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COMPLETELY REGULAR CODES IN THE INFINITE
HEXAGONAL GRID

S.V. AVGUSTINOVICH, D.S. KROTOV, A.YU. VASIL’EVA

ABSTRACT. A set C of vertices of a simple graph is called a completely
regular code if for each i =0, 1,2, ...and j =i — 1, 7, i + 1, all vertices
at distance ¢ from C' have the same number s;; of neighbors at distance
j from C. We characterize the completely regular codes in the infinite
hexagonal grid graph.

Keywords: completely regular code, perfect coloring, equitable partition,
partition design, hexagonal grid.

1. INTRODUCTION

Completely regular codes and corresponding vertex colorings (we call them dis-
tance-regular colorings, a partial case of perfect colorings or equitable partitions)
play important role in the theory of distance-regular graphs [4]. Recall that a
distance-regular graph is a regular graph such that every singleton is a completely
regular code. The existence of completely regular codes in non-distance-regular
graphs shows that some phenomena taking place in distance-regular graphs can
also happen in other graphs. For example, the weight distribution of one completely
regular code with respect to another one satisfies some equations [7], which helps
to study such codes (as well as other objects with similar algebraic properties) and
to prove the nonexistence for some given parameters. So, it is natural to study
completely regular codes in different kind of graphs. However, the most interesting
cases are transitive graphs, including infinite grids. Some grids were considered
in previous papers. In [3], [10], and [6], perfect colorings (equitable partitions) of
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the infinite rectangular grid into two colors, three colors, and up to nine colors,
respectively, were described. In [8], the parameter matrices of perfect colorings of
the infinite hexagonal grid into three colors were listed, but one was missed (it
corresponds to a distance-regular coloring and occurs in the current classification).
As was proven in [9] and [11], for every perfect coloring of the infinite rectangular,
triangular, or hexagonal grid, there exists a periodic perfect coloring with the same
parameter matrix. In [2] and [12], the intersection arrays of completely regular codes
in the infinite rectangular and, respectively, triangular grid were characterized. In
[1], an n-dimensional rectangular grid were considered and it was proven that the
maximum number of colors of an irreducible distance-regular coloring is 2n + 1.

In the current paper, we describe the completely regular codes in the hexagonal
grid, which is an infinite edge-transitive graph of degree 3. The set of intersection
arrays of the completely regular codes in this graph consists of several infinite series
and several “sporadic” arrays, see Theorem 1. For every feasible intersection array,
there are one, two, or infinitely many nonequivalent completely regular codes. In
the appendices, all possible cases are illustrated by pictures.

Remark. Many codes in our characterization are very symmetrical. It is not a
surprise that there are connections with some other classes of objects that are
related with the symmetries of the plane. For example, every edge-to-edge tiling
(mosaic) of the plane by regular triangles and hexagons can be considered as a
partition of the vertices of the infinite hexagonal grid into two parts (a triangle
corresponds to a node, while a hexagon covers six nodes). It is notable that if we
consider so-called 1- and 2-uniform tilings by triangles and hexagons, see e.g. [5,
Sect. 2.2 (there are 9 such tilings, named (3°), (6%), (3*-6), (3:6-3-6), (35;3%.6),
(3%;3%-6)2, (3%;32-62), (3%-6;3%-62), (32-6%;3-6-3-6) in |5, pp. 63-67]), then, with only
one exception (3%;3%:6), one of these two sets is always a completely regular code
(the corresponding intersection arrays are [3], [3], [21—111—-30], [03—12], [21—-102—21],
[21-102—-21], [21—111-21], [12—111—21], using the notation defined below, see
also the corresponding figures in the appendices). Also, the codes with arrays
[21-102-12], [21—-201—12], [21—102—111—201—30] correspond to 3-uniform tilings
with parameters (3%-6;35; 35), (3:6-3-6; 3%-6; 35), (31-6; 3%; 35), respectively, in terms
of [5].

