LIGHT NEIGHBORHOODS OF 5-VERTICES IN 3-POLYTOPES WITH MINIMUM DEGREE 5

O.V. BORODIN, A.O. IVANOVA

1. Introduction

The degree of a vertex or face x in a convex finite 3-dimensional polytope (called a 3-polytope) is denoted by $d(x)$. A k-vertex is a vertex v with $d(v) = k$. A k^+-vertex (k^--vertex) is one of degree at least k (at most k). Similar notation is used for the faces. A 3-polytope with minimum degree δ is denoted by P_δ. The weight of a subgraph S of a 3-polytope is the sum of degrees of the vertices of S in the 3-polytope. The height of a subgraph S of a 3-polytope is the maximum degree of the vertices of S in the 3-polytope. A k-star $S_k(v)$ is minor if its center v has...
degree at most 5. In particular, the neighborhoods of 5-vertices are minor 5-stars and vice versa. All stars considered in this note are minor. By \(w(S_k) \) and \(h(S_k) \) we denote the minimum weight and height, respectively, of minor \(k \)-stars in a given 3-polytope.

In 1904, Wernicke [18] proved that every \(P_5 \) has a 5-vertex adjacent to a 6-vertex. This result was strengthened by Franklin [11] in 1922 to the existence of a 5-vertex with two 5-vertices. In 1940, Lebesgue [17, p.36] gave an approximate description of the neighborhoods of 5-vertices in \(P_5 \)'s. In particular, this description implies the results in [18, 11] and shows that there is a 5-vertex with three 7-neighbors.

For \(P_5 \)'s, the bounds \(w(S_1) \leq 11 \) (Wernicke [18]) and \(w(S_2) \leq 17 \) (Franklin [11]) are tight. It was proved by Lebesgue [17] that \(w(S_3) \leq 24 \), which was improved in 1996 by Jendrol' and Madaras [14] to the sharp bound \(w(S_3) \leq 23 \). Furthermore, Jendrol' and Madaras [14] gave a precise description of minor 3-stars in \(P_5 \)'s. Lebesgue [17] proved \(w(S_4) \leq 31 \), which was strengthened by Borodin and Woodall [3] to the tight bound \(w(S_4) \leq 30 \). Note that \(w(S_3) \leq 23 \) easily implies \(w(S_4) \leq 17 \) and immediately follows from \(w(S_4) \leq 30 \) (in both cases, it suffices to delete a vertex of maximum degree from a minor star of the minimum weight). Recently, we obtained a precise description of 4-stars in \(P_5 \)'s [7].

For arbitrary 3-polytopes, that is for \(P_5 \)'s, the following results concerning \((d-2)\)-stars at \(d \)-vertices, \(d \leq 5 \), are known. Van den Heuvel and McGuinness [13] proved (in particular) that either \(w(S_1(v)) \leq 14 \) with \(d(v) = 3 \), or \(w(S_2(v)) \leq 22 \) with \(d(v) = 4 \), or \(w(S_3(v)) \leq 29 \) with \(d(v) = 5 \). Balogh et al. [1] proved that there is a 5-vertex adjacent to at most two 11-vertices. Harant and Jendrol' [12] strengthened these results by proving (in particular) that either \(w(S_1(v)) \leq 13 \) with \(d(v) = 3 \), or \(w(S_2(v)) \leq 19 \) with \(d(v) = 4 \), or \(w(S_3(v)) \leq 23 \) with \(d(v) = 5 \). Recently, we obtained a precise description of \((d-2)\)-stars in \(P_5 \)'s [6].

