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SEISMIC IN COMPOSITE MEDIA: ELASTIC AND
POROELASTIC COMPONENTS

A.MEIRMANOV, S.MUKHAMBETHZANOV, M.NURTAS

Abstract. In the present paper we consider elastic and poroelastic
media having a common interface. We derive the macroscopic mathema-
tical models for seismic wave propagation through these two different
media as a homogenization of the exact mathematical model at the
microscopic level. They consist of seismic equations for the each compo-
nent and boundary conditions at the common interface, which separates
different media. To do this we use the two-scale expansion method in the
corresponding integral identities, defining the weak solution. Our results
we illustrate with the numerical implementations of the inverse problem
for the simplest model.

Keywords: seismic, two-scale expansion method, full wavefield inversion,
numerical simulation.

1. Introduction

The present paper is devoted to a correct description of seismic wave propagation
in composite media Q ⊂ R3, consisting of the elastic medium Ω(0), poroelastic
medium Ω, which is perforated by a periodic system of pores filled with a fluid, and
common interface S(0) between Ω(0) and Ω (see Fig.1). That is, Q = Ω∪S(0)∪Ω(0)

and Ω = Ωf ∪ Γ ∪ Ωs, where Ωs is a solid skeleton, Ωf is a pore space (liquid
domain), and Γ is a common boundary "solid skeleton-liquid domain".
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The structure of the heterogeneous medium Q is too complicated and makes
hard a numerical simulation of seismic waves propagation in multiscale media. The
main difficulty here is a presence of both components (solid and liquid) in each
sufficiently small subdomain of Q. It requires to change the governing equations
(from Lame’s equations to the Stokes equations) at the scale of some tens microns.

There are two basic methods to describe physical processes in such media: the
phenomenological method and the asymptotical one which is based on the upscaling
approaches. The phenomenological approach for waves propagation through a po-
roelastic medium ([4], [5]) leads, in particular, to Biot model ([1]-[3]). It based on
the system of axioms (relations between the parameters of the medium), which
define the given physical process. But, there can be another system of axioms
defining the same process. Thus, it is necessary choose the correct authenticity
criterion of the mathematical description of the process. It can be, for example,
the physical experiment. As a rule, each phenomenological model contains some set
of phenomenological constants. Therefore, one can achieve agreement between the
suggested theory and selected series of experiments changing these parameters.

The second method, suggested by R. Burridge and J. Keller [6] and E. Sanchez-
Palencia [7], based on the homogenization.

It consists of:
1) an exact description of the process at the microscopic level based on the

fundamental laws of continuum mechanics,
and
2) the rigorous homogenization of the obtained mathematical model.
To explain the method we consider a characteristic function χ0(x) of the pore

space Ωf . Let L is the characteristic size of the physical domain in consideration, τ
is the characteristic time of the physical process, ρ 0 is the mean density of water,
and g is acceleration due gravity

In dimensionless variables

x→ x

L
, w → ατ

w

L
, t→ t

τ
, F → F

g
, ρ→ ρ

ρ 0
,

the dynamic system for the displacements w and pressure p of the medium takes
the form [6, 7, 8]:

(1) %
∂2w

∂t2
= ∇ · P + %F ,

(2) P = χ0 αµ D(x,
∂w

∂t
) + (1− χ0)αλ D(x,w) +

(
χ0αν (∇ · ∂w

∂t
)− p

)
I,

(3) p+ αp∇ · w = 0.

Equations (1)-(3) are understood in the sense of distributions as corresponding
integral identities. They are equivalent to the Stokes equations

(4) %f
∂v

∂t
= ∇ · Pf + %fF ,

∂p

∂t
+ αp,f∇ · v = 0,

(5) Pf = αµ D(x,v) +
(
αν (∇ · v)− p

)
I
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for the velocity v =
∂w

∂t
and pressure p in the pore space Ωf and the Lame equations

(6) %s
∂2w

∂t2
= ∇ · Ps + %sF , p+ αp,s∇ · w = 0,

(7) Ps = αλ D(x,w)− p I

for the solid displacements w and pressure p in Ωs.
At the common boundary Γ velocities and normal tensions are continuous:

(8)
∂w

∂t
= v, Ps · n = Pf · n.

