S@MR

ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 13, стр. 584–591 (2016) DOI 10.17377/semi.2016.13.045 УДК 519.172.2 MSC 05C15

LIGHT NEIGHBORHOODS OF 5-VERTICES IN 3-POLYTOPES WITH MINIMUM DEGREE 5

O.V. BORODIN, A.O. IVANOVA

ABSTRACT. In 1940, in attempts to solve the Four Color Problem, Henry Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class \mathbf{P}_5 of 3-polytopes with minimum degree 5.

Given a 3-polytope P, by w(P) (h(P)) we denote the minimum degreesum (minimum of the maximum degrees) of the neighborhoods of 5vertices in P.

A 5^{*}-vertex is a 5-vertex adjacent to four 5-vertices. It is known that if a polytope P in $\mathbf{P_5}$ has a 5^{*}-vertex, then h(P) can be arbitrarily large.

For each P without vertices of degrees from 6 to 9 and 5^{*}-vertices in **P**₅, it follows from Lebesgue's Theorem that $w(P) \leq 44$ and $h(P) \leq 14$.

In this paper, we prove that every such polytope P satisfies $w(P) \le 42$ and $h(P) \le 12$, where both bounds are tight.

Keywords: planar map, planar graph, 3-polytope, structural properties, height, weight.

1. INTRODUCTION

The degree of a vertex or face x in a convex finite 3-dimensional polytope (called a 3-polytope) is denoted by d(x). A k-vertex is a vertex v with d(v) = k. A k^+ vertex $(k^-$ -vertex) is one of degree at least k (at most k). Similar notation is used for the faces. A 3-polytope with minimum degree δ is denoted by P_{δ} . The weight of a subgraph S of a 3-polytope is the sum of degrees of the vertices of S in the 3-polytope. The height of a subgraph S of a 3-polytope is the maximum degree of the vertices of S in the 3-polytope. A k-star $S_k(v)$ is minor if its center v has

Borodin, O.V., Ivanova, A.O. Light neighborhoods of 5-vertices in 3-polytopes with minimum degree 5.

^{© 2016} Borodin O.V., Ivanova A.O.

The authors' work was supported by the Russian Scientific Found (grant 16-11-10054). Received May, 18, 2016, published June, 30, 2016.

degree at most 5. In particular, the neighborhoods of 5-vertices are minor 5-stars and vice versa. All stars considered in this note are minor. By $w(S_k)$ and $h(S_k)$ we denote the minimum weight and height, respectively, of minor k-stars in a given 3-polytope.

In 1904, Wernicke [18] proved that every P_5 has a 5-vertex adjacent to a 6⁻-vertex. This result was strengthened by Franklin [11] in 1922 to the existence of a 5-vertex with two 6⁻-neighbors. In 1940, Lebesgue [17, p.36] gave an approximate description of the neighborhoods of 5-vertices in P_5 's. In particular, this description implies the results in [18, 11] and shows that there is a 5-vertex with three 7⁻-neighbors.

For P_5 's, the bounds $w(S_1) \leq 11$ (Wernicke [18]) and $w(S_2) \leq 17$ (Franklin [11]) are tight. It was proved by Lebesgue [17] that $w(S_3) \leq 24$, which was improved in 1996 by Jendrol' and Madaras [14] to the sharp bound $w(S_3) \leq 23$. Furthermore, Jendrol' and Madaras [14] gave a precise description of minor 3-stars in P_5 's. Lebesgue [17] proved $w(S_4) \leq 31$, which was strengthened by Borodin and Woodall [3] to the tight bound $w(S_4) \leq 30$. Note that $w(S_3) \leq 23$ easily implies $w(S_2) \leq 17$ and immediately follows from $w(S_4) \leq 30$ (in both cases, it suffices to delete a vertex of maximum degree from a minor star of the minimum weight). Recently, we obtained a precise description of 4-stars in P_5 's [7].

