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Abstract. We prove that for certain Q-universal quasivarieties K, the
lattice of K-quasivarieties contains continuum many subquasivarieties
with the undecidable quasi-equational theory and for which the finite
membership problem is also undecidable. Moreover, we prove that
certain Q-universal quasivarieties have continuum many subquasivarie-
ties with no independent quasi-equational basis.

Keywords: Abelian group, differential groupoid, finite membership
problem, graph, independent basis, quasi-identity, quasi-equational the-
ory, quasivariety, Q-universal, undecidable theory.

1. Introduction

This paper is a continuation of [37]-[38] and contributes to investigation of complexi-
ty of quasivariety lattices.

G. Birkhoff [12] and A. I. Maltsev [28] have independently asked which lattices
are isomorphic to lattices of quasivarieties. This intriguing question (which is still
open) triggered research devoted to investigation of structure and properties of
quasivariety lattices which still remains to be one of the mainstreams in the area
of universal algebra. It turned out quite soon that quasivariety lattices have quite
a complicated inner structure; and some of those have the “highest” complexity
amongst all the quasivariety lattices.

One of measures of complexity, the notion of Q-universality, was introduced for
quasivarieties by M.V. Sapir in [35]. On can extend this notion to an arbitrary
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classes K of algebraic structures, thus defining the lattice of K-quasivarieties. Up
to now, there are many Q-universal classes known. Among them are the class of all
unars (algebras with one unary operation) [17], the class of all commutative rings
[1], the class of all graphs [1, 22, 24], the class of all differential groupoids [25],
the class of pointed Abelian groups [31], and many others, cf. [1, 15, 17, 26]. Q-
universality can be established in almost all the known cases by finding a so-called
AD-class, cf. Definition 1 and Theorem 1.

According to Theorem 1(ii), almost all the known Q-universal classes possess
another common property which reflects another face of complexity of quasivariety
lattices. Each of these classes has a subclass K for which the set of finite sublattices
(up to isomorphism) of the lattice of K-quasivarieties is not computable, cf. [26,
30, 31, 36, 37, 38]. We prove here that in a quasivariety containing a computable
AD-class, there are continuum many subquasivarieties with the undecidable finite
membership problem, cf. Corollary 1. We note that A.M. Nurakunov [30] proved
that there are continuum many quasivarieties of unars with undecidable quasi-
equational theory for which the finite membership problem is also undecidable. We
establish an analogous result for graphs, differential groupoids, and for some other
certain types of algebraic structures, cf. Section 3. In Section 4, we prove that those
classes mentioned above contain also continuum many quasivarieties which have
no covers in the corresponding quasivariety lattice and thus no independent quasi-
equational basis. Examples of quasivarieties with no independent basis exist in the
class of unars (V. K. Kartashov [19]), lattices (V. I. Tumanov [44]), distributive p-
lattices (M. P. Tropin [42, 43]), directed graphs (S.V. Sizy̌ı [40]); for other examples,
we refer to the monograph of V. A. Gorbunov [17, Chapter 6], to A. V. Kravchenko
[26], and to A.V. Kartashova [20].

For all concepts, which are not defined here, we refer to G. Birkhoff [12], A. I.
Maltsev [28, 29], W. Dziobiak [15], and V.A. Gorbunov [17]. One can also find them
in [37]-[38].

2. The finite membership problem

Proposition 1. Let C = {Cn | n < ω} be a computable class of finite structures of
a finite signature with the following properties:

(E0) Cn is a nontrivial structure for any n < ω;
(E1) if k < ω and n, n0, . . . , nk < ω, then Cn ∈ SP(Cn0 , . . . , Cnk

) if and only
if n ∈ {n0, . . . , nk}.

Then there are continuum many quasivarieties K ⊆ Q(C) such that the finite
membership problem for K is undecidable.

Proof. Let N ⊆ ω be an arbitrary set. We put

KN = {Ci | i ∈ N} and RN = Q(KN ).

Let (RN )fin denote the class of finite members of RN .

Claim 1. RN ∩C = KN .

