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A NUMERICAL SOLUTION OF THE MEMBRANE
EIGENPROBLEM BY THE MODEL ORDER REDUCTION

B.K. KALDYBEKOVA, G.V. RESHETOVA

Abstract. In this paper the Model Order Reduction technique to solve
the problem of free oscillations of a heterogeneous rectangular elastic
membrane is applied. Instead of solving 2D problem for the membrane
in the exact formulation, we substitute it by a special network of 1D
elastic strings. We present the characteristic equations for the spectrum
of free oscillations of this network and develop the numerilal algorithm
to solve the problem. We investigate the behavior of eigenvalues of a
rectangular network and show that the eigenvalues and eigenvectors of
rectangular networks of elastic strings and the rectangular membrane
are close. The problem solution for the network of elastic strings has
significantly less computational cost compared with the solution of free
oscillations of a heterogeneous rectangular elastic membrane.

Keywords: networks of elastic strings, eigenvalue, eigenvector, model
order reduction, finite-difference method.

1. Introduction

The eigenvalue problem is a problem of considerable theoretical interest and
wide-ranging application. For example, this problem is crucial in solving systems of
differential equations, biological molecular systems, optical switching technologies,
social network analysis, etc. The main efforts here are focused on numerical solution
of the eigenproblem, because it is impossible to theoretically predict the behavior
of a spectrum. But it is worth mentioning that the computer costs for solving the
eigenproblem are sufficiently high, in particular, for a matrix of order n it is equal
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to O(n3). Hence, it is extremely time consuming for large-scale applications. In
this paper we propose the new approach based on Model Order Reduction (MOR)
[1] to reduce the computational costs needed for solving a membrane eigenvalue
problem to an acceptable level. The MOR is a technique designed to reduce the
computational complexity of mathematical models in numerical simulations. This
technique may be a reduction of the model dimension or degrees of freedom, or an
approximation to the original model with a lower accuracy but in significantly less
computational time. In this paper we apply the MOR technique to efficiently solve
the problem of free oscillations of the heterogeneous rectangular elastic membrane.
Instead of solving the problem in exact formulation, we substitute it by a special
one-dimensional network of elastic strings [2], [3]. This network consists of a finite
number of strings attached to each other as is shown in Figure 1.

The numerical simulation of this new one-dimensional formulation of the problem
needs significantly less computational costs, but corresponding eigenvalues and
eigenvectors under some assumptions about the distribution of mass, the tension of
each string and the elasticity coefficients of the springs are close to the eigenvalues
of a rectangular membrane. Moreover, the corresponding modes (eigenvectors) of
oscillations of the network and the membrane are also close to each other when the
size of the square cells enclosed by the strings of the network is small enough.

Fig. 1. A network of strings.

2. Mathematical model

Let us consider the network of a finite number of strings, attached to each other
in the form of square cells. Each internal node is assumed to be attached to the
spring. Next, suppose each node of the four adjacent strings can move only in the
direction orthogonal to the coordinate plane Oxy. This plane gives a geometric
representation of the network and contains an initial configuration of endpoints.
The network, when moving, experiences the resistance of the springs. The nodes of
the strings belonging to the endpoints are assumed to be fixed (Figure 1).

We introduce some notations for further considerations. The mass distribution
along each string is given by the function:

(1) ρ =
h

2
,
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where h is the length of the string. If we assume the whole network stretched over
the unit square, then the length h of an elementary cell equals 1/n, where n is the
number of equal strings in a horizontal or a vertical chain of strings joined together
in one direction (between the dotted lines in Figure 1).

The network is stretched in such a way that the tension of each string equals:

(2) Th = h.

The elasticity coefficient kh of each string equals:

(3) kh = h2.

In order to reformulate the problem in mathematical terms, we interpret a
network of strings as a graph Gh with the vertical and horizontal edges e (the line
of joint strings) adjacent to each other in the vertices v = (ih, jh), (0 ≤ i, j ≤ n).
Each edge may be parameterized by the parameter t ∈ [0;h]. Here we use a
natural parameter that is the arc length. Let the horizontal edges be directed from
left to right, while the vertical edges - from bottom to top. We assume that the
parameterization of each edge is agreed with such an orientation.

