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ON THE EQUATIONAL ARTINIAN ALGEBRAS

P. MODABBERI AND M. SHAHRYARI

Abstract. Equational Artinian algebras were introduced in our previous
work: Compactness conditions in universal algebraic geometry, Algebra
and Logic, 2016, 55 (2). In this note, we define the notion of radical
topology with respect to an algebra A and using the well-known König
lemma in graph theory, we show that the algebra A is equational Artinian
iff this topology is Noetherian. This completes the analogy between
equational Noetherian and equational Artinian algebras.
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1. Introduction

Universal algebraic geometry is a new area of modern algebra, whose subject
is basically the study of equations over an arbitrary algebraic structure A. In the
classical algebraic geometry A is a field. Many articles already published about
algebraic geometry over groups, see [1], [2], [3], [12], and [14]. In an outstanding
series of papers, O. Kharlampovich and A. Miyasnikov developed algebraic geometry
over free groups to give affirmative answer for an old problem of Alfred Tarski
concerning the elementary theory of free groups (see [10] and also [15] for the
independent solution of Z. Sela). Also in [11], a problem of Tarski about decidablity
of the elementary theory of free groups is solved. Algebraic geometry is also developed
for algebras other than groups, so in a series of papers, the systematic study of
universal algebraic geometry is done by V. Remeslennikov, A. Myasnikov and E.
Daniyarova in [5], [6], [7], and [8].

Equational Noetherian algebras are among important classes of examples extensively
studied in universal algebraic geometry. These are algebras the Zariski topology in
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which satisfies descending chain condition for closed subsets. In [13], we studied
equational Artinian algebras in analogy to equational Noetherian ones. We defined
an equational Artinian algebra as an algebra the Zariski topology in which satisfies
ascending chain condition for algebraic sets. It seems that there should be a full
symmetry between two similar notions, however, in [13] we couldn’t complete
description of this symmetry. In this note, we will define radical topology with respect
to an algebra A over the set of atomic formulas of the underlying language L which
is a counterpart for the Zariski topology. Then we will show that A is equational
Artinian iff this topology satisfies descending chain condition for closed subsets.
As a results, we see that although the property of being equational Noetherian
translates in terms of Zariski topology, the property of being equational Artinian
translates in terms of the corresponding radical-topology. The main tool for our
argument is the well-known lemma of König from graph theory which says that
every tree with vertices of finite degrees is finite if the length of any chain is finite.

2. Basic notions

This section is devoted to a fast review of the basic concepts of the universal
algebraic geometry. We suggest [4] for reader who is not familiar to the universal
algebra. The reader also would use [5], [6], [7], and [8], for extended exposition of
the universal algebraic geometry. Our notations here are almost the same as in the
above mentioned papers. For the sake of simplicity, we define our notions in the
coefficient free frame and then one can extend all the definitions and results to the
case of non-coefficient free algebraic geometry.

Fix an algebraic language L and a set of variables X = {x1, . . . , xn}. An equation
is a pair (p, q) of the elements of the term algebra TL(X). In many cases, we
assume that such an equation is the same as the atomic formula p(x1, . . . , xn) ≈
q(x1, . . . , xn) or p ≈ q in short. Hence, in this article the set AtL(X) of atomic
formulae in the language L and the product algebra TL(X) × TL(X) are assumed
to be equal.

Any subset S ⊆ AtL(X) is called a system of equations in the language L. A
system S is called consistent over an algebra A, if there is an element (a1, . . . , an) ∈
An such that for all equations (p ≈ q) ∈ S, the equality

pA(a1, . . . , an) = qA(a1, . . . , an)

holds. Otherwise, we say that S is inconsistent over A. Note that, pA and qA are
the corresponding term functions on An. A system of equations S is called an ideal,
if it corresponds to a congruence on TL(X). For an arbitrary system of equations S,
the ideal generated by S, is the smallest congruence containing S and it is denoted
by [S].

For an algebra A of type L, an element (a1, . . . , an) ∈ An will be denoted by a,
sometimes. Let S be a system of equations. Then the set

VA(S) = {a ∈ An : ∀(p ≈ q) ∈ S, pA(a) = qA(a)}

is called an algebraic set. It is clear that for any non-empty family {Si}i∈I , we have

VA(
∪
i∈I

Si) =
∩
i∈I

VA(Si).
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So, we define a closed set in An to be an arbitrary intersections of finite unions
of algebraic sets. Therefore, we obtain a topology on An, which is called Zariski
topology.

For any set Y ⊆ An, we define

Rad(Y ) = {(p, q) : ∀ a ∈ Y, pA(a) = qA(a)}.