For \(P_5 \) the problem of describing \((d-1)\)-stars at \(d \)-vertices, \(d \leq 5 \), called pre-complete stars, appears difficult. As follows from the double \(n \)-pyramid, the minimum weight \(w(S_{d-1}) \) of pre-complete stars in \(P_5 \) can be arbitrarily large. Even when \(w(S_{d-1}) \) is restricted by appropriate conditions, the tight upper bounds on it are unknown. Borodin et al. [4, 5] proved (in particular) that if a planar graph with \(\delta \geq 3 \) has no edge joining two 4-vertices, then there is a star \(S_{d-1}(v) \) with \(w(S_{d-1}(v)) \leq 38 + d(v) \), where \(d(v) \leq 5 \) (see [5, Theorem 2.A]). Jendrol' and Madaras [15] proved that if the weight \(w(S_1) \) of every edge in an \(P_5 \) is at least 9, then there is a pre-complete star of height at most 20, where the bound of 20 is best possible.

The more general problem of describing \(d \)-stars at \(d \)-vertices, \(d \leq 5 \), called complete stars, at the moment seems intractable for arbitrary 3-polytopes and difficult even for \(P_5 \)’s.

Lebesgue [17] proved that if a \(P_5 \) has no 5-vertices adjacent to two 5-vertices and two 6-vertices, then \(w(S_5) \leq 68 \) and \(h(S_5) \leq 41 \). Recently, Borodin, Ivanova, and Jensen [9] lowered these bounds to \(w(S_5) \leq 55 \) and \(h(S_5) \leq 28 \), and then Borodin and Ivanova [8] to 51 and 23.

A 5-vertex is a 5-vertex adjacent to four 5-vertices. Jendrol' and Madaras [14] showed that if a polytope \(P \) in \(P_5 \) has a 5-vertex, then \(h(P) \) can be arbitrarily large.
For each P_5 with neither vertices of degrees from 6 to 9 nor 5*-vertices, it follows from Lebesgue’s Theorem that $w(P_5) \leq 44$ and $h(P_5) \leq 14$. It is known that if 6-vertices are allowed in P_5, then $h(P_5)$ can be arbitrarily large (see [9]), and if only 8-vertices are allowed, then $h(P_5)$ can reach 14 (see [10]).

The purpose of this note is to prove the following fact.

Theorem 1. Every 3-polytope P with minimum degree 5 having neither vertices of degrees from 6 to 9 nor 5*-vertices adjacent to four 5-vertices satisfies $w(P) \leq 42$ and $h(P) \leq 12$, where both bounds are tight.

2. Proof of Theorem 1

The tightness of the bounds 42 and 12.

We put a 5-vertex into each 5-face of dodecahedron. This yields a triangulation with only vertices of degrees five and six such that each 5-vertex is surrounded by 6-vertices. The vertex-face dual of this triangulation is a cubic graph in which every 5-face is surrounded by 6-faces. We now replace each 3-vertex by a small 3-face, so as to make each k-face into a $2k$-face. Finally, we put a vertex inside each 10^+-face and join it to the boundary vertices of this face.

In the resulting triangulation, every 5-vertex has a 12^+-neighbor, a 10^+-neighbor, and three 5-neighbors, as desired.

Discharging.

It suffices to prove the theorem for plane graphs in which no 4^+-face is incident with two non-consecutive 10^+-vertices, since adding a diagonal between such vertices cannot create a forbidden 5-star, nor can it reduce the weight or height of any existing minor 5-star.

So suppose that a 3-polytope P_5, with its sets of vertices, edges, and faces denoted by V, E, and F, respectively, is a counterexample to the main statement of Theorem 1.

By assumption, each minor 5-star in P_5 either is of weight at least 43 or contains a 13^+-vertex. Also, recall that no 5-vertex has four 5-neighbors.

Euler’s formula $|V| - |E| + |F| = 2$ for P_5 implies

$$\sum_{v \in V} (d(v) - 6) + \sum_{f \in F} (2d(f) - 6) = -12. \quad (1)$$

We assign an initial charge $\mu(v) = d(v) - 6$ to each $v \in V$ and $\mu(f) = 2d(f) - 6$ to each $f \in F$, so that only 5-vertices have negative initial charge. Using the properties of P_5 as a counterexample to Theorem 1, we define a local redistribution of charges, preserving their sum, such that the final charge $\mu(x)$ is non-negative for all $x \in V \cup F$. This will contradict the fact that the sum of the final charges is, by (1), equal to -12.