Under these re-assignments, the problem of free oscillations of the network can
be easily reduced to the following analog of the Sturm - Liouville boundary value
problem [4], [5]:

(4) u′′e +
λ

2
ue = 0, e ∈ E,

(5)
∑
e�v

u′e(v)− hu(v) = 0, v ∈ V0,

(6) ue(v) = u(v), for e � v, v ∈ V0,

(7) u(v) = 0, v ∈ ∂Gh.

Here ue means the restriction of the function u : Gh → R on the edge e. In equation
(4), the differentiation relates to the natural parameter. In this case, we need to
clarify that the orientation of an edge does not assume sign of u′e(v) in (5). This
expression defines the derivative in the internal direction of the edge e, i.e. from
the vertex v into the interior of the edge e. And, finally, the notation V0 indicates
to the set of internal nodes.

Under the above notations and assumptions, we can consider eigenvalue problem
(4)-(7) of the mechanical one-dimensional network of elastic strings as the MOR
for the eigenvalue problem of rectangular membrane, where natural oscillations are
described by the following boundary value problem:

(8) ∆u− u+ λu = 0,

(9) u |∂Q = 0,

where Q = [0, 1]× [0, 1] .
In fact, one can easily see from our assumption (1) that the total mass of the

network of strings approximately equals 1 for sufficiently small h, while the mass
of the membrane, described in (8) and (9), exactly equals 1. One can also see
that assumption (2) related to the tensions of strings makes the network similar
to the elastic membrane in the sense of similarity between elasticities of these two
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mechanical systems. As a matter of fact, the domain “covered” with a string grid
may be tasseled into squares with the side lengths h, centered at the nodes of
the graph Gh. Each side of each square is intersected by the unique edge of the
graph. If we distribute the tension of a corresponding string, which is orthogonal
to the side of square and equals h along the side we will come to a set of squares
stretched as the cells of membrane (8),(9). An additional argument follows from the
mechanical assumption (3) about the elastic resistance of the springs to be applied
to the network at its vertices. In fact, this assumption is equivalent to the exterior
elastic resistance, applied to the membrane (the term u in the equation (8)).

All these heuristic arguments allow us to expect the following theorem be true.

Theorem 1. Λh → Λ as h → 0. Here Λh =
{
λh1 , λ

h
2 , λ

h
3 ... , λ

h
n, . ..

}
is the

spectrum of problem (4)-(7) (one can prove that it produces a sequence of positive
real numbers λhn → +∞ (n → ∞), see for example [4]), Λ is a spectrum of the
problem (8), (9). As for the notation Λh → Λ (h→ 0), it means that for each ε > 0
and N ∈ N there exists a positive δ > 0, such that the inequality 0 < h < δ implies∣∣λhi − λi

∣∣ < ε for all i = 1, 2, ... , N.

The proof of this theorem was presented in [6].

3. The Finite-difference approximation

In order to numerically resolve problem (4)-(7), we apply the finite difference
method that is one of the simplest and, at the same time, one of the useful methods
to solve differential equations in different application areas (see, for example [7],[8]
).The approach to be applied consists in approximating the differential operator by
replacing the derivatives in the equation using differential quotients.

Let us agree that there are k vertical and k horizontal lines of the network so
that each line contains k+1 chained strings. In these notations problem (4)-(7) can
be rewritten as follows:

(10)


u′′i,j(x) + λ

2ui,j(x) = 0, x ∈ Gh, i = 1, k + 1, j = 1, k, horizontal edges,

w′′i,j(y) + λ
2wi,j(y) = 0, y ∈ Gh, i = 1, k, j = 1, k + 1, vertical edges,

(11) u′i,j(v) + u′i+1,j(v) + w′i,j(v) + w′i,j+1(v)− hu(v) = 0, v ∈ V0, i, j = 1, k,

(12) ui,j(v) = ui+1,j(v) = wi,j(v) = wi,j+1(v), v ∈ V0, i, j = 1, k,

(13) u1,i(v) = 0, uk+1,i(v) = 0, wi,1(v) = 0, wi,k+1(v) = 0, v ∈ ∂Gh, i = 1, k,

where ui,j(x),wi,j(y) are the functions defined on the horizontal and vertical edges,
respectively.