Here n is a unit normal to Γ.
In (1)-(8) D(x,u) =

1

2
(∇u + ∇u∗) is the symmetric part of ∇u, I is a unit

tensor, F is a given vector of distributed mass forces,

αp = αp,fχ0 + αp,s(1− χ0), % = %f χ0 + %s (1− χ0),

ατ =
L

gτ2
, αµ =

2µ

ατ τLg ρ 0
, αλ =

2λ

ατ Lg ρ 0
,

αν =
2ν

ατ τLg ρ 0
, αp,f =

%f c
2
f

ατ Lg
, αp,s =

%s c
2
s

ατ Lg
,

µ is the dynamic viscosity, ν is the bulk viscosity, λ is the elastic constant, %f and %s
are the respective mean dimensionless densities of the liquid in pores and the solid
skeleton, correlated with the mean density of water ρ 0, and cf and cs are the speed
of compression sound waves in the pore liquid and in the solid skeleton respectively.
The mathematical model (1) – (3) can not be useful for practical needs, since the

Figure 1. The pore structure

function χ0 changes its value from 0 to 1 on the scale of a few microns. Fortunately,

the system possesses a natural small parameter ε =
l

L
, where l is the average size

of pores. Thus, the most suitable way to get a practically significant mathematical
model, which approximate (1) – (3), is a homogenization or upscaling. That is, we
suppose the ε-periodicity of the solid skeleton, let ε to be variable, and look for the
limit in (1) – (3) as ε→ 0.
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There are different homogenized (limiting) systems, depending on of αµ, αλ, ....
Some of these numbers might be small and some might be large. We may represent
them as a power of ε, or as functions depending on ε.

Let
µ0 = lim

ε↘0
αµ(ε), ν0 = lim

ε↘0
αν(ε), λ0 = lim

ε↘0
αλ(ε),

c2f,0 = lim
ε↘0

αp,f (ε), c2s,0 = lim
ε↘0

αp,s(ε),

µ1 = lim
ε↘0

αµ
ε2
, λ1 = lim

ε↘0

αλ
ε2
.

It is clear that the choice of these limits depend on our willing. For example, for
ε = 10−2 and α = 2 · 10−1 we may state that α = 2 · ε− 1

2 , or α = 0.02 · ε0. It is
usual procedure when we neglect some terms in differential equations with small
coefficients and get more simple equations, still describing the physical process.

The detailed analyses of all possible limiting regimes has been done in [8, 9].
In order to describe the seismic in two different media (elastic and poroelastic),

having a common interface we must chose one of the two methods discussed above.
The first method suggests only some guesses, while the second method has a clear
algorithm for the derivation of the boundary conditions. That is why we choose
here the second method.

We derive new seismic equations in each component (elastic and poroelastic) and
the boundary conditions on the common boundary. For these boundary conditions
the very little is known and only for the liquid filtration (see for example [10]).

For three different sets of µ0, λ0, ... for each component we derive three different
mathematical models, which describe the process with different degrees of approx-
imation.

We start with the integral identities, defining the weak solution wε and pε, and
use the two-scale expansion method [11, 12], when we look for the solution in the
form

wε(x, t) = w(x, t) + W 0(x, t,
x

ε
) + εW 1(x, t,

x

ε
) + o(ε),

pε(x, t) = p(x, t) + P0(x, t,
x

ε
) + ε P1(x, t,

x

ε
) + o(ε)

with 1-periodic in the variable y functions W i(x, t,y), Pi(x, t,y), i = 0, 1, ...
This method is rather heuristic and may lead to the wrong answer. But our

guesses are based upon the strong theory, suggested by G. Nguetseng [13, 14]. For
the rigorous derivation of seismic equations in poroelastic media, which dictate the
correct two-scale expansion, see [8].

Finally, to calculate limits as ε→ 0 in corresponding integral identities, we apply
the well-known result

(9) lim
ε→0

∫
Ω

F (x,
x

ε
, t)dxdt =

∫
Ω

( ∫
Y

F (x,y, t)dy
)
dxdt

for any smooth 1-periodic in the variable y ∈ Y function F (x,y, t).