It is easy to see that Rad(Y ) is an ideal in the term algebra. Any ideal of this type
is called an A-radical ideal or a radical ideal for short. Note that any ideal in the
term algebra is in fact a radical ideal with respect to some suitable algebra. To see
the reason, just note that for any ideal R in the term algebra TL(X), if we consider
the algebra B(R) = TL(X)/R, then RadB(R)(R) = R.

It is easy to see that a set Y is algebraic if and only if VA(Rad(Y )) = Y . In the
general case, we have VA(Rad(Y )) = Y ac, see [6]. The coordinate algebra of a set Y
is the quotient algebra

Γ(Y ) =
TL(X)

Rad(Y )
.

An arbitrary element of Γ(Y ) is denoted by [p]Y . We define a function pY : Y → A
by the rule

pY (a) = pA(a1, . . . , an),

which is a term function on Y . The set of all such functions will be denoted by T (Y )
and it is naturally an algebra of type L. It is easy to see that the map [p]Y 7→ pY

is a well-defined isomorphism. So, we have Γ(Y ) ∼= T (Y ).
For a system of equation, we can also define the radical RadA(S) to be Rad(VA(S)).

Two systems S and S′ are called equivalent over A, if they have the same set of
solutions in A, i.e. VA(S) = VA(S

′). So, clearly RadA(S) is the largest system which
is equivalent to S. Note that [S] ⊆ RadA(S).

Definition 1. An algebra A is called equational Noetherian, if for any system of
equations S, there exists a finite subsystem S0 ⊆ S, which is equivalent to S over
A, i.e. VA(S) = VA(S0).

Many examples of equational Noetherian algebras are introduced in [6]. Among
them are Noetherian rings and linear groups over Noetherian rings as well as free
groups. In [6], it is proved that the next four assertions are equivalent:

i- An algebra A is equational Noetherian.

ii- For any system S, there exists a finite S0 ⊆ [S], such that VA(S) = VA(S0).

iii- For any n, the Zariski topology on An is Noetherian, i.e. any descending
chain of closed subsets terminates.

iv- Any chain of coordinate algebras and epimorphisims

Γ(Y1) → Γ(Y2) → Γ(Y3) → · · ·

terminates.

So, in the case of equational Noetherian algebras, any closed set in An is equal
to a minimal finite union of irreducible algebraic sets which is unique up to a
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permutation. Note that, a set is called irreducible, if it has no proper finite covering
consisting of closed sets. The following theorem is proved in [6].

Theorem 1. Let A be an equational Noetherian algebra. Then the following algebras
are also equational Noetherian:

i- any subalgebra and filter-power of A.

ii- any coordinate algebra over A.

iii- any fully residually A-algebra.

iv- any algebra belonging to the quasi-variety generated by A.

v- any algebra universally equivalent to A.

vi- any limit algebra over A.

vii- any finitely generated algebra defined by a complete atomic type in the universal
theory of A or in the set of quasi-identities of A.

3. Equational Artinian algebras

We say that an algebra A is equational Artinian if every ascending chain of
algebraic sets over A terminates. We first, review some basic properties of equational
Artinian algebras (see [13] for the proofs). One can ask about the existence of an
equational condition, equivalent to being equational Artinian. We proved that the
correct condition is not in terms of equations, but rather it can be formulated in
terms of radical ideals. We showed that A is equational Artinian, iff for any n and
any E ⊆ An, there exists a finite subset E0 ⊆ E such that

Rad(E) = Rad(E0).

Note that this condition is in some sense the dual condition of being equational
Noetherian. Recall the following definition of the radical ideals.

Definition 2. Let A be an algebra and E ⊆ An, for some n. Then Rad(E) is called
an A-radical ideal of the term algebra TL(x1, . . . , xn).

The collection of all A-radical ideals of the term algebra, is a subbasis of closed
sets for a topology on the set of atomic formulas AtL(x1, . . . , xn) which we call it
the radical topology with respect to A. As in the case of the Zariski topology, closed
sets of this new space are arbitrary intersections of finite unions of A-radical ideals.
The next theorem provides some equivalent conditions for the property of being
equational Artinian. The conditions i, ii and vi are not new (they are obtained in
[13]), so we will concentrate on iv and v. Recall that we say that topological space
is contra-compact if every covering of it by closed sets has a finite subcover.

Theorem 2. For an algebra A, the following conditions are equivalent;

i- For any n and any E ⊆ An, there exists a finite subset E0 ⊆ E such that

Rad(E) = Rad(E0).
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ii- Every descending chain of A-radical ideals terminates.

iii- A is equational Artinian.

iv- For any n, the radical topology with respect to A on AtL(x1, . . . , xn) is
Noetherian.

v- For any n, every subset of AtL(x1, . . . , xn) is compact.

vi- For any n, every subset of An is contra-compact.