2. DEFINITIONS AND THE MAIN RESULT

A vertex partition (V4, ..., Vi) of a graph G is called a perfect coloring (equitable
partition, regular partition, partition design) if for every i,j € {1,...,k} there is
a number a;; such that every vertex from V; has exactly a;; neighbors from V.
The matrix A = (a;;) will be called the parameter matriz of the coloring. A perfect
coloring (V4,..., Vi) is called distance regular if its parameter matrix is tridiagonal
(equivalently, if the perfect coloring (V1, ..., V%) is the distance coloring with respect
to V1; the set Vi is known to be a distance reqular code in this case). We study the
distance regular colorings of the infinite cubic graph of the hexagonal grid.

We define the hexagonal grid as the Cayley graph of the group generated by
three elements x, y, and z and defined by the identities zx = yy = 2z = xyzryz =
o0, where o stands for the identity element. That is, the vertices (nodes) are the
elements of the group; two elements v and v are adjacent if and only if one of
u = vx, u = vy, u = vz holds. In most of the figures, x will correspond to the
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horizontal direction, y to the right-diagonal, and z to the left-diagonal direction:

In the other figures, the grid is pictured rotated by 90 degrees; in those cases, we
will not refer to the nodes as elements of the group.

A tridiagonal parameter matrix (aij)ﬁ j=1 of a distance regular coloring will be
written in the form of the array

111012—021022023 032033034 ... —Ak kflakk]a

which is called the intersection array of the corresponding completely regular code
(we use a non-standard but convenient way to list the elements of the array).

Theorem 1. Up to the central symmetry, the parameter kx k matrices of nontrivial
(k > 1) distance regular colorings of the infinite hexagonal grid are divided into:

o 5 matrices [03—30], [03—12], [12—21], [12—12], [21—12], k = 2;

e 6 infinite classes

[12—111—..—111-12], [12—111—...—111-21], [21—111—...—111—12], k = 3,4, 5, ...;

[12-201—102—201—...—201—12], k = 3,5, 7, ...;

[12-201—102—201—...—102—21], [21—-102—201—102—...—201—12], k = 4,6,8, ...;

e 10 “sporadic” matrices [03—102—30], [03—111—-12], [12—102—12], [21-102—12],
[03—102—102—30], [03—102—201—30], [03—111—111—30], [12—102—111—21],
[03—102—102—201—30], [03—102—111—201—12].

Each of the matrices [03—111—12], [12—201—12] corresponds to two nonequivalent
colorings; each of [03—12], [12—21], [21-12], [12—111-21], [03—102—201—30], to
infinite number of colorings; every other matrixz corresponds to one colorings, up to
equivalence.

All possible distance regular colorings of the infinite hexagonal grid are described
in the proof of the theorem; the summary can be found in the appendices.
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3. A PROOF OF THE THEOREM

We will consider arrays [agbg—cia1b;—caagba—...], considering possible prefixes
in the lexicographic order. We divide the proof into the following cases:
[03—102—102—...], [03—111—...], [12—111-21], [12—21],
[03—102—111—...], [03—12], H2—H1—361, H2—36,
-03—102—12], [03—201—...], [12—12], 21-102—...],
03—102—201—1] 103—21. [12—201-102—...], [21—111—..],

[

1, [
[03-102-201-201—...], [03—30], fo—201—1t—}, [21-12],

[

[

[

[03—102—201—23}, [12—-102—..], [12—201—12], 21-201—...,
[03—102—201—30], Bo—111102—], fB220120+— [21-21],
[12-111—-111—..], 220124} 21-30).

103—092—24,
[03—102—30], [12-111-201—..], f2—261—30},

We will consider the cases below, step by step, dividing into subcases if necessary.
Some of the cases will lead to a contradiction (the corresponding prefixes are
strikeout in the table above); the other result in one or more colorings. Each prefix
from this list will occur once in bold, in the place where we start to consider the
corresponding case.

Before we start to consider the cases, we describe the notation we use in the
figures. The colors are indicated by the numbers, starting from 0. The subindices
that accompany the color numbers indicate the “argument steps”, i.e., the order in
which the nodes are considered to check that the situation pictured in the figure
takes place; the color of a cell with such subindex can be uniquely determined from
the colors of the cells with smaller subindices by trivial arguments and, sometimes,
assumption up to a symmetry. To illustrate this notation, we consider the proof of
the following lemma in details.