2. The statement of the problem

For the sake of simplicity we suppose that Q = {x = (x1, x2, x3) ∈ R3 : x3 > 0},
Ω(0) = {x = (x1, x2, x3) ∈ R3 : 0 < x3 < H}, Ω = {x = (x1, x2, x3) ∈ R3 : x3 >
H}, F = 0, and

αp,f = c̄ 2
f , αp,s = c̄ 2

s .
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Let Y be a unit cube in R3, Y = Yf
⋃
γ
⋃
Ys. We assume that pore space Ωεf

is a periodic repetition in Ω of the elementary cell εYf , the solid skeleton Ωεs is a
periodic repetition in Ω of the elementary cell εYs, and the boundary Γε between
a pore space and a solid skeleton is a periodic repetition in Ω of the boundary εγ.

The detailed description of the sets Yf and Ys is done in [8].
Due to these suppositions

χ0(x) = χε(x) = χ(
x

ε
),

where χ(y) is a 1-periodic function such that χ(y) = 1 for y ∈ Yf and χ(y) = 0 for
y ∈ Ys.

For a fixed ε > 0 the displacement vector wε and pressure pε satisfy Lame’s
system

(10) %(0)
s

∂2wε

∂t2
= ∇ · P(0)

s , p ε + c̄ 2
s,0∇ · wε = 0,

(11) P(0)
s = α

(0)
λ D(x,wε)− p ε I

in the domain Ω(0) for t > 0, and the system (1)-(3) with χ0 = χε(x), % = %ε =
%f χ

ε + %s (1−χε), and αp = αεp = αp,fχ
ε +αp,s(1−χε) in the domain Ω for t > 0.

On the common boundary S(0) = {x = (x1, x2, x3) ∈ R3 : x3 = H} the
displacement vector and normal tensions are continuous:

(12) lim
x → x0

x ∈ Ω(0)

wε(x, t) = lim
x → x0

x ∈ Ω

wε(x, t), x0 ∈ S(0),

(13) lim
x → x0

x ∈ Ω(0)

P(0)(x, t) · e3 = lim
x → x0

x ∈ Ω

P(x, t) · e3, x0 ∈ S(0),

where e3 = (0, 0, 1).
The problem is completed with the boundary condition

(14) P(0)
s · e3 = −p0(x′, t)e3, x

′ = (x1, x2)

on the outer boundary S = {x = (x1, x2, x3) ∈ R3 : x3 = 0} for t > 0 and
homogeneous initial conditions

(15) wε(x, 0) =
∂wε

∂t
(x, 0) = 0.

Let ς(x) be the characteristic function of the domain Ω and

%̃ ε = (1− ς)%(0)
s + ς %ε, α̃ εp = (1− ς)c̄ 2

s,0 + ς α εp .

Then the above formulated problem takes the form

(16) %̃ ε
∂2wε

∂t2
= ∇ ·

(
(1− ς)P(0)

s + ςP
)
,

(17) p ε + α̃ εp∇ · wε = 0,

(18) P = χ ε αµ D(x,
∂w ε

∂t
) + (1− χ ε)αλ D(x,w ε)−

(
χ ε

αν
c̄ 2
f

∂p ε

∂t
+ p ε

)
I,
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where in (18) we have used the consequence of (17) in the form

ς χ εαν (∇ · ∂w
ε

∂t
) = −ς χ εαν

c̄ 2
f

∂p ε

∂t
.

Equation (16) is understood in the sense of distributions. That is, for any smooth
functions ϕ with a compact support in Q the following integral identity

(19)
∫
QT

(
%̃ ε
∂2wε

∂t2
·ϕ +

(
(1− ς)P(0)

s + ςP
)

: D(x,ϕ) +∇ · (p0ϕ)
)
dxdt = 0

holds true. We call such solution the weak solution.
In (19) QT = Q× (0, T ) and the convolution A : B of two tensors A = (Aij) and

B = (Bij) is defined as A : B = tr(A · B) =

3∑
i,j=1

AijBji.

Using standard methods one can prove that for any positive ε > 0 and given
smooth function p0 there exists a unique weak solution of the problem (16)-(18)
which makes sense to the integral identity (19).

We look for the limit of the weak solutions for the following case:
(I) µ0 = λ0 = λ

(0)
0 = 0, µ1 = λ1 =∞, 0 6 ν0 <∞, λ(0)

0 = lim
ε→0

α
(0)
λ .

