d(v1) ≥ 13 and
d(v3) ≥ 13, then µ′(v) ≥ −1 + 2× 11

20 − 2× 1
20 = 0.

Next suppose d(v1) ≥ 10 and d(v2) ≥ 10. Note that v4 is not poor. If d(v1) = 10,
then d(v2) ≥ 13 and µ′(v) ≥ −1 + 1

5 + 2
5 + 11

20 − 3× 1
20 = 0 by R2b, R4b, and R6.

Now suppose d(v1) ≥ 11 and d(v2) ≥ 11. If d(v1) ∈ {11, 12} and d(v2) ∈ {11, 12},
then neither v3 nor v5 is poor, so µ′(v) = −1 + 2 × 1

2 = 0. If d(v1) ∈ {11, 12} and
d(v2) ≥ 13, then v5 is not poor, and we have µ′(v) ≥ −1+ 1

2 +
11
20 − 1

20 = 0. Finally,
if d(v1) ≥ 13 and d(v3) ≥ 13, then µ′(v) ≥ −1 + 2× 11

20 − 2× 1
20 = 0.

Thus we have proved µ′(x) ≥ 0 whenever x ∈ V ∪ F , which contradicts (1) and
completes the proof of Theorem 1.
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