For arbitrary 3-polytopes, that is for P_3 's, the following results concerning (d-2)stars at d-vertices, $d \leq 5$, are known. Van den Heuvel and McGuinness [13] proved (in particular) that either $w(S_1(v)) \leq 14$ with d(v) = 3, or $w(S_2(v)) \leq 22$ with d(v) = 4, or $w(S_3(v)) \leq 29$ with d(v) = 5. Balogh et al. [1] proved that there is a 5⁻vertex adjacent to at most two 11⁺-vertices. Harant and Jendrol' [12] strengthened these results by proving (in particular) that either $w(S_1(v)) \leq 13$ with d(v) = 3, or $w(S_2(v)) \leq 19$ with d(v) = 4, or $w(S_3(v)) \leq 23$ with d(v) = 5. Recently, we obtained a precise description of (d-2)-stars in P_3 's [6].

For P_3 's, the problem of describing (d-1)-stars at *d*-vertices, $d \leq 5$, called pre-complete stars, appears difficult. As follows from the double *n*-pyramid, the minimum weight $w(S_{d-1})$ of pre-complete stars in P_4 's can be arbitrarily large. Even when $w(S_{d-1})$ is restricted by appropriate conditions, the tight upper bounds on it are unknown. Borodin et al. [4, 5] proved (in particular) that if a planar graph with $\delta \geq 3$ has no edge joining two 4⁻-vertices, then there is a star $S_{d-1}(v)$ with $w(S_{d-1}(v)) \leq 38 + d(v)$, where $d(v) \leq 5$ (see [5, Theorem 2.A]). Jendrol' and Madaras [15] proved that if the weight $w(S_1)$ of every edge in an P_3 is at least 9, then there is a pre-complete star of height at most 20, where the bound of 20 is best possible.

The more general problem of describing *d*-stars at *d*-vertices, $d \leq 5$, called *complete stars*, at the moment seems untractable for arbitrary 3-polytopes and difficult even for P_5 's.

Lebesgue [17] proved that if a P_5 has no 5-vertices adjacent to two 5-vertices and two 6⁻-vertices, then $w(S_5) \leq 68$ and $h(S_5) \leq 41$. Recently, Borodin, Ivanova, and Jensen [9] lowered these bounds to $w(S_5) \leq 55$ and $h(S_5) \leq 28$, and then Borodin and Ivanova [8] to 51 and 23.

A 5^{*}-vertex is a 5-vertex adjacent to four 5-vertices. Jendrol' and Madaras [14] showed that if a polytope P in \mathbf{P}_5 has a 5^{*}-vertex, then h(P) can be arbitrarily large.

For each P_5 with neither vertices of degrees from 6 to 9 nor 5^{*}-vertices, it follows from Lebesgue's Theorem that $w(P_5) \leq 44$ and $h(P_5) \leq 14$. It is known that if 6-vertices are allowed in P_5 , then $h(P_5)$ can be arbitrarily large (see [9]), and if only 8-vertices are allowed, then $h(P_5)$ can reach 14 (see [10]).

The purpose of this note is to prove the following fact.

Theorem 1. Every 3-polytope P with minimum degree 5 having neither vertices of degrees from 6 to 9 nor 5-vertices adjacent to four 5-vertices satisfies $w(P) \le 42$ and $h(P) \le 12$, where both bounds are tight.

2. Proof of Theorem 1

The tightness of the bounds 42 and 12.

We put a 5-vertex into each 5-face of dodecahedron. This yields a triangulation with only vertices of degrees five and six such that each 5-vertex is surrounded by 6-vertices. The vertex-face dual of this triangulation is a cubic graph in which every 5-face is surrounded by 6-faces. We now replace each 3-vertex by a small 3-face, so as to make each k-face into a 2k-face. Finally, we put a vertex inside each 10^+ -face and join it to the boundary vertices of this face.

In the resulting triangulation, every 5-vertex has a 12-neighbor, a 10-neighbor, and three 5-neighbors, as desired.