Proof of Claim. Obviously, KN ⊆ RN ∩C. Conversely, let Cn ∈ RN ∩C for some
integer n < ω. Then Cn ∈ LsPs(KN ). As Cn is a finite structure, it is l-projective,
whence Cn ∈ SP(KN ). Again, as Cn is finite, there are integers n0, . . . , nk ∈ N
such that Ck ∈ SP(Cn0 , . . . , Cnk

). We obtain therefore by our assumption about the
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class C that n ∈ {n0, . . . , nk} ⊆ N ; that is, Cn ∈ KN and the desired equality
follows. �

Directly from Claim 1, we get

Claim 2. If RN0 = RN1 , then N0 = N1.

Claim 3. If the set (RN )fin is computable, then N is computable.

Proof of Claim. If (RN )fin is a computable set, then N ′ = {n < ω | Cn ∈ RN} is a
computable set by our assumption. By Claim 1, N = N ′, whence the set N is also
computable. �

As there are continuum many sets N ⊆ ω which are not computable, we get the
desired statement from Claims 1-3. �

Definition 1. [1, 36] If a class A = {AX | X ∈ Pfin(ω)} of structures possesses
the following properties:

(P0) for any X ∈ Pfin(ω), the structure AX is l-projective in Q(A) and the
trivial congruence is a dually compact element in the relative congruence
lattice ConQ(A)AX ;

(P1) A∅ is a trivial structure;
(P2) if X = Y ∪ Z in Pfin(ω), then AX ∈ Q(AY ,AZ);
(P3) if ∅ ̸= X ∈ Pfin(ω) and AX ∈ Q(AY ), then X = Y ;
(P4) if AX ≤ B0 × B1 for some structures B0, B1 ∈ Q(A), then there are Y0,

Y1 ∈ Pfin(ω) such that AY0 ∈ Q(B0), AY1 ∈ Q(B1), and X = Y0 ∪ Y1,
then A is called an AD-class. An AD-class consisting of finite structures of a finite
signature is called a finite AD-class.

Corollary 1. For any computable finite AD-class A, the quasivariety Q(A) con-
tains continuum many quasivarieties for which the finite membership problem is
undecidable.

Proof. For any n < ω, we put Cn = A{n}. By [36, Lemma 3.2], for any k < ω and any
n, n0, . . . , nk < ω, one has Cn ∈ SP(Cn0 , . . . , Cnk

) if and only if n ∈ {n0, . . . , nk}.
The desired statement follows from Proposition 1. �

We would like to recall some known properties of quasivarieties that contain an
AD-class. For the first claim in following statement, we refer to M. E. Adams and
W. Dziobiak [1, Theorem 3.3] as well as to [36, Corollary 3.5], and for the second—to
[36, Theorem 4.4].

Theorem 1. Let a quasivariety K contain an AD-class. Then
(i) K is Q-universal;
(ii) K contains continuum many classes K′ ⊆ K such that the set of [isomor-

phism types] of finite sublattices of the quasivariety lattice Lq(K′) is not
computably enumerable.

3. Examples of quasivarieties for which the finite membership
problem and the quasi-equational theory are undecidable

3.1. Graphs.
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Definition 2. A graph [a directed graph] is an algebraic structure G = ⟨G;E⟩,
where G is a non-empty set and E is a symmetric binary relation [a binary relation,
respectively]. A graph is antireflexive if it satisfies the following quasi-identity:

∀xy E(x, x) −→ x = y.

Let C be the quasivariety of antireflexive directed graphs defined by the following
quasi-identities:

∀xyz E(x, z) & E(y, z) −→ x = y;

∀xyz E(z, x) & E(z, y) −→ x = y.

In [22], A. V. Kravchenko showed that the quasivariety C is Q-universal. Moreover,
according to [6, 24, 36], there are continuum many classes K of graphs such that
the set of all finite sublattices of the lattice Lq(K) is not computably enumerable.

For an integer n > 1, let Cn denote the directed graph ⟨{0, . . . , n − 1};E⟩ such
that for any i, j < n, (i, j) ∈ E whenever j ≡ i+ 1(mod n). By C1, we denote the
trivial graph; that is, C1 =

⟨
{0}; {(0, 0)}

⟩
. We call Cn the cycle of length n. It is

obvious that Cn ∈ C for any n > 0. For a finite set F = {n1, . . . , nk} of positive
integers, we use any of [F ], [n | n ∈ F ], [n1, . . . , nk] to denote the least common
multiple of F . We assume that [∅] = 1.