The final charge $\mu'(x)$ whenever $x \in V \cup F$ is defined by applying the rules R1–R6 below (see Fig. 1).

We put $\xi(v) = \frac{2}{5}$ if $d(v) = 10$, $\xi(v) = \frac{1}{5}$ if $11 \leq d(v) \leq 12$, and $\xi(v) = \frac{14}{20}$ if $d(v) \geq 13$. For a vertex v let $v_1, \ldots, v_{d(v)}$ be the vertices adjacent to v in a fixed
cyclic order. If f is a face, then $v_1, \ldots, v_{d(f)}$ are the vertices incident with f in the same cyclic order. A vertex is simplicial if it is completely surrounded by 3-faces.

R1. Each 4^+-face f gives the following charge to a 5-vertex v_2:
(a) $\frac{1}{2}$ if $d(v_1) = d(v_3) = 5$ or
(b) $\frac{3}{4}$ if $d(v_1) \geq 10$.

R2. If $f = v_1v_2v_3 \ldots$ is a face such that $d(v_1) = 5$ and v_2 satisfies $d(v_2) \in \{10, 12, 14^+\}$, then v_2 gives v_1 the following charge through f:
(a) $\frac{\xi(v)}{2}$ if $d(v_3) = 5$ or
(b) $\xi(v)$ if $d(v_3) \geq 10$.

If v with $d(v) \in \{11, 13\}$ is non-simplicial, then one of its incident 4^+-faces is declared special for v, and the other 3^+-faces are non-special for v.

R3. If $f = v_1v_2v_3 \ldots$ is a non-special face such that $d(v_1) = 5$ and non-simplicial v_2 satisfies $d(v_2) \in \{11, 13\}$, then v_2 gives v_1 the following charge through f:
(a) $\frac{\xi(v)}{2}$ if $d(v_3) = 5$ or
(b) $\xi(v)$ if $d(v_3) \geq 10$.

R4. If v is a simplicial vertex with $d(v) \in \{11, 13\}$ such that $d(v_2) = 5$, then v gives v_2 the following charge through the face v_1v_2:
(a) $\frac{1}{2}$ if $d(v_1) \geq 10$ and $d(v_3) \geq 10$,
(b) $\xi(v)$ if $d(v_1) \geq 10$ and $d(v_3) = 5$,
(c) $\frac{\xi(v)}{2}$ if $d(v_1) = d(v_3) = 5$.

R5. If v is a simplicial vertex with $d(v) \in \{11, 13\}$ such that $d(v_1) = 5$, whenever $1 \leq i \leq d(v)$, then v receives the following charge:
(a) $\frac{1}{2}$ from each of v_1 and v_2 if there is a 4^+-face $v_1v_2 \ldots$,
(b) $\frac{1}{2}$ from v_2 if v_2 is simplicial and adjacent to three 10^+-vertices.

We precede stating our last rule of discharging by two definitions (see Fig. 1, R6).

A simplicial 5-vertex v is poor if $d(v_1) = d(v_3) = d(v_4) = 5$, $d(v_2) = 10$, and $d(v_3) \geq 13$. The latter inequality follows from $w(P_5) \geq 43$ and $h(P_5) \geq 13$.

Now let x be the neighbor of v_4 different from v and next to v_3 (around v_4). If $d(x) = 5$ or $d(x) \geq 13$, then v_4 is rich for v. If $10 \leq d(x) \leq 12$, then v_3 is rich for v. Hence every poor vertex has precisely one rich neighbor.

R6. Each poor vertex receives $\frac{1}{20}$ from its rich neighbor.

Checking $\mu'(x) \geq 0$ whenever $x \in V \cup F$ except for 5-vertices.

Case 1. Suppose f is a 4^+-face. If f has at least one 10^+-vertex, then f gives nothing to it, and so we have $\mu'(f) \geq 2d(f) - 6 - 2 \times \frac{3}{2} - (d - 3) \times \frac{1}{2} = \frac{3(d(f) - 4)}{2} \geq 0$ by R1. Otherwise, $\mu'(f) \geq 2d(f) - 6 - d(f) \times \frac{1}{2} = \frac{3(d(f) - 4)}{2} \geq 0$.