Lemma 1. The fragments [...—111—-102—...] and [...—201—111—...] cannot occur
in a feasible array.

Proof. By the example of co = as = by = c3 = 1, b3 = 2, we see a contradiction:

i

2 8

As an example illustrating the notation, let us describe the steps shown at the
figure in details.

Step 0. As ay = 1, there are two neighbor nodes of color 2. We consider such two
nodes and marked them by “2y”, where the subindex 0 indicates the step number.
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Step 1. Now consider one of these two color-2 nodes, e.g., the upper one. Since
¢y = by = 1, its two unmarked neighbors have colors 1 and 3. Without loss of
generality (up to a symmetry), we mark the left neighbor by “1;” and the right
neighbor by “31”, where the subindex 1 indicates the step number.

Step 2. Since b3 = 2, the node marked by “3;” has two color-4 neighbors. We
mark them by “45”, where the subindex 2 indicates the step number.

Step 3. Now consider the node a (see the last figure). It has color 1 or 3. But
1 is not possible because a is at distance 2 from a color-4 node. So, we mark the
node a by “33”, where the subindex 3 indicates the step number.

Independently, we consider the nodes b and c¢. They lay on a length-3 path from
a color-1 node to a color-4 node; so, they must have colors 2 and 3, respectively.
We mark them by these numbers with the subindex 3, indicating the step number.

con-
tra-

step 3 :
BALEN — dlC—
tion

Step 4. At this step, we mark the node d by “4,” since it has a color-3 neighbor
and b3 = 2.

Step 5. After the previous step, we see that a color-4 node has two color-3
neighbors. Another color-4 node has a color-4 neighbor. By the definition of a
perfect coloring, both assertions must be satisfied by any color-4 node (that is,
¢y = 2 and ag = 1). Using this fact, we mark two nodes by “35” and “45”, as shown
at the figure.

Now, both unmarked neighbors of the node “45” must be colored by 3. But the
one indicated by “?” cannot have this color because it has a color-3 neighbor and
a3 = 0. A contradiction. O

We start with [03—102—102—...]. We assume that the origin is colored by 0.
As we see from the figure below, the color of any node at distance at most 3 from
the origin is uniquely defined.




992 S.V. AVGUSTINOVICH, D.S. KROTOV, A.YU. VASIL’EVA

The node a can be colored by either 2 or 4. Each of the cases leads to a unique
coloring, up to a symmetry:

(a period in the subindex denotes that the color of the corresponding cell was
determined in the previous figure). The corresponding arrays are [03—102—102—30]
and [03—102—102—201—30], respectively.

The next case is [03—102—111—...].

The node a can be colored by either 3 or 1. The first case leads to a contradiction;
in the second case, we derive that the node xyzzx has color 0:

Similarly, the nodes yzyzy and zxzyz have the same color and, for every node a
of color 0, the nodes azxyxzz, ayxryzy, and azxzyz have color 0 too. Following the
arguments as at the picture above, we see that the nodes of the other colors are
colored uniquely. We get a unique coloring; the array is [03—102—111—-201—12]:
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The cases [03—102—12] and [03—102—201—1...] lead to contradictions:

“

(the last subcase starts the series of four subcases with prefix [03—102—201—...]).
In the case [03—102—201—201—...], we consider two subcases, in accordance
with the color of the node a at the picture below.

We see that if a is colored by 3 (that is, there is a hexagon with nodes of colors 0
and 3), then we obtain the array [03—102—201—201—30], which is symmetrical to
[03—102—102—201—30], considered above. If a is colored by 1, then the situation of
the first case takes place too, as we find another hexagon with nodes of both colors

0 and 3.
The case [03—102—201—21] leads to a contradiction.
Any coloring with array [03—102—201—30] corresponds to a partltlon of the

node set into balls of radius 1 colored as and 3® Moreover, the nodes at

distance 1 from a ball of first type belong to balls of second type, and vice versa.
The considered array is the first one for which the number of colorings is infinite.
We will use the following lemma.