Discharging.

It suffices to prove the theorem for plane graphs in which no 4^+ -face is incident with two non-consecutive 10^+ -vertices, since adding a diagonal between such vertices cannot create a forbidden 5-star, nor can it reduce the weight or height of any existing minor 5-star.

So suppose that a 3-polytope P_5 , with its sets of vertices, edges, and faces denoted by V, E, and F, respectively, is a counterexample to the main statement of Theorem 1.

By assumption, each minor 5-star in P_5 either is of weight at least 43 or contains a 13⁺-vertex. Also, recall that no 5-vertex has four 5-neighbors.

Euler's formula |V| - |E| + |F| = 2 for P_5 implies

(1)
$$\sum_{v \in V} (d(v) - 6) + \sum_{f \in F} (2d(f) - 6) = -12.$$

We assign an *initial charge* $\mu(v) = d(v) - 6$ to each $v \in V$ and $\mu(f) = 2d(f) - 6$ to each $f \in F$, so that only 5-vertices have negative initial charge. Using the properties of P_5 as a counterexample to Theorem 1, we define a local redistribution of charges, preserving their sum, such that the final charge $\mu(x)$ is non-negative for all $x \in V \cup F$. This will contradict the fact that the sum of the final charges is, by (1), equal to -12.

The final charge $\mu'(x)$ whenever $x \in V \cup F$ is defined by applying the rules R1–R6 below (see Fig. 1).

We put $\xi(v) = \frac{2}{5}$ if d(v) = 10, $\xi(v) = \frac{1}{2}$ if $11 \le d(v) \le 12$, and $\xi(v) = \frac{11}{20}$ if $d(v) \ge 13$. For a vertex v let $v_1, \ldots, v_{d(v)}$ be the vertices adjacent to v in a fixed

586

cyclic order. If f is a face, then $v_1, \ldots, v_{d(f)}$ are the vertices incident with f in the same cyclic order. A vertex is *simplicial* if it is completely surrounded by 3-faces.

R1. Each 4^+ -face f gives the following charge to a 5-vertex v_2 : (a) $\frac{1}{2}$ if $d(v_1) = d(v_3) = 5$ or (b) $\frac{3}{4}$ if $d(v_1) \ge 10$.

R2. If $f = v_1 v_2 v_3 \dots$ is a face such that $d(v_1) = 5$ and v_2 satisfies $d(v_2) \in$ $\{10, 12, 14^+\}$, then v_2 gives v_1 the following charge through f:

- (a) $\frac{\xi(v)}{2}$ if $d(v_3) = 5$ or (b) $\xi(v)$ if $d(v_3) \ge 10$.

If v with $d(v) \in \{11, 13\}$ is non-simplicial, then one of its incident 4⁺-faces is declared special for v, and the other 3^+ -faces are non-special for v.

R3. If $f = v_1 v_2 v_3 \dots$ is a non-special face such that $d(v_1) = 5$ and non-simplicial v_2 satisfies $d(v_2) \in \{11, 13\}$, then v_2 gives v_1 the following charge through f:

- (a) $\frac{\xi(v)}{2}$ if $d(v_3) = 5$ or
- (b) $\xi(v)$ if $d(v_3) \ge 10$.

R4. If v is a simplicial vertex with $d(v) \in \{11, 13\}$ such that $d(v_2) = 5$, then v gives v_2 the following charge through the face v_1vv_2 :

- (a) $\frac{1}{4}$ if $d(v_1) \ge 10$ and $d(v_3) \ge 10$,
- (b) $\bar{\xi}(v)$ if $d(v_1) \ge 10$ and $d(v_3) = 5$,

(c)
$$\frac{\xi(v)}{2}$$
 if $d(v_1) = d(v_3) = 5$.