3. Homogenization: case (I)

According to [9], the two-scale expansion for the weak solution of the problem
(16)-(18) under conditions (I) has the form

(20) wε(x, t) = w(x, t) + o(ε), pε(x, t) = p(x, t) + o(ε),

where lim
ε→0

o(ε) = 0.
The substitution (20) into (19) results in the integral identity

(21)
∫

ΩT

((
χ(

x

ε
)%f +

(
1− χ(

x

ε
)
)
%s
)∂2w

∂t2
·ϕ− (χ(

x

ε
)
αν
c̄ 2
f

∂p

∂t
+ p)∇ · ϕ

)
dxdt

+

∫
QT

∇ · (p0ϕ)dxdt+

∫
Ω

(0)
T

(
%(0)
s

∂2w

∂t2
·ϕ− p (∇ · ϕ)

)
dxdt = o(ε).

Now we use (9) and after the limit in (21) as ε→ 0 arrive at the following integral
identity

(22)
∫

ΩT

(
%̂
∂2w

∂t2
·ϕ− (m

ν0

c̄ 2
f

∂p

∂t
+ p)∇ · ϕ

)
dxdt+

∫
QT

∇ · (p0ϕ)dxdt

+

∫
Ω

(0)
T

(
%(0)
s

∂2w

∂t2
·ϕ− p (∇ · ϕ)

)
dxdt = 0,

where %̂ = m%f + (1−m)%s and m =

∫
Y

χ(y)dy.

Next we rewrite (17) as

(23)
( (1− ς)
c̄ 2
s,0

+
ς χ(x

ε )

c̄ 2
f

+
ς
(
1− χ(x

ε )
)

c̄ 2
s

)
p ε +∇ · wε = 0,
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multiply the result by a smooth function ψ(x, t) with a compact support in Q, and
integrate by part over domain QT :

(24)
∫
QT

(
ψ
( (1− ς)
c̄ 2
s,0

+
ς χ(x

ε )

c̄ 2
f

+
ς
(
1− χ(x

ε )
)

c̄ 2
s

)
p ε −∇ψ · wε

)
dxdt = 0.

As above, we substitute (20) into (24) and pass to the limit as ε→ 0:

(25)
∫
QT

(
ψ
( (1− ς)
c̄ 2
s,0

+
ς m

c̄ 2
f

+
ς (1−m)

c̄ 2
s

)
p−∇ψ · w

)
dxdt = 0.

Integral identities (22) and (25), completed with initial conditions

(26) w(x, 0) =
∂w

∂t
(x, 0) = 0,

form mathematical model (I) of seismic in composite media.
In fact, these identities contain the differential equations in Ω and Ω(0) and the

boundary conditions on S and S(0).
Let ϕ be a smooth function with a compact support in Ω(0). Rewriting (22) as∫

Ω
(0)
T

(%(0)
s

∂2w

∂t2
+∇ p) ·ϕdxdt = 0

and using the arbitrary choice of ϕ we conclude that

(27) %(0)
s

∂2w

∂t2
= −∇ p

in the domain Ω(0) for t > 0.
For functions ϕ with a compact support in Ω (22) implies

(28) %̂
∂2w

∂t2
= −∇(p+m

ν0

c̄ 2
f

∂p

∂t
), %̂ = m%f + (1−m)%s

in the domain Ω for t > 0.
Now, if we choose ϕ = (ϕ1, ϕ2, ϕ3) with a compact support in Q and ϕ3(x, t) 6= 0

for x ∈ S(0), then the integration by parts in (22) together with (27) and (28) result
in ∫

S
(0)
T

(
p− − (p+ +m

ν0

c̄ 2
f

∂p+

∂t
)
)
ϕ3dxdt = 0,

where

p−(x1, x2, t) = p(x1, x2, H − 0, t), p+(x1, x2, t) = p(x1, x2, H + 0, t).

Therefore

(29) lim
x → x0

x ∈ Ω(0)

p(x, t) = lim
x → x0

x ∈ Ω

(
p(x, t) +m

ν0

c̄ 2
f

∂p

∂t
(x, t)

)
, x0 ∈ S(0).