Lemma 2. Assume that we have a perfect coloring ¢ of the hexagonal grid such that
the set X = {(y2)%, (yz)'x | i = 0,£1,42,...} of nodes is colored periodically with
period yzyz; that is, for every node v from X the colors of v and yzyzv coincide.
Then

(1) All the coloring is periodic with period yzyz (i.e., for every node v of the grid
the colors of v and yzyzv coincide).

(2) In each coset uX of X, the coloring can be shifted by yz resulting in a new
perfect coloring

| Plyzv) ifveuX
Y(v) = { o(v) ifv g uX
with the same parameter matriz. In particular, if ¢ is not periodic with period yz,
then the number of perfect colorings with the same parameter matriz is infinite.
(3) Every perfect coloring that coincides with ¢ on X and has the same parameters
is obtained from ¢ by shifting described in (2) on some, may be infinite, number of
cosets of X.
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Proof. (1) Assume that the set X is colored by the colors a, b, ¢, d, as in the figure.

=

Q)
S8

53
5

e
29

&)
)

In the figure, there are two vertices of color ¢ that have neighbors of colors a, e, f
and a, g, respectively. We conclude that g € {e, f}. Similarly, e € {f, g}. It follows
that g = e. Similarly, all nodes at distance 1 from X are colored periodically with
period yzyz. Straightforwardly, the same is true for the nodes at distance 2 from
X. Proceeding by induction on the distance from X, we find that the coloring is
periodic with period yzyz.

(2) Tt is straightforward that after shifting the colors of the nodes of uX, the
resulting coloring still satisfies the definition of a perfect coloring:

If zy is not a period of the coloring, then such shifts give different colorings. The
number of the cosets (7y)*X, i = 0,41,42,..., of X is infinite. To show that the
number of colorings is continuum, it is sufficient to prove that the following:

(*) The number of cosets of X that are not colored periodically with the period
zy is infinite. Seeking a contradiction, assume the contrary, i.e., that there exists [
such that for all j > [ the cosets (zy)’ X are colored periodically with the period
zy. Since the number of colors is finite and the number of cosets is infinite, there
are two cosets (ry)? X and (acy)j/X, j' > 4 > 1, colored identically, i.e., for some
a and b and for all i = 0,=+1,... we have ¢((zy)? (y2)") = ¢((zy)? (y2)") = a and
o((zy) (yz)iz) = ¢((zy)? (yz)'z) = b. Since j' > I, the coset (zy)’ ~'X is colored
periodically with the period zy, that is, for some ¢ and d and for all i = 0,+1, ...
we have ¢((zy) " (yz)") = ¢ and ¢((zy) "' (yz)'z) = d. Now we see that every
a-node from (xy)j/X has two d-neighbors and, additionally, one b-neighbor. Since
the coloring is perfect, the same is true for all a-nodes from (xy)? X. We conclude
that ¢((zy)’~1(yz)'z) = d. Considering the neighborhood of the d-nodes, we also
see that ¢((xy)I~'(yz)iz) = c. So, the cosets (zy)?~' X and (zy)’ ~'X are colored
identically and periodically with period zy. By induction, the same is true for the
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cosets (zy)? X and (zy)? ~*X, s = 0,1,2,.... Consequently, all the coloring is
periodic with period zy, which contradicts our assumption.
(3) is straightforward. O

In the case [03—102—201—30], we consider two subcases: (1) every hexagon that
has a node of color 0 has a node of color 3, and vice versa; (2) there is a hexagon
that has only one node of color 0 or 3; without loss of generality we assume that
0 has color 0 while yzz has color 1. In both cases, the set X = {(y2)*, (y2)'z | i =
0,+1,+2,...} is uniquely colored with period yzyz:

By Lemma 2, we have that the number of colorings is infinite and each of them is
obtained from one (say, from the unique coloring that corresponds to subcase (1))
by shifting coloring in some cosets of X.
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In the case [03—102—30], the coloring is unique:

In the case [03—111—...], there are, up to rotation and reflection, two ways to
color the nodes at distance 2 from the original color-0 node:

If the two nodes marked by a have color 1, then we get a contradiction; hence, their
color is 2:

By analogy, the coloring of the whole grid is uniquely reconstructed; the corresponding
array is [03—111—12]. Now, consider variant (b). In both subcases b = 3 and b = 2,
the coloring is uniquely reconstructed, resulting in the arrays [03—111—111—30]
and [03—111—12] (note that we get a nonequivalent coloring with the same array
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as in variant (a)), respectively:

The array [03—12] is reduced to [03—102—201—30], if we give new colors 2 and
3 to the even color-1 nodes and the odd color-0 nodes, respectively (in particular,
there is infinite number of nonequivalent colorings with array [03—12]).

The next case is [03—201—...]. As in the case [03—111—...], there are two
possibilities to color the nodes at distance 2 from the starting node:

However, we will use the common part of both variants. As we see, a color-2 node
has at least two color-1 neighbors; we consider three subcases:

. @)@
2) [03—201—21] :
B

1) As we see, in subcase [03—201—201—...], the only feasible array is [03—201—201—30],
which symmetrical to [03—102—102—30], considered above; 2) the array [03—201—21]
is not feasible; 3) the array symmetrical to [03—201—30] was considered above.

The array [03—21] is not feasible:

1) [03—201—201—...] :

The array [03—30] implies the nodes are colored in accordance with their parity.

We have finished to consider the arrays that start with [03—...].

Next, if the array start with [12—102—...], then the next-but-one entry of the
array, as is not zero:
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So, it is sufficient to consider the following three possibilities for the next three
entries of the array.

1) Consider case [12—102—111—...]. Starting from two neighbor color-0 nodes,
we get a unique coloring with array [12—102—111-21]:

2) Consider the array [12—102—12]. Up to symmetry, we get a unique coloring:

@ I
g g
CHgPEE 6 a
%3@3@%@%@%@

A

3) The array [12—102—21] is not feasible:

The arrays starting with [12—111—102—...] are not feasible Lemma 1.
Now consider [12—111—111—...]. Taking into account the forbidden configuration

we see that there is an infinite sequence of nodes colored by 0:
Iy = {(yx2), (yx2)iw, x(yx2)’, 2(yz2)iz : i =0,1,2,...}.

The nodes at distance one from this sequence, i.e., Iy = {vy,vz : v € Iy}, are
colored by 1; the next rows of nodes Iy = {vyz,vzy : v € Iy}, by 2; then I35 =
{vyzy,vzyz : v € Iy} by 3. The color of Iy = {vyzyz,vzyzy : v € Iy} is defined by
s, as, bs. It can be 2, 3, or 4 for the cases [12—111-111-21], [12—111-111-12], or
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[12—111—111—111—...], respectively. In the first and the second cases, the grid will
be uniquely colored by the colors 0, 1, 2, 3,2,1,0,1,2,3,2,1,0,1,...and 0, 1, 2,
3,3,2,1,0,1,2,3, 3, 2, ..., respectively, in accordance with the distance to Iy. In
the last case, we repeat the arguments for I, resulting in [12—111—-111—-111-21],
[12—111-111-111-12], or [12—111-111—111—-111—...], and so on. As the number
of colors is finite, at some step the color number will stop to increase, the array will
be determined, and the rest of the grid will be colored uniquely. The array will be
either [12—111—...—111-21], or [12—111—...—111-12].

The case [12—111—201—...] leads to the array symmetrical to [12—102—111—-21],
considered above:

Consider the array [12—111—21]. Identifying the colors 0 and 2 in any coloring
with this array, we obtain a coloring with array [12—21]. Inversely, a coloring
with array [12—21] can be obtained from a coloring with array [12—111—21] by
identifying the colors 0 and 2 if and only if the set of pairs of neighbor nodes of
color 0 can be partitioned to two parts such that no two pairs from the same part
are at distance 2 from each other. So, the result for [12—111—21] follows from that
for [12—21] and will be considered later (see the case [21—12]).