Lemma 1. Let n > 0, k > 1, k1 > 1, . . . , kn > 1 be integers such that the set
{k1, . . . , kn} is minimal with respect to the property that Ck ∈ SP(Ck1 , . . . , Ckn).
Then k = [k1, . . . , kn]. Conversely, if k = [k1, . . . , kn], then Ck ∈ SP(Ck1 , . . . , Ckn).

Proof. If Ck ∈ SP(Ck1
, . . . , Ckn

), then it is easy to see that Ck embeds into Ck1
×

. . .× Ckn ; let ψ be the corresponding embedding.
Let ψ(i) = ⟨aij | 1 6 j 6 n⟩ for i < k and let ψj = πjψ for j ∈ {1, . . . , n}. We

have for all i < k (
⟨aij | 1 6 j 6 n⟩, ⟨ai+1

j | 1 6 j 6 n⟩
)
∈ E,

whence (aij , a
i+1
j ) ∈ E for all i < k and for all j ∈ {1, . . . , n}. Therefore, kj divides

k for all j ∈ {1, . . . , n}. Moreover, as k is minimal with the property above, we
conclude that m = [k1, . . . , kj ]. The last statement is straightforward to prove. �

Theorem 2. There are continuum many quasivarieties R of directed graphs such
that the finite membership problem for R and the quasi-equational theory of R are
undecidable.

Proof. Let P = {pi | i < ω} be the set of primes such that pi 6 pj for all i 6 j < ω
and let K = {Cpi | i < ω}. It follows from Lemma 1 that the class K satisfies the
conditions (E0)-(E1). Let N ⊆ ω be a set of positive integers. We put

KN = {Cpi | i ∈ N} and RN = Q(KN ).

For any positive integer n < ω, let ψn denote the following quasi-identity:

∀x0 . . . xpn−1 &i<pnE(xi, xi+1) −→ x0 = xpn−1,

where i+ 1 is calculated modulo pn. Let Thq(RN ) be the quasi-equational theory
of RN ; then Thq(RN ) = Thq(KN ).

Claim 1. For any positive integer n < ω, ψn ∈ Thq(RN ) if and only if n /∈ N .
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Proof. Let n < ω be a positive integer. If n ∈ N , then Cpn ∈ KN ⊆ RN and
Cpn ̸|= ψn, whence ψn /∈ Thq(RN ). Suppose now that n /∈ N . In this case, pi does
not divide pn for any i ∈ N . This means that the premise of ψn holds on Ct ∈ KN

if and only if t = 1. But then Ct |= ψn. Therefore, KN |= ψn in this case. �

Claim 2. If Thq(RN ) is decidable, then N is computable.

Proof of Claim. If Thq(RN ) is decidable, then the set {n < ω | ψn ∈ Thq(RN )}
is computable. By Claim 1, the complement of N is computable, whence N also
is. �

Since there are uncountably many sets N which are not computable, the statements
of Theorem follow now from Claim 2 and Proposition 1. �

3.2. Differential groupoids.

Definition 3. [33] A differential groupoid is an algebra ⟨A; ·⟩ with a binary opera-
tion satisfying the identities:

x · x = x(1)
(x · y) · (z · t) = (x · z) · (y · t)(2)
x · (x · y) = x.(3)

Differential groupoids were studied by many authors, also under the name of LIR-
groupoids and with different basis for identities. For more information, see A.B.
Romanowska, B. Roszkowska [33], A.V. Kravchenko [25], or the monograph of
A.B. Romanowska and J. D.H. Smith [34].

Each proper non-trivial subvariety of the variety D of differential groupoids is
relatively based by a unique identity of the form

(. . . ((x y)y) . . .)y︸ ︷︷ ︸
i times

= xyi = xyi+j

for some i ∈ N and a positive integer j, see [33]. Denote such a variety by Di,i+j .
In [25], A.V. Kravchenko showed that the variety D is Q-universal. Moreover,
according to [36], there are continuum many classes K of differential groupoids
such that the set of all finite sublattices of the lattice Lq(K) is not computable.

Recall that a groupoid G is a left zero band if it satisfies the identity x · y = x,
i.e. if G ∈ D0,1. In particular, any set G can be turned into a left zero band, when
assuming x · y = x for all x, y ∈ G.