Case 2. $v \in V$.

Subcase 2.1. $d(v) \in \{10, 12, 14^+\}$. Note that v gives $\xi(v)$ through each incident face by R2. Namely, $d(v) = 10$ implies $\mu'(v) \geq 10 - 6 - 10 \times \frac{3}{5} = 0$, for $d(v) = 12$ we have $\mu'(v) \geq 6 - 12 \times \frac{1}{2} = 0$, and if $d(v) \geq 14$, then $\mu'(v) \geq d(v) - 6 - d(v) \times \frac{11}{20} = \frac{9(d-14)+6}{20} > 0$.
Subcase 2.2. \(d(v) \in \{11, 13\}\). Note that \(v\) gives at most \(\xi(v)\) through each incident face by R3 and R4. If \(v\) is non-simplicial, then there is a special face at \(v\) that receives nothing from \(v\); so we have \(\mu'(v) \geq 5 - 10 \times \frac{1}{2} = 0\) for an 11-vertex and \(\mu'(v) \geq 7 - 12 \times \frac{11}{20} > 0\) for a 13-vertex.

Now suppose that \(v\) is simplicial. If \(v\) has two consecutive \(10^+\)-neighbors, then again \(\mu'(v) \geq 0\) by the formulas in the previous paragraph. Suppose otherwise. Now if \(d(v_1) \geq 10\), \(d(v_2) = 5\), and \(d(v_3) \geq 10\), then we have \(\mu'(v) \geq 5 - 2 \times \frac{1}{4} - 9 \times \frac{1}{2} = 0\) for an 11-vertex and \(\mu'(v) \geq 7 - 2 \times \frac{1}{4} - 11 \times \frac{11}{20} > 0\) for a 13-vertex according to R4a.
So we can assume from now one that every two consecutive 10+-neighbors of \(v \) round \(v \) are separated from each other by at least two 5-neighbors of \(v \). If \(d(v_1) \geq 10, d(v_2) = d(v_3) = 5 \), then \(v \) gives nothing to \(v_2 \) through \(v_2v_3 \) and \(\xi(v) \) through \(v_1v_2 \) by R4b, and at most \(\frac{\xi(v)}{2} \) to \(v_3 \) through \(v_2v_3 \) by R4c.

This means that \(v \) sends away at most \(\frac{3\xi(v)}{2} \) through the faces \(v_1v_2 \) and \(v_2v_3 \) together. By symmetry, \(v \) also sends at most \(\frac{3\xi(v)}{2} \) through the two faces from the other side of the edge \(vv_1 \) round \(v \). This implies that \(\mu'(v) \geq 5 - 2 \times \frac{3}{4} - 7 \times \frac{1}{2} = 0 \) for an 11-vertex and \(\mu'(v) \geq 7 - 2 \times \frac{33}{50} - 9 \times \frac{11}{50} > 0 \) for a 13-vertex.

Lemma 1. If a simplicial vertex \(v \) of degree 11 or 13 is completely surrounded by 5-vertices, then \(\mu'(v) \geq 0 \).

Proof. If the edge \(v_1v_2 \) is incident with a 4+-face, then \(v \) gives \(\frac{1}{4} + \frac{1}{3} \) from \(v_1 \) and \(v_2 \) by R5a, so we have \(\mu'(v) \geq 5 + 2 \times \frac{1}{4} - 11 \times \frac{1}{2} = 0 \) for \(d(v) = 11 \) and \(\mu'(v) \geq 7 + 2 \times \frac{1}{4} - 13 \times \frac{11}{20} > 0 \) for \(d(v) = 13 \).