Finally, for functions ϕ with a compact support in Ω(0) and ϕ3(x, t) 6= 0 for x ∈ S
the integration by parts in (22) together with (27) result in∫

ST

(p− p0)ϕ3dxdt = 0,

or

(30) p(x, t) = p0(x, t), x ∈ S.
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In the same way as above, it can be shown that (25) implies continuity equations

(31)
1

c̄ 2
s,0

p+∇ · w = 0

and

(32)
(m
c̄ 2
f

+
(1−m)

c̄ 2
s

)
p+∇ · w = 0

in the domains Ω(0) and Ω respectively, and the boundary condition

(33) lim
x → x0

x ∈ Ω(0)

e3 ·w(x, t) = lim
x → x0

x ∈ Ω

e3 ·w(x, t), x0 ∈ S(0)

on the common boundary S(0).
Differential equations (27), (28), (31), and (32), boundary conditions (29), (30),

and (33), and initial conditions (26) constitute the mathematical model (I) in
its differential form.

4. One dimensional model for the case (I): numerical implementations

4.1. Direct problem. For the sake of simplicity we consider the space, which
consists of the following subdomains: Ω1 = {x ∈ R : 0 < x < H1}, Ω2 = {x ∈ R :
H1 < x < H2}, and Ω3 = {x ∈ R : x > H2}. Differential equations (27), (28), (31),
and (32) result in

1

ĉ2(x)

∂2p

∂t2
= div

( 1

ρ̂(x)
∇(p+m

ν0

c̄ 2
f

∂p

∂t
)
)

where
1

ĉ2
=
m

c̄ 2
f

+
(1−m)

c̄ 2
s

and ρ̂ = mρf + (1−m)ρs are respectively average wave

propagation velocity and average density of the medium.
Applying now the Fourier transformation we arrive at

(34)
d2P̂

dX2
+

ρ̂ω2

(1− mν0
c2f
iω)ĉ2

P̂ = 0

where P̂ (x, ω)-the pressure obtained after Fourier transform.

Figure 2. Scheme of arrangement of layers
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Depending on the exact physical properties, the sedimentary rock zone is divided
into three subdomains. The value of the geometry of pores, viscosity of fluid, density
of rock, and velocity of seismic wave considered in each layers to be different. In the
experiment in order to get numerical solution, it’s assumed that the first medium
is a shale, the second medium is oil saturated sandstone, and the third medium is
a limestone (see Fig.2).

Parameter medium Density (kg/m3) Elastic wave velocity (m/s)
Oil 850 1330

Shale 1600 1500
Sandstone 2250 2500
Limestone 2700 3000

Table 1. The average values of density and sound velocity.

Let us suppose that there is a plane wave which propagates from ∞. Then the
general solution of equation (34) for −∞ < X ≤ H1 in the case ν0 = 0 is written
down as:

(35) P̂1 = exp

{
iω
√
ρ̂1

ĉ1
x

}
+A2 exp

{
−iω
√
ρ̂1

ĉ1
x

}
.

The general solution of equation (34) for H1 ≤ x < H2 in the case ν0 > 0 is
represented as:

(36) P̂2 = B1 exp


iω
√
ρ̂2

ĉ2

√
1− mν0

c2f
iω

x

+B2 exp


−iω
√
ρ̂2

ĉ2

√
1− mν0

c2f
iω

x

 .

Finally the general solution for x ≥ H2 in the case ν0 = 0 will be the following:

(37) P̂3 = D1 exp

{
iω

√
ρ̂3

ĉ3
x

}
.

Continuity condition in contact media will be:

(38) [P̂1 − iω
mν0

c2f
P̂1]H1−0

= [P̂2 − iω
mν0

c2f
P̂2]H1+0

(39) ĉ21
d

dx
[P̂1 − iω

mν0

c2f
P̂1]H1−0

= ĉ22
d

dx
[P̂2 − iω

mν0

c2f
P̂2]H1+0

(40) [P̂2 − iω
mν0

c2f
P̂2]H2−0 = [P̂3 − iω

mν0

c2f
P̂3]H2+0

(41) ĉ22
d

dx
[P̂2 − iω

mν0

c2f
P̂2]H2−0

= ĉ23
d

dx
[P̂3 − iω

mν0

c2f
P̂3]H2+0

These relations are nothing else but the system of linear algebraic equations for the
coefficients A2, B1, B2, D1 which can be easily resolved by any direct method. These
coefficients are used in order to construct the solution in time frequency domain
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and after inverse Fourier transform in time the solution in the time domain can be
easily recovered (see Fig.3).