In order to construct a numerical scheme, we divide each string, belonging to
one of horizontal/vertical edges into n parts in order to obtain the finite difference
approximation of governing equations (10) and renumber all these elements to a
finite one-dimensional array (Figure 2).
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Fig. 2. The new grid G̃h.

All new elements of G̃h satisfy the following conditions:

G̃h =


xi−1,jn = ((i− 1)τ, jnτ) , yjn,i−1 = (jnτ, (i− 1)τ) ,

i = 1, n(k + 1) + 1, j = 1, k

 ,

(a) on the horizontal edges:

x0,n = (0, nτ), x1,n = (τ, nτ), ..., x(k+1)n,n = ((k + 1)nτ, nτ) ,
...
x0,kn = (0, knτ), x1,n = (τ, k nτ), ..., x(k+1)n,n = ((k + 1)nτ, k nτ) ,

(b) on the vertical edges:

yn,0 = (nτ, 0), yn,1 = (nτ, τ), ... , yn,(k+1)n = (nτ, (k + 1)nτ ) ,
...
ykn,0 = (knτ, 0), ykn,1 = (k nτ, τ), ..., ykn,(k+1)n = (k nτ, (k + 1)nτ, )

where τ = 1
(k+1)n denotes the step of finite difference approximation and is equal to

the step of the new grid. The points xi,j , yi,j are nodes of the gridG̃h. The functions
ui.j(x), wi.j(y) are now defined for the points xi,j , yi,j , ∈ G̃h and further will be
marked by ũi,j , w̃i,j .

To construct a finite difference scheme, we use only interior nodes of the gridG̃h
excluding all interior vertices from our explicit consideration (Figure 3). The reason
is that condition (11) at the interior vertices vi,j = xin,jn

(
i, j = 1, k

)
breaks the

symmetry of the resulting matrix obtained after the straightforward finite difference
discretization (10)-(13). We can easily overcome this difficulty by defining the
values at all interior vertices vi,j = xin,jn (i, j = 1, k) of the grid G̃hthrough
the four nearest neighboring interior nodes xin−1,jn, xin+1,jn, xin,jn−1, xin,jn+1

by the formula:
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(14) uin,jn =
win,jn−1 + win,jn+1 + uin−1,jn + uin+1,jn

4τh
, i, j = 1, k.

Thus, the nodes of the network involved into the finite difference scheme approximating
partial differential equations (10)-(13) can be graphically represented as follows:

Fig. 3. The selected nodes of the network involved into the finite
difference scheme.

We approximate the derivatives of system (10) using a second order central
difference scheme with the second order accuracy and take into account conditions
(11)-(13). As a result, we formulate the finite difference approximation of the system
under study. At the first and at the last nodes of each edge e the finite difference
scheme looks like:

2
u2,jn − 2u1,jn

τ2
+λu1,jn = 0, 2

u(k+1)n−2,jn − 2u(k+1)n−1,jn

τ2
+λu(k+1)n−1,jn = 0,

2
wjn,2 − 2wjn,1

τ2
+λujn,1 = 0, 2

wjn,(k+1)n−2 − 2wjn,(k+1)n−1

τ2
+λujn,(k+1)n−1 = 0,

where j = 1, k.
The finite difference approximation of (12),(13) looks like:

uin,jn = win,jn, i = 1, k , j = 1, k,

u0,in = 0, u(k+1)n,in = 0, win,0 = 0, win,(k+1)n = 0, i = 1, k.