Suppose there exist 3-faces \(v_iw_{i+1}v_{i+1} \) (addition modulo \(d(v) \)) such that \(w_i \neq v \) whenever \(1 \leq i \leq d(v) \). Note that there are \(w_i \) and \(w_{i+1} \) with \(d(w_i) \geq 10 \) and \(d(w_{i+1}) \geq 10 \) due to the absence of 5+-vertices in our counterexample \(P_5 \) combined with the oddness of \(d(v) \). Recall that \(v_{i+1} \) is simplicial as mentioned above. Hence, \(v \) receives \(\frac{1}{2} \) from \(v_{i+1} \) by R5b, so we are done as in the previous paragraph.

Checking \(\mu'(v) \geq 0 \) for a 5-vertex \(v \).

Case 1. \(v \) gives \(\frac{1}{2} \) by R5b. This means that \(v \) is simplicial with \(d(v_1) = d(v_3) = 5, d(v_4) \geq 10, d(v_5) \geq 10, \) and \(d(v_2) \in \{11, 13, \} \). Note that \(v \) is neither poor nor giving \(\frac{1}{2} \) by R6 to \(v_1 \) or \(v_3 \). Hence \(v \) receives at least \(\frac{1}{2} \) from each of \(v_4 \) and \(v_5 \) by R2b, R3b, R4b, and \(\frac{1}{2} \) from \(v_2 \) by R3a, R4c, and as a result we have \(\mu'(v) \geq -1 + 3 \times \frac{1}{2} - \frac{1}{2} = 0 \).

Case 2. \(v \) gives \(\frac{1}{2} \) by R5a. This means that \(v \) is not simplicial with \(d(v_1) = d(v_3) = 5, d(v_2) \in \{11, 13, \} \), and edge \(vv_1 \) lies in the boundary of 4+-face \(f = vv_1 vv_3 \ldots \).

Subcase 2.1. \(d(v_5) = 5 \). Now \(v \) receives \(\frac{1}{2} \) from \(f \) by R1a and \(d(v_4) \geq 10 \). Again \(v \) is neither poor nor giving \(\frac{1}{2} \) by R6, and hence receives \(\frac{1}{2} \) from \(v_2 \). Note that \(v_4 \) gives at least \(\frac{1}{2} \) to \(v \) also and can take back \(\frac{1}{4} \) from \(v \) by R5a. Hence \(\mu'(v) \geq -1 + 3 \times \frac{1}{2} - 2 \times \frac{1}{4} = 0 \).

Subcase 2.2. \(d(v_5) \geq 10 \). Now our \(v \) receives \(\frac{1}{2} \) from \(f \) by R1b and still receives \(\frac{1}{2} \) from \(v_2 \). Furthermore, \(v \) receives at least \(\frac{1}{4} \) from \(v_5 \) by our rules, and gives away at most \(2 \times \frac{1}{50} \) by R6, and so \(\mu'(v) \geq -1 + \frac{3}{4} + \frac{1}{4} - \frac{1}{4} - 2 \times \frac{1}{20} > 0 \).

Thus we can assume due to Cases 1 and 2 that \(v \) does not participate in R5 in what follows.

Case 3. \(v \) is incident with at least three 4+-faces. Here, \(\mu'(v) > -1 + 3 \times \frac{1}{2} - 3 \times \frac{1}{20} > 0 \) by R1 and R6.

Case 4. \(v \) is incident with precisely two 4+-faces \(f_1, f_2 \). If one of \(f_1 \) and \(f_2 \) is incident with a 10+-neighbor of \(v \), then \(\mu'(v) > -1 + \frac{3}{2} + \frac{1}{2} - 3 \times \frac{1}{20} > 0 \) by R1 and R6. Otherwise, \(v \) has two 10+-neighbors adjacent to each other, hence does not give charge by R6; so \(\mu'(v) > -1 + 2 \times \frac{1}{2} = 0 \).
Case 5. \(v \) is incident with precisely one \(4^+ \)-face. If \(f \) is incident with a \(10^+ \)-neighbor of \(v \), then \(v \) receives at least \(\frac{2}{5} \) from the other \(10^+ \)-neighbor by R2–R4, so \(\mu'(v) > -1 + \frac{3}{4} + \frac{2}{5} - 3 \times \frac{1}{20} > 0 \) due to R1 and R6. Otherwise, each of at least two \(10^+ \)-neighbors of \(v \) gives at least \(\frac{x}{5} \) to it by R2–R4, while \(f \) gives \(\frac{1}{2} \) by R1, and we have \(\mu'(v) \geq -1 + \frac{1}{2} + 2 \times \frac{2}{5} - 3 \times \frac{1}{20} > 0 \).