Definition 4. [33] Let I be a non-empty set and for each i ∈ I, let a non-empty set
Gi be given. For each pair (i, j) ∈ I × I, let hij : Gi → Gi be a mapping satisfying

(i) hii is an identity mapping on Gi;
(ii) hij ◦ hik = hik ◦ hij.

Define a groupoid structure on the disjoint union G of Gi for i ∈ I, by
(iii) ai · aj = hij(ai), where ai ∈ Gi, aj ∈ Gj .

The groupoid G is said to be the sum of left zero bands Gi over the left zero band I
by the mapping hij or briefly Lz-Lz-sum of Gi, i ∈ I.

In particular, for any i ∈ I, Gi is a subgroupoid of G and is a left zero band.
Moreover, the mapping f : G → I, ai 7→ i, is a homomorphism. It was shown in
[33] that G is a differential groupoid if and only if it is an Lz-Lz-sum of left zero
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bands Gi (over a left zero band I by some mappings hij). Let G0 denote the trivial
groupoid whose universe is {∞}.

For every positive integer n, let Dn denote the Lz-Lz-sum of G1 = {0, 1, . . . , n−
1} and G2 = {∞}, where h12(k) ≡ k + 1(mod n) for k < n and h21 is the identity
map. For example, D3 =

⟨
{0, 1, 2,∞}; ·

⟩
, where

0 · 0 = 0 · 1 = 0 · 2 = 0;

1 · 0 = 1 · 1 = 1 · 2 = 1;

2 · 0 = 2 · 1 = 2 · 2 = 2;

0 · ∞ = 1, 1 · ∞ = 2, 2 · ∞ = 0;

∞ · 0 = ∞ · 1 = ∞ · 1 = ∞ ·∞ = ∞.

Obviously, Dn ∈ D0,n for each n > 0 and we call it a cycle of height n.

Lemma 2. Let n > 0 be an integer, let D ∈ D, and let abn = a, ba = b for
some elements a, b ∈ D. Then abi · abj = abi and b · abi = b for any i, j < ω. In
particular, the substructure of D generated by elements a, b is isomorphic to Dk for
some k 6 n.

Proof. We assume first that j 6 i and argue by induction on i. If i = 0 then j = 0,
and we have by our assumption ab0 ·ab0 = a ·a = a and b ·ab0 = b ·a = b. Applying
Definition 3 and the induction hypothesis, we get for i > 0 and j > 0

abi · ab0 = (abi−1 · b) · (a · a) = (abi−1 · a) · (b · a) = abi−1 · b = abi;

abi · abj = (abi−1 · b) · (abj−1 · b) = (abi−1 · abj−1) · (b · b) = abi−1 · b = abi;

b · abi = (b · b) · (abi−1 · b) = (b · abi−1) · (b · b) = b · b = b.

If j > i, then there is a positive integer p such that j ≤ i + pn. According to the
above, we have abi · abj = abi+pn · abj = abi+pn = abi. Therefore, the map a 7→ 0,
b 7→ ∞ extends to an isomorphism. �
A proof of the next statement can be found in [25, 38], cf. the proof of Lemma 1.

Lemma 3. [38, Lemma 4.1.3] Let n > 0, k > 1, k1 > 1, . . . , kn > 1 be integers
such that the set {k1, . . . , kn} is minimal with respect to the property that Dk ∈
SP(Dk1 , . . . ,Dkn). Then k = [k1, . . . , kn]. Conversely, if k = [k1, . . . , kn], then
Dk ∈ SP(Dk1 , . . . ,Dkn).

The following theorem is a groupoid analogue of Theorem 2.

Theorem 3. There are uncountably many quasivarieties K of differential groupo-
ids such that the finite membership problem for K and the quasi-equational theory
of K are undecidable.

Proof. For any positive integer n < ω, let pn denote the nth prime and let ψn

denote the following quasi-identity:

∀x∀ y xypn = x & yx = y −→ xypn−1 = x.

Let also

Ψ = {ψn | 1 < n < ω}, K = {Dpi | i < ω};
KN = {Dpi | i ∈ N}, RN = Q(KN ) for an arbitrary set N ⊆ ω.

The argument repeats the one in the proof of Theorem 2 using Ψ and with a
reference to Lemma 3. �
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3.3. Pointed Abelian groups. A pointed Abelian group is a structure

A = ⟨A; +,−, 0, c⟩
such that the structure ⟨A; +,−, 0⟩ is an Abelian group and c is a constant symbol.
We put for any a ∈ A

0a = 0 and (i+ 1)a = ia+ a for any i > 0.