R5. If v is a simplicial vertex with $d(v) \in \{11, 13\}$ such that $d(v_i) = 5$, whenever $1 \leq i \leq d(v)$, then v receives the following charge:

(a) $\frac{1}{4}$ from each of v_1 and v_2 if there is a 4⁺-face $v_1v_2...$,

(b) $\frac{1}{2}$ from v_2 if v_2 is simplicial and adjacent to three 10⁺-vertices.

We precede stating our last rule of discharging by two definitions (see Fig. 1, R6).

A simplicial 5-vertex v is poor if $d(v_1) = d(v_3) = d(v_4) = 5$, $d(v_2) = 10$, and $d(v_5) \geq 13$. The latter inequality follows from $w(P_5) \geq 43$ and $h(P_5) \geq 13$.

Now let x be the neighbor of v_4 different from v and next to v_3 (around v_4). If d(x) = 5 or $d(x) \ge 13$, then v_4 is rich for v. If $10 \le d(x) \le 12$, then v_3 is rich for v. Hence every poor vertex has precisely one rich neighbor.

R6. Each poor vertex receives $\frac{1}{20}$ from its rich neighbor.

Checking $\mu'(x) \ge 0$ whenever $x \in V \cup F$ except for 5-vertices.

CASE 1. Suppose f is a 4⁺-face. If f has at least one 10^+ -vertex, then f gives nothing to it, and so we have $\mu'(f) \ge 2d(f) - 6 - 2 \times \frac{3}{4} - (d-3) \times \frac{1}{2} = \frac{3(d(f)-4)}{2} \ge 0$ by R1. Otherwise, $\mu'(f) \ge 2d(f) - 6 - d(f) \times \frac{1}{2} = \frac{3(d(f)-4)}{2} \ge 0$.

Case 2. $v \in V$.

SUBCASE 2.1. $d(v) \in \{10, 12, 14^+\}$. Note that v gives $\xi(v)$ through each incident face by R2. Namely, d(v) = 10 implies $\mu'(v) \ge 10 - 6 - 10 \times \frac{2}{5} = 0$, for d(v) = 12 we have $\mu'(v) \ge 6 - 12 \times \frac{1}{2} = 0$, and if $d(v) \ge 14$, then $\mu'(v) \ge d(v) - 6 - d(v) \times \frac{11}{20} = 0$ $\frac{9(d-14)+6}{20} > 0.$

Рис. 1. Rules of discharging.

SUBCASE 2.2. $d(v) \in \{11, 13\}$. Note that v gives at most $\xi(v)$ through each incident face by R3 and R4. If v is non-simplicial, then there is a special face at v that receives nothing from v; so we have $\mu'(v) \ge 5 - 10 \times \frac{1}{2} = 0$ for an 11-vertex and $\mu'(v) \ge 7 - 12 \times \frac{11}{20} > 0$ for a 13-vertex.

Now suppose that v is simplicial. If v has two consecutive 10^+ -neighbors, then again $\mu'(v) \ge 0$ by the formulas in the previous paragraph. Suppose otherwise. Now if $d(v_1) \ge 10$, $d(v_2) = 5$, and $d(v_3) \ge 10$, then we have $\mu'(v) \ge 5 - 2 \times \frac{1}{4} - 9 \times \frac{1}{2} = 0$ for an 11-vertex and $\mu'(v) \ge 7 - 2 \times \frac{1}{4} - 11 \times \frac{11}{20} > 0$ for a 13-vertex according to R4a.

So we can assume from now one that every two consecutive 10^+ -neighbors of v round v are separated from each other by at least two 5-neighbors of v. If $d(v_1) \ge 10$, $d(v_2) = d(v_3) = 5$, then v gives nothing to v_2 through v_2vv_3 and $\xi(v)$ through v_1vv_2 by R4b, and at most $\frac{\xi(v)}{2}$ to v_3 through v_2vv_3 by R4c.