Case 6. \(v \) is simplicial.

Subcase 6.1. \(v \) has at least three \(10^+ \)-neighbors. Here \(\mu'(v) \geq -1 + 3 \times \frac{2}{5} - 2 \times \frac{1}{20} > 0 \) by R2, R4, and R6.

Subcase 6.2. \(v \) has precisely two \(10^+ \)-neighbors. First suppose \(d(v_1) \geq 10 \) and \(d(v_3) \geq 10 \). If \(d(v_1) = 10 \), then \(d(v_3) \geq 13 \) and \(v \) is poor. Here, \(\mu'(v) = -1 + 2 \times \frac{1}{5} + 2 \times \frac{11}{20} + \frac{1}{20} = 0 \) by R2a, R4c, and R6, as desired.

Suppose \(d(v_1) \geq 11 \) and \(d(v_3) \geq 11 \). Note that \(v_2 \) is not poor and each of \(v_1, v_3 \) gives at least \(\frac{1}{2} \) to \(v \). If \(d(v_1) \in \{11,12\} \) and \(d(v_3) \in \{11,12\} \), then neither \(v_4 \) nor \(v_5 \) is poor, so \(\mu'(v) = -1 + 2 \times \frac{1}{2} = 0 \). If \(d(v_1) \in \{11,12\} \) and \(d(v_3) \geq 13 \), then \(v_5 \) is not poor, and we have \(\mu'(v) \geq -1 + \frac{1}{2} + \frac{11}{20} - \frac{1}{20} = 0 \). Finally, if \(d(v_1) \geq 13 \) and \(d(v_3) \geq 13 \), then \(\mu'(v) \geq -1 + 2 \times \frac{11}{20} - 2 \times \frac{1}{20} = 0 \).

Next suppose \(d(v_1) \geq 10 \) and \(d(v_2) \geq 10 \). Note that \(v_4 \) is not poor. If \(d(v_1) = 10 \), then \(d(v_2) \geq 13 \) and \(\mu'(v) \geq -1 + \frac{1}{5} + \frac{2}{5} + \frac{11}{20} - 3 \times \frac{1}{20} = 0 \) by R2b, R4b, and R6.

Now suppose \(d(v_1) \geq 11 \) and \(d(v_2) \geq 11 \). If \(d(v_1) \in \{11,12\} \) and \(d(v_2) \in \{11,12\} \), then neither \(v_3 \) nor \(v_5 \) is poor, so \(\mu'(v) = -1 + 2 \times \frac{1}{2} = 0 \). If \(d(v_1) \in \{11,12\} \) and \(d(v_3) \geq 13 \), then \(v_5 \) is not poor, and we have \(\mu'(v) \geq -1 + 1 + \frac{1}{2} + \frac{11}{20} - \frac{1}{20} = 0 \). Finally, if \(d(v_1) \geq 13 \) and \(d(v_3) \geq 13 \), then \(\mu'(v) \geq -1 + 2 \times \frac{11}{20} - 2 \times \frac{1}{20} = 0 \).

Thus we have proved \(\mu'(x) \geq 0 \) whenever \(x \in V \cup F \), which contradicts (1) and completes the proof of Theorem 1.

References

LIGHT NEIGHBORHOODS OF 5-VERTICES IN 3-POLYTOPES

Oleg Veniaminovich Borodin
Sobolev Institute of Mathematics,
pr. Koptyuga, 4,
630090, Novosibirsk, Russia
E-mail address: brdnoleg@math.nsc.ru

Anna Olegovna Ivanova
Ammosov North-Eastern Federal University,
str. Kulakovskogo, 48,
677000, Yakutsk, Russia
E-mail address: shmgnanna@mail.ru