In [31], the second author proved that the variety of all pointed Abelian groups
is Q-universal and that there are continuum many quasivarieties K of pointed
Abelian groups such that the set of all finite sublattices of the lattice Lq(K) is
not computable. For any positive integer n > 1, let An = ⟨An; +,−, 0, c⟩, where
An = {0, . . . , n− 1}, ⟨An; +,−, 0⟩ is a cyclic group of order n, and c = 1.

The next lemma is an analogue of Lemmas 1 and 3. Its proof repeats the proof
of Lemma 1.

Lemma 4. Let n > 0, k > 1, k1 > 1, . . . , kn > 1 be integers such that the set
{k1, . . . , kn} is minimal with respect to the property that Ak ∈ SP(Ak1 , . . . ,Akn).
Then k = [k1, . . . , kn]. Conversely, if k = [k1, . . . , kn], then Ak ∈ SP(Ak1 , . . . ,Akn).

The following theorem is a groupoid analogue of Theorem 2.

Theorem 4. There are continuum many quasivarieties K of pointed Abelian groups
such that the finite membership problem for K and the quasi-equational theory of
K are undecidable.

Proof. For any positive integer n < ω, let ψn denote the following quasi-identity:

pnc = 0 −→ (pn − 1)c = 0.

Let also

Ψ = {ψn | 1 < n < ω}, K = {Api | i < ω};
KN = {Api | i ∈ N}, RN = Q(KN ) for an arbitrary set N ⊆ ω.

The argument repeats the one in the proof of Theorem 2 using Ψ and with a
reference to Lemma 4. �
From Theorems 2, 3, and 4, on easily gets

Corollary 2. There exist continuum many quasivarieties of graphs [differential
groupoids, pointed Abelian groups, respectively] which have no computable basis of
quasi-identities.

Remark 1. Using Proposition 1 for the class of unars (algebras with one unary
operation), one obtains the result of [30, Corollary 21] which states that there
are continuum many quasivarieties of unars with no computable basis of quasi-
identities.

From Corollary 1, we get the following statement.

Corollary 3. The following quasivarieties contain continuum many subquasivarie-
ties for which the finite membership problem is undecidable:

(i) the quasivariety C of undirected graphs;
(ii) the variety of commutative rings with unit;
(iii) the variety of unars;
(iv) the variety D of differential groupoids;
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(v) the variety of MV -algebras;
(vi) the variety of pointed Abelian groups.

4. Independent bases of quasi-identities

Definition 5. A quasivariety K has an independent basis of quasi-identities, if
there is a set Φ of quasi-identities such that K = Mod(Φ) and K ̸= Mod(Φ − φ)
for any φ ∈ Φ.

It is straightforward that a finitely based quasivariety has an independent basis of
quasi-identities.

Proposition 2. [17, Proposition 6.3.1] Let K ⊆ K′ be quasivarieties. If K has an
independent quasi-equational basis Σ relative to K′, then K has at least |Σ| upper
covers in the lattice Lq(K′).

Theorem 5. There are continuum many quasivarieties of differential groupoids
with no independent quasi-equational basis.

Proof. We use ideas of V. K. Kartashov from the proof of [19, Theorem 4]. For a
set F ∈ Pfin(ω), we put

[F ] =

{∏
i∈F pi, if F ̸= ∅;

1, otherwise.

We fix an infinite set I ⊂ ω and for each finite nonempty set F ⊆ ω, consider the
following quasi-identity which we denote by φI

F :

∀x ∀ y xy[F ] = x & yx = y −→ xy[F∩I] = x.

We put also

ΦI =
{
φI
F | ∅ ̸= F ∈ Pfin(ω)

}
and KI = Mod(ΦI).

Claim 1. For any F ∈ Pfin(ω), D[F ] ∈ KI if and only if F ⊆ I.

Proof of Claim. Suppose first that D[F ] ∈ KI . This means that D[F ] |= φI
F . As

0∞[F ] = 0 in D[F ], we conclude that 0∞[F∩I] = 0. This is possible only when [F ]
divides [F ∩ I]; that is, when F ⊆ I.