The array symmetrical to [12—111—30] was considered above.
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The array [12—12] is feasible with a unique coloring, up to equivalence:

Case [12—201—102—...]. If the origin and z are colored by 0, then the only
possibility for yz and yzx is both having color 0 too. Similarly, zy, zyzx,

0:10,)

ey

by

=)
&)

and, by induction, all nodes from Iy = {(2y)*, (zy)'z, (y2)%, (y2)'z : i =0,1,2,...}
have color 0. Denote by I; the set of nodes at distance d from I. Then the nodes
from I; are colored by 1; from I3, by 2; from I3, by 3. The nodes from I, are colored
by the same color, and it is not 2:

If this color is 3, then the nodes of I5, Ig, and I7 have colors 2, 1, and 0, respectively,
and then the situation repeats with period 8 (in terms of the index d of I). In the
case of 4, we have two subcases for I5. The color 4 for I5 means the colors 3, 2, 1, and
0 for Ig, I, Is, and Iy, respectively; then, the colors repeat. If the nodes of I5 have
color 5, then we repeat the arguments above as many times as we need to exhaust all
the colors, whose number is finite. Finaly, we have the array [12—201—...—102—21]
if the number of colors is even and [12—201—...—201—12] if it is odd. In any case,
the coloring is unique.
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The case [12—201—111—...] is not feasible, by Lemma 1.

The case [12—201—12] will be divided into two subcases: (a) there is four color-
2 nodes that belong to the same length-6 cycle (hexagon); obviously, the remaining
two nodes of the cycle have the same color; (b) there are no four nodes belonging
to the same hexagon. In both cases, the coloring is unique, up to equivalence.

which is symmetrical to the unfeasible array [03—102—102—21].

The arrays symmetrical to [12—201—21] and [12—201—30] were considered
above and proven to be unfeasible.

The colorings with array [12—21] are in one-to-one correspondence (inverting
the color of every odd node) with the colorings with array [21—12]. Keeping in mind
this correspondence, it is easy to see that the statement about [12—21] follows from
the statement about [21—12], which will be considered deeply below.

The array symmetrical to [12—30] was proven to be unfeasible.

It remains to consider the last possibility for the values ag, bg. Namely, [21—...].
We note, that we are only interested in the arrays that end with —12], as all the
other possibilities are considered above, up to the symmetry. The nodes of color 0
generate a regular subgraph of degree 2, i.e., the union of infinite chains and cycles
(keeping in mind the argument above, we can state the same for the nodes colored
by the last color). We start with considering a partial subcase: assume that there is
an infinite chain from color-0 nodes such that no four of these nodes belong to the
same hexagon. Using arguments as above (case [12—201—102—...]), we can see that
all the coloring is reconstructed, and the array has form [21—-102—201—...—201—-12]
(if the number of colors is even, including the case [21—12] of two colors) or
[21-102—201—...—102—21] (if it is odd). Remind that we are not interested in
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the latter.

So, we can assume that the coloring contains a chain of four color-0 vertices from
the same hexagon (and the same is true for the last color):

@O. : (a), or (b), or (c)
00 @ TV @D " @

The first subcase of [21—...] is [21—102—...]. We see that (a) and (b) are
inadmissible, as a; < 1 and ¢; < 2 in the considered prefix. Also, we can easily find

that as > 0:
oy
g

Further, all possibilities are divided into the following four subcases (excluding the
arrays that are not finishing with —12):

[21-102—111-102—...] is not feasible by Lemma 1; [21-102—111—-111—...] and
[21—102—111—12] are not feasible (see the figures below); [21—102—12] corresponds
to a unique coloring, up to equivalence:

TR RS0
pfofcRofioRRo
(i 150 1)
Q’@’%’@’O’Q’Q
G Pg g
oo aN i Soltc ol

(on the step 6 of the last consideration, we use the symmetry and the obvious fact
that the two remaining uncolored nodes in the corresponding hexagon cannot have
color 1 simultaneously, as a; = 0).