Proof. We only show that iv and v are equivalent to the property of being equational
Artinian. To prove the equivalence of iii and iv, suppose that the algebra A is
equationally Artinian. We assume that B is the set of all A-radicals corresponding
to the subsets of An. So B satisfies the descending chain condition. Let B1 be the set
of all finite unions of the radicals in B and let B2 be the set of all intersections of sets
in B1. By the definition of radical-topology, B2 is just the set of the closed subsets
of this topology. First we prove that B1 satisfies the descending chain condition.
Suppose that

M1 = Rad(E1) ∪ . . . ∪ Rad(Em), M2 = Rad(E′
1) ∪ . . . ∪ Rad(E′

k)

are sets in B1 and M2 ⊂ M1. For every i ≤ m and j ≤ k, we have Rad(Ei) ∩
Rad(E′

j) ⊂ Rad(Ei). Hence we can gain a tree with root vertex Rad(Ei) and with
a unique edge from the root to every subset Rad(Ei) ∩ Rad(E′

j). We consider the
following strictly descending chain of subsets of B1:

M1 ⊃ M2 ⊃ M3 ⊃ . . . .

As we mentioned, we obtain a tree such that each vertex is a finite intersection of
sets in B, hence each vertex is in B itself. Since each vertex is connected to only
finite other vertexes, so each vertex has a finite degree. So, every path corresponds
to a strictly descending chain of radicals and since A is equationally Artinian, so
the path is finite. By König’s lemma this implies that the graph is finite. Therefore
the above chain is also finite. So B1 satisfies the descending chain condition and is
closed under finite intersection.

Now we prove that B2 satisfies the descending chain condition too. Suppose∩∞
i=1 Ri is an infinite intersection of subsets of B1. Then we have the following

chain:
R1 ⊇ R1 ∩R2 ⊇ R1 ∩R2 ∩R3 ⊇ . . . .

Since B1 satisfies descending chain condition and is closed under finite intersection,
so the chain terminates. Therefore

∃m R1 ∩R2 ∩ . . . ∩Rm =

∞∩
i=1

Ri.

Therefore, every infinite intersection of subsets of B1 is in fact a finite intersection in
B1 and so it belongs to B1. Consequently we have B2 = B1 and hence it satisfies the
descending chain condition. This shows that the radical topology on AtL(x1, . . . , xn)
is Noetherian. Clearly, if we assume that the radical topology is Noetherian, then
every descending chain of A-radical ideals terminates and so we obtain iii.
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Now we prove that v is equivalent to iii. Suppose any subset of AtL(x1, . . . , xn)
is compact. For an arbitrary E ⊆ An we have

Rad(E) =
∩
a∈E

Rad(a).

Therefore

AtL(x1, . . . , xn) \ Rad(E) = AtL(x1, . . . , xn) \
∩
a∈E

Rad(a)

=
∪
a∈E

(AtL(x1, . . . , xn) \ Rad(a)).

Since any subset of AtL(x1, . . . , xn) is compact, there is a finite number of points
a1, . . . , am, such that

AtL(x1, . . . , xn) \ Rad(E) =

m∪
i=1

(AtL(x1, . . . , xn) \ Rad(ai)).

Hence

Rad(E) =
m∩
i=1

Rad(ai) = Rad(E0),

where E0 = {a1, . . . , am}. So A is equational Artinian. Conversely, suppose that
A is equational Artinian. Note that by this assumption, every closed set in radical
topology is a finite union of A-radical ideals. This is because by iv, every descending
chain of closed sets in AtL(x1, . . . , xn) terminates. Let S ⊆ AtL(x1, . . . , xn) and

S ⊆
∪
i

(AtL(x1, . . . , xn) \ Rad(ai))

be an open covering of S (by the point we just mentioned, every open covering of
S has this form). Then

S ⊆ AtL(x1, . . . , xn) \
∩
i

Rad(ai)

= AtL(x1, . . . , xn) \ Rad(E).

Now, since A is equational Artinian, there is a finite E0 ⊆ E such that Rad(E) =
Rad(E0), so

S ⊆ AtL(x1, . . . , xn) \ Rad(E0)

=
m∪
i=1

(AtL(x1, . . . , xn) \ Rad(ai)).

�

This theorem, completes the analogy between two dual properties of being equational
Noetherian and equational Artinian. As a result, every closed subset of AtL(x1, . . . , xn)
is a unique union of finitely many irreducible sets. These irreducible sets are necessarily
have the form Rad(Y ), for some Y ⊆ An. Such an algebraic set Y will be called
large. So, if A is equational Artinian, then every algebraic set Y ⊆ An can be
written uniquely as a finite intersection Y =

∩m
i=1 Yi, such that every Yi is a large

algebraic set.
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