Suppose now that F ⊆ I; we prove that D[F ] ∈ Mod(φI
G) for any nonempty set

G ∈ Pfin(ω). Indeed, let a, b ∈ D[F ] be such that ab[G] = a and ba = b. According
to Lemma 2, b(abi) = b for any i < ω. This means that [F ] divides [G], whence
F ⊆ G and F ⊆ G∩I. Therefore, [F ] divides [G∩I] which implies that ab[G∩I] = a;
that is, φI

G holds in D[F ]. �

Claim 2. KI has no upper cover in the lattice Lq(D).

Proof of Claim. Let K ∈ Lq(D) be such that KI ⊂ K. Then there is a finite
nonempty set F ⊆ ω and a structure A ∈ K such that A ̸|= φI

F . This means that
there are a, b ∈ A such that ab[F ] = a and ba = b. According to Lemma 2, b(abi) = b
for any i < ω. Let k < ω be minimal with respect to the property that abk = a.
Then k > 0 and k divides [F ]. Therefore, k = [G] for some nonempty G ⊆ F ,
and the substructure of A generated by elements a and b is isomorphic to D[G]. In
particular, D[G] ∈ K\KI . Taking into account Claim 1, we conclude that G * I;
let j ∈ G\I.
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Since I is infinite, there is i ∈ I\F . According to Claim 1, Dpi ∈ KI . We put
H = G∪{i}. By Lemma 3, D[H] ≤s D[G]×Dpi , whence D[H] ∈ K\KI according to
Claim 1. We have therefore that KI ⊂ Q

(
KI ,D[H]

)
⊆ K. Consider the following

quasi-identity which we denote by ψG:

∀x ∀ y xy[G] = x & yx = y −→ xy[G\{j}] = x.

It is straightforward that D[G] ̸|= ψG. As D[G] ∈ K, we conclude that ψG /∈ Thq(K).
We prove that Q

(
KI ,D[H]

)
|= ψG. Indeed, let D ∈ KI , let a, b ∈ D, and let

ab[G] = a, ba = b. As D |= φI
G, we conclude that ab[G∩I] = a. Since G∩ I ⊆ G\{j},

we get that ab[G\{j}] = a, whence D |= ψG. Moreover, as the equality ab[G] = a,
where a, b ∈ D[H], implies that a = ∞, we conclude that D[H] |= ψG. Therefore,
KI ⊂ Q

(
KI ,D[H]

)
⊂ K, whence K does not cover KI . �

According to Proposition 2, the quasivariety KI has no independent basis of quasi-
identities for any infinite set I ⊂ ω.

Claim 3. If I, J ⊂ ω are infinite sets and I * J , then KI * KJ .

Proof of Claim. Let i ∈ I\J . Then according to Claim 1, Dpi ∈ KI\KJ . �

Claim 3 completes the proof. �

Theorem 6. [40] There are continuum many quasivarieties of directed graphs in
C with no independent quasi-equational basis.

Proof. The proof goes along the lines of the proof of Theorem 5 with the quasi-
identity φI

F defined as:

∀x0 . . . x[F ] &i<[F ]E(xi, xi+1) −→ x0 = x[F∩I],

�

Remark 2. The result of Theorem 6 was proved by different methods by S.V.
Sizy̌ı in [40, Theorem 4]. A much stronger result than Theorem 6 was proved by
A.V. Kravchenko and A. V. Yakovlev in [27]. Namely, they proved that for each
quasivariety K of [undirected] graphs containing a non-bipartite graph, there is a
quasivariety K′ ⊆ K which contains continuum many subquasivarieties with no
independent quasi-equational basis relative to K′.

Theorem 7. There are continuum many quasivarieties of pointed Abelian groups
with no independent quasi-equational basis.

Proof. We define the quasi-identity φI
F as:

[F ]c = 0 −→ [F ∩ I]c = 0.

Then the proof repeats the proof of Theorem 5. �

We thank Aleksandr Kravchenko for drawing our attention to the paper of M.
Demlová and V. Koubek [13]. The authors of [13] find, in particular, a finite AD-
class in the quasivariety generated by a certain semigroup which was considered by
M.V. Sapir [35] and was the first example of a Q-universal quasivariety. This result
of M. Demlová and V. Koubek in combination with [36, Theorem 4.4] solves [36,
Problem 2] in the positive.
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