This means that v sends away at most $\frac{3\xi(v)}{2}$ through the faces v_1vv_2 and v_2vv_3 together. By symmetry, v also sends at most $\frac{3\xi(v)}{2}$ through the two faces from the other side of the edge vv_1 round v. This implies that $\mu'(v) \ge 5 - 2 \times \frac{3}{4} - 7 \times \frac{1}{2} = 0$ for an 11-vertex and $\mu'(v) \ge 7 - 2 \times \frac{33}{40} - 9 \times \frac{11}{20} > 0$ for a 13-vertex.

Lemma 1. If a simplicial vertex v of degree 11 or 13 is completely surrounded by 5-vertices, then $\mu'(v) \ge 0$.

PROOF. If the edge v_1v_2 is incident with a 4⁺-face, then v receives $\frac{1}{4} + \frac{1}{4}$ from v_1 and v_2 by R5a, so we have $\mu'(v) \ge 5 + 2 \times \frac{1}{4} - 11 \times \frac{1}{2} = 0$ for d(v) = 11 and $\mu'(v) \ge 7 + 2 \times \frac{1}{4} - 13 \times \frac{11}{20} > 0$ for d(v) = 13.

Suppose there exist 3-faces $v_i w_i v_{i+1}$ (addition modulo d(v)) such that $w_i \neq v$ whenever $1 \leq i \leq d(v)$. Note that there are w_i and w_{i+1} with $d(w_i) \geq 10$ and $d(w_{i+1}) \geq 10$ due to the absence of 5*-vertices in our counterexample P_5 combined with the oddness of d(v). Recall that v_{i+1} is simplicial as mentioned above. Hence, v receives $\frac{1}{2}$ from v_{i+1} by R5b, so we are done as in the previous paragraph.

Checking $\mu'(v) \ge 0$ for a 5-vertex v.

CASE 1. v gives $\frac{1}{2}$ by R5b. This means that v is simplicial with $d(v_1) = d(v_3) = 5$, $d(v_4) \ge 10$, $d(v_5) \ge 10$, and $d(v_2) \in \{11, 13\}$. Note that v is neither poor nor giving $\frac{1}{20}$ by R6 to v_1 or v_3 . Hence v receives at least $\frac{1}{2}$ from each of v_4 and v_5 by R2b, R3b, R4b, and $\frac{1}{2}$ from v_2 by R3a, R4c, and as a result we have $\mu'(v) \ge -1+3 \times \frac{1}{2} - \frac{1}{2} = 0$.

CASE 2. v gives $\frac{1}{4}$ by R5a. This means that v is not simplicial with $d(v_1) = d(v_3) = 5$, $d(v_2) \in \{11, 13\}$, and edge vv_1 lies in the boundary of 4⁺-face $f = v_1vv_5...$

SUBCASE 2.1. $d(v_5) = 5$. Now v receives $\frac{1}{2}$ from f by R1a and $d(v_4) \ge 10$. Again v is neither poor nor giving $\frac{1}{20}$ by R6, and hence receives $\frac{1}{2}$ from v_2 . Note that v_4 gives at least $\frac{1}{2}$ to v also and can take back $\frac{1}{4}$ from v by R5a. Hence $\mu'(v) \ge -1 + 3 \times \frac{1}{2} - 2 \times \frac{1}{4} = 0$.

SUBCASE 2.2. $d(v_5) \ge 10$. Now our v receives $\frac{3}{4}$ from f by R1b and still receives $\frac{1}{2}$ from v_2 . Furthermore, v receives at least $\frac{1}{5}$ from v_5 by our rules, and gives away at most $2 \times \frac{1}{20}$ by R6, and so $\mu'(v) \ge -1 + \frac{3}{4} + \frac{1}{2} + \frac{1}{5} - \frac{1}{4} - 2 \times \frac{1}{20} > 0$.

Thus we can assume due to Cases 1 and 2 that v does not participate in R5 in what follows.

CASE 3. v is incident with at least three 4⁺-faces. Here, $\mu'(v) > -1 + 3 \times \frac{1}{2} - 3 \times \frac{1}{20} > 0$ by R1 and R6.