The next subcase of [21—...] is [21—111—...]. The following two pictures demonstrate
that two special kind of chains from color-0 nodes lead to arrays that do not finish
with —12:
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In particular, this means that four consequent color-0 nodes in the same hexagon are
uniquely continued to an infinite color-0 chain, like in the figure below. Arguing as in
the case [12—111—111—...], we get a new series of parameters [21—111—...—111-12]:

[21—12]. We first consider the subcase (c), when there is a hexagon colored

into one color, say 0. The rest of the coloring is colored uniquely, namely, the
color of a node equals L%j mod 2 where d is the distance from the node to the

origin hexagon. By inverting the color of the odd vertices, we get the corresponding

coloring with the array [12—21].

QNS OE OGS
o S080808CE.

OWONE WG
(B8 GRGE 8 o

20dnan2nlo 2902n2nCnl0
D0 (D~ 0~ 0) (0)-@-(0)- (D)0
EOR - woaOn- SO SN SO0 a

0’@’0’@’0’@ 0’@’0’0’0’@
0p 00020020200 208020 20 C0x 0
We also note that in the last case, there is a triple of color-0 at distance 2 from
each other; so, the set of color-0 nodes cannot be split to form a coloring with the
intersection array [12—111—21] (the same is true for the color-1 nodes).

It remains to consider the subcase (a), assuming that no hexagon colored by one
color. Let o, z, y, and 2z be colored by 0. Then yz, yza are colored by 1 (otherwize
we have a hexagon colored by 0); hence the nodes yzy and yzxz have the same
color. By induction, the nodes (yz)*, (yz)'x, (yz)%y, (yz)'zz are colored by i mod 2,
i=0,1,2,.... The same holds for the nodes (zy)!, (2y)'x, (2v)%y, (zy)‘zz.
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We state that for every node v, the node vz has the same color, while the node
vyz has the different color. We already know that this holds for the nodes of the
set I,, where I, = {v(yz)",v(y2)iz,v(2y), v(zy)'x : i = 0,1,2,...}. In general, this
statement is easy to prove by induction on the distance from I,, see the figures
above (subcases @ = 0 and a = 1) for the example of the induction step.

As a consequence, we see that the colors of all nodes of the set I, for some v
is uniquely determined by the color of any node from this set; so, there is only
one way to color I,, up to the inversion of the coloring. Finaly, we find that any
coloring with array [21—12] either have a hexagon colored into one color (in which
case the coloring is unique, up to equivalence and inversion of the colors, see (1))
or is obtained from the coloring

Since there are infinite number of such sets, the number of the colorings is infinite.
The same conclusion can be done for the linked array [12—21]: every coloring is
either equivalent to the coloring (1) or obtained from the coloring
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by inversion of the colors of some sets I,,. For example:

The number of the colorings is infinite.

Another linked array is [12—111—21]. It is easy to see that the color 0 of every
coloring with array [12—21] except (1) can be split into two colors to form a coloring
with array [12—111—21]. However, there are two different subcases. If the coloring
contains the fragment

then the splitting is unique (we see that the nodes marked by a must have the same
color in the new coloring; hence, all “left” Os of the fragment will have the same
color; in the rest of the coloring, Os are split uniquely):

The only coloring with array [12—21] avoiding such fragment is (2). We see that
for every set {v(z2)!, v(xz)ly : i = 0,41,42,...}, where v is colored by 0, we can
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independently choose one of two variants to color half of the Os into new color 2:

This gives another infinite set of colorings with array [12—111—21].
In the case [21—201—...], we see that the number of colors is smaller than 4;

000

but the three arrays with 3 colors were considered above, up to the symmetry. The
same is true for the remaining subcases [21—21] and [21—30].

APPENDICES

In the appendices, we list colorings for all feasible arrays of distance regular
colorings of the infinite hexagonal grid. If the array corresponds to a finite number
of colorings, we show all nonequivalent ones. If the number of colorings is infinite,
each class obtained from one coloring in accordance with Lemma 2 is illustrated
by only one picture; in this case, the set X is emphasized by the bold cycles. The
small monochromatic pictures illustrate corresponding completely regular codes. If
the two codes corresponding to the same coloring are equivalent, we picture only
one of them.

APPENDIX A. THE COLORINGS: TWO COLORS
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