Figure 3. Propagation of seismic waves in different layers

4.2. Inverse problem. In inverse problem [15] except P̂ (x, ω) the values H1, H2,
ĉ2, ν0, m are unknown as well. To determine these values one needs some additional
information about solution of the direct problem - data of inverse problem. Usually
they are given as function P (ω) at X = 0. The most widespread way is to search
for these values by minimization of the data misfit functional being L2 norm of
the difference of given functions and computed for some current values of unknown
parameters. During the numerical simulations, we use the following list of information.
For these data, the characteristic dimension of depth L ∼ 3000m, characteristic time
τ ∼ 0−3sec, ατ ∼ 33, the porosity of the sandstonem ∼ 0.007, average size of pores
l ∼ 30micron, then ε ∼ 10−10, µ ∼ 5 ∗ 10−3Pa.s, ν0 ∼ 3.8cCt = 3.8 ∗ 10−6m2/s,
λ ∼ 1 ∗ 109Pa. Therefore

Coefficients corresponding values(dimensionless) approximate values(by ε)
The first layer is shale

αp,s 3.63 ε1/10

The second layer is sandstone(oil containing area)

αp,s 14.21 ε2/10

αp,f 1.52 ε1/10

αν 3.01 ∗ 10−12 ε6/5

αµ 3.37 ∗ 10−12 ε6/5

µ1 3.37 ∗ 108 ε−4/5

αλ 0.22 ε1/5

λ1 0.22 ∗ 1020 ε−2

The third layer is limestone

αp,s 24.54 ε2/10

Table 2. The values of the coefficients used in practice.
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(42) Fi(H
i
1, H

i
2) =

∫ ωn

ω1

|P̂i(ω,Hi
1, H

i
2)− P (ω,H1, H2)|2dω → 0

(43) Fi(H
i
1, ĉ

i
2) =

∫ ωn

ω1

|P̂i(ω,Hi
1, ĉ

i
2)− P (ω,H1, ĉ2)|2dω → 0

(44) Fi(H
i
2, ĉ

i
2) =

∫ ωn

ω1

|P̂i(ω,Hi
2, ĉ

i
2)− P (ω,H2, ĉ2)|2dω → 0

Here P (ω, . . . , . . .) is the given wave fields at X = 0, while P̂ (ω, . . . , . . .) are wave
fields computed for some current values of the desired parameters. In our numerical
experiments the minimum is searched by the Nelder-Mead technique [17].

4.2.1. Recovery of H1 and H2. Behavior of the data misfit functional for this
statement is represented in Fig.4 and Fig.5. As one can see this functional is convex
and has the unique minimum point. Therefore this inverse problem is well resolved.

Figure 4. Minimization of the functional F (H1, H2).

Figure 5. Level line of the functional F (H1, H2).

4.2.2. Recovery of H1 and c2. Now we come to the non convex functional and
therefore inverse problem may have few solutions (see Fig.6, Fig.7).
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Figure 6. Minimization of the functional F (H1, ĉ2).

Figure 7. Level line functional F (H1, ĉ2).

4.2.3. Recovery of H2 and c2. This statement also generates non convex functional,
but now it has excellent resolution with respect to H2 (see Fig.8, Fig.9).

Figure 8. Minimization of the functional F (H2, ĉ2).
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Figure 9. Level line functional F (H2, ĉ2).

Conclusions. In this publication we have shown how to derive mathematical
models for composite media using its microstructure. As a rule, there is some
set of models depending on given criteria µ0, λ0, ... of the physical process in
consideration. For a fixed set of criteria the corresponding model describes some of
the main features of the process.

In the paper the simplest inverse problem was dealt with - recovery of elastic
parameters of the layer by Nelder-Mead algorithm. In the future we are planning
to establish connection upscaling procedure and scattered waves and apply on this
base recent developments of true-amplitude imaging on the base of Gaussian beams
for both reflected and scattered waves ([18], [19].
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