CASE 4. v is incident with precisely two 4⁺-faces f_1 , f_2 . If one of f_1 and f_2 is incident with a 10⁺-neighbor of v, then $\mu'(v) > -1 + \frac{3}{4} + \frac{1}{2} - 3 \times \frac{1}{20} > 0$ by R1 and R6. Otherwise, v has two 10⁺-neighbors adjacent to each other, hence does not give charge by R6; so $\mu'(v) > -1 + 2 \times \frac{1}{2} = 0$.

CASE 5. v is incident with precisely one 4^+ -face f. If f is incident with a 10^+ neighbor of v, then v receives at least $\frac{2}{5}$ from the other 10⁺-neighbor by R2–R4, so $\mu'(v) > -1 + \frac{3}{4} + \frac{2}{5} - 3 \times \frac{1}{20} > 0$ due to R1 and R6. Otherwise, each of at least two 10⁺-neighbors of v gives at least $\frac{2}{5}$ to it by R2–R4, while f gives $\frac{1}{2}$ by R1, and we have $\mu'(v) \ge -1 + \frac{1}{2} + 2 \times \frac{2}{5} - 3 \times \frac{1}{20} > 0.$

CASE 6. v is simplicial.

SUBCASE 6.1. v has at least three 10⁺-neighbors. Here $\mu'(v) \ge -1 + 3 \times \frac{2}{5} - 2 \times$ $\frac{1}{20} > 0$ by R2, R4, and R6.

SUBCASE 6.2. v has precisely two 10⁺-neighbors. First suppose $d(v_1) \ge 10$ and $d(v_3) \ge 10$. If $d(v_1) = 10$, then $d(v_3) \ge 13$ and v is poor. Here, $\mu'(v) = -1 + 2 \times 10^{-1}$ $\frac{1}{5} + 2 \times \frac{11}{40} + \frac{1}{20} = 0$ by R2a, R4c, and R6, as desired.

Suppose $d(v_1) \ge 11$ and $d(v_3) \ge 11$. Note that v_2 is not poor and each of v_1, v_3 gives at least $\frac{1}{2}$ to v. If $d(v_1) \in \{11, 12\}$ and $d(v_3) \in \{11, 12\}$, then neither v_4 nor v_5 is poor, so $\mu'(v) = -1 + 2 \times \frac{1}{2} = 0$. If $d(v_1) \in \{11, 12\}$ and $d(v_3) \ge 13$, then v_5 is not poor, and we have $\mu'(v) \ge -1 + \frac{1}{2} + \frac{11}{20} - \frac{1}{20} = 0$. Finally, if $d(v_1) \ge 13$ and $d(v_3) \ge 13$, then $\mu'(v) \ge -1 + 2 \times \frac{11}{20} - 2 \times \frac{1}{20} = 0$. Next suppose $d(v_1) \ge 10$ and $d(v_2) \ge 10$. Note that v_4 is not poor. If $d(v_1) = 10$, then $d(v_2) \ge 13$ and $\mu'(v) \ge -1 + \frac{1}{5} + \frac{2}{5} + \frac{11}{20} - 3 \times \frac{1}{20} = 0$ by R2b, R4b, and R6. Now suppose $d(v_1) \ge 11$ and $d(v_2) \ge 11$. If $d(v_1) \in \{11, 12\}$ and $d(v_2) \in \{11, 12\}$, then pairing a poor go $\mu'(v)$.

then neither v_3 nor v_5 is poor, so $\mu'(v) = -1 + 2 \times \frac{1}{2} = 0$. If $d(v_1) \in \{11, 12\}$ and $d(v_2) \ge 13$, then v_5 is not poor, and we have $\mu'(v) \ge -1 + \frac{1}{2} + \frac{11}{20} - \frac{1}{20} = 0$. Finally, if $d(v_1) \ge 13$ and $d(v_3) \ge 13$, then $\mu'(v) \ge -1 + 2 \times \frac{11}{20} - 2 \times \frac{1}{20} = 0$.