The finite difference approximation of (10) for the interior nodes of each edge is
as follows:
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2
ui+1,jn − 2ui,jn + ui−1,jn

τ2
+λui,jn = 0, 2

wjn,i+1 − 2wjn,i + wjn,i−1
τ2

+λwjn,i = 0,

j = 1, k, i = (̂i− 1)n+ 2, în− 2, î = 1, k.

Finally, following [9] and using condition (14), we write down the finite difference
approximation of (10) for the nodes connecting with the interior vertices xin,jn:

2
uin−2,jn − 2uin−1,jn

τ2
+2

uin−1,jn + uin+1,jn + win,jn+1 + win,jn−1
(4 + τh)τ2

+λuin−1,jn = 0,

2
win,jn−2 − 2win,jn−1

τ2
+2

win,jn−1 + win,jn+1 + uin+1,jn + uin−1,jn
(4 + τh)τ2

+λuin−1,jn = 0,

where i, j = 1, k.
As a result we come to the linear eigenvalue problem for a square symmetric

matrix of order p = 2k(k+1)n ≈ 2k2n. As was mentioned above, the computational
costs of this eigenproblem is equal toO(p3). For comparison, if we solve an eigenvalue
problem of a rectangular membrane with the same accuracy, we will solve it with
computational costs equal to O(q3), where q = (k+ 1)2n2 ≈ (kn)2. Thus, it is easy
to estimate that using this approach we reduce the number of computations more
than (n/2)3 times.

4. Numerical tests

In this Section we present some results of the numerical simulation of problems
(4)-(7) and (8)-(9). The simulation of the two problems was implemented on [0, 1]×
[0, 1] square for different input parameters and for different discretization. To compute
the eigenvalues and the eigenvectors of the membrane we use the free package Pde
Toolbox from Matlab [10].

First we carry out simulations to investigate eigenvalues and eigenvectors of the
network of string with the number of vertical (horizontal) lines equal to k = 10 and
n = 20. Thus, the approximation step τ of the grid G̃h is τ = 0.0045 and the length
of each one h = 0.09. In the second test we calculate eigenvalues of the network,
where k = 20, n = 20, h = 0.05, τ = 0.0024.

Table 1 presents the eigenvectors of this network of strings (k = 10, n = 20) in
comparison with the membrane. As can be seen, even for rather a rough discretization
of (4)-(7), the eigenvectors of the network of strings and of the membrane are
similar.

Figures 4 and 5 present the graphic comparison and relative error of the eigenvalues
of the network and the membrane for different numbers of vertical (horizontal) lines.
These numerical results have revealed that this parameter substantially affects the
accuracy of approximation λhi ≈ λi.
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Table 1. The eigenfunctions of network and membrane.
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a)

b)

c)

Fig. 4. Eigenvalues of the network (blue) and the membrane
(red): a) the number of vertical (horizontal) lines k = 9, the length
of the string h = 0.1 and the number of equal strings in a horizontal
or a vertical chain of strings joined together in one direction n = 10;
b) k = 19, h = 0.05, n = 10; c) k = 29, h = 0.033, n = 10.
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Fig. 5. Relative error of the eigenvalues of the network and the
membrane for different numbers of vertical (horizontal) lines:
a) black - the number of vertical (horizontal) lines k = 9, the
length of the string h = 0.1 and the number of equal strings in
a horizontal or a vertical chain of strings joined together in one
direction n = 10; b) blue - k = 19, h = 0.05, n = 10; c) red -
k = 29, h = 0.033, n = 10.

5. Conclusion

In this paper, we implement the Model Order Reduction to solve the problem
of free oscillations of the rectangular elastic membrane. Instead of solving the 2D
problem for the membrane, we substitute it by a special network of 1D elastic
strings. By the numerical simulation of this new reduced problem we prove that
the eigenvalues and eigenvectors of the network of strings under some reasonable
assumptions are close to the eigenvalues and eigenvectors of the rectangular membrane.
The advantage of the approach proposed is that we solve the original problem with
a desired accuracy and with less computational costs.
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