Thus we have proved $\mu'(x) \ge 0$ whenever $x \in V \cup F$, which contradicts (1) and completes the proof of Theorem 1.

References

- [1] J. Balogh, M. Kochol, A. Pluhár, X. Yu, Covering planar graphs with forests, J. Combin. Theory Ser. B, 94 (2005), 147-158. Zbl 1059.05081
- O.V. Borodin, Solution of Kotzig's and Grünbaum's problems on the separability of a cycle in [2]a planar graph (Russian), Matem. Zametki, 46:5 (1989), 9-12. Zbl 0717.05034
- [3] O.V. Borodin, D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory, 18:2 (1998), 159-164. Zbl 0927.05069
- [4] O.V. Borodin, H.J. Broersma, A.N. Glebov, J. Van den Heuvel, The structure of plane triangulations in terms of clusters and stars (Russian), Diskretn. Anal. Issled. Oper. Ser. 1, 8:2 (2001), 15-39. Zbl 0977.05036
- [5] O.V. Borodin, H.J. Broersma, A.N. Glebov, J. Van den Heuvel, Minimal degrees and chromatic numbers of squares of planar graphs (Russian), Diskretn. Anal. Issled. Oper. Ser. 1, 8:4 (2001), 9-33.
- [6] O.V. Borodin, A.O. Ivanova, Describing (d-2)-stars at d-vertices, $d \leq 5$, in normal plane maps, Discrete Math., 313:17 (2013), 1700-1709. Zbl 1277.05044
- [7] O.V. Borodin, A.O. Ivanova, Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5, Discrete Math., 313:17 (2013), 1710-1714. Zbl 1277.05144
- [8] O.V. Borodin, A.O. Ivanova, Light and low 5-stars in normal plane maps with minimum degree 5 (in Russian), Sibirsk. Mat. Zh., 57, 3 (2016), 596–602.
- [9] O.V. Borodin, A.O. Ivanova, T.R. Jensen, 5-stars of low weight in normal plane maps with minimum degree 5, Discussiones Mathematicae Graph Theory, 34:3 (2014), 539–546.
- [10] O.V. Borodin, A.O. Ivanova, A.V. Kostochka, Describing faces in plane triangulations, Discrete Math., **319** (2014), 47-61. Zbl 1280.05027
- [11] Ph. Franklin, The four colour problem, Amer. J. Math., 44 (1922) 225-236. JFM 48.0664.02

590

- [12] J. Harant, S. Jendrol', On the existence of specific stars in planar graphs, Graphs and Combinatorics, 23 (2007), 529–543. Zbl 1140.05020
- [13] J. Van den Heuvel, S. McGuinness, Coloring the square of a planar graph, J. Graph Theory, 42 (2003), 110–124. Zbl 1008.05065
- [14] S. Jendrol' and T. Madaras, On light subgraphs in plane graphs of minimal degree five, Discuss. Math. Graph Theory, 16 (1996), 207–217. Zbl 0877.05050
- [15] S. Jendrol', T. Madaras, Note on an existence of small degree vertices with at most one big degree neighbour in planar graphs, Tatra Mt. Math. Publ., 30 (2005), 149–153. Zbl 1150.05321
- [16] A. Kotzig, From the theory of eulerian polyhedra (in Russian), Mat. Čas. 13 (1963), 20–34. Zbl 0134.19601
- [17] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl., 19 (1940), 27–43. Zbl 0024.28701
- [18] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann., 58 (1904), 413–426. JFM 35.0511.01

Oleg Veniaminovich Borodin Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia *E-mail address*: brdnoleg@math.nsc.ru

Anna Olegovna Ivanova Ammosov North-Eastern Federal University, str. Kulakovskogo, 48, 677000, Yakutsk, Russia *E-mail address:* shmgnanna@mail.ru