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Abstract. We give exact formulas for the two largest orders of elements
of the simple orthogonal group Ωε

2n(q), where ε ∈ {+,−} and q > 2 is
even.
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1. Introduction

Given a finite group G, we write o1(G) and o2(G), with o1(G) > o2(G), for
the two largest orders of elements of G. This paper was motivated by [1], where
for algorithmic needs, the exact values of o1(S) and o2(S) for S a simple group
of Lie type in odd characteristic were determined. As for the groups of Lie type
in characteristic 2, there are upper bounds on o1(S) [2, Lemma 1.3] and even
on o1(AutS) [3, Table 3], but determining the exact values encounters obstacles
related to orthogonal and symplectic groups (see [1, p. 808] for explanation). The
symplectic groups Sp2n(2

m) were handled independently in [4] and [5] (the former
gives formulas for o1(S) and o2(S), and the latter for o1(S) and o1(AutS)).

Our main result is the exact values of o1(S) and o2(S) for S = Ωε
2n(2

m), where
n > 4 and m > 1 (Theorem 1). In particular, we show that these numbers are
always odd and that oi(AutS) = oi(S) for i = 1, 2 provided that S ̸= Ω+

8 (2
m).

The main difficulty with S = Ωε
2n(2) is that even o1(S) is not always odd,

and so is not always an order of a semisimple element. The value of o1(Ω
ε
2n(2))

in some cases can be derived from the results of [4]: it turns out that at least
one of o1(Sp2n(2)) and o2(Sp2n(2)) is an order of an element of Ω+

2n(2) or Ω
−
2n(2).
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However, this does not resolve the problem since o1(Sp2n(2)) and o2(Sp2n(2)) quite
rarely coincide with o1(Ω

+
2n(2)) and o1(Ω

−
2n(2)).

The main difficulty with determining the largest orders of elements in Aut(Ω+
8 (q))

are triality automorphisms, since there are no method to calculate, or at least to
satisfactorily bound, the orders of elements in extensions by these automorphisms.

2. Preliminaries

In this section we collect all necessary information about Ω±
2n(2

m). Our number-
theoretic notation is mostly standard. In particular, we write [n1, . . . , ns] and
(n1, . . . , ns) for the least common multiple and greatest common divisor of integers
n1, . . . , ns. Also we denote the highest power of 2 dividing a positive integer n by
(n)2 and define (n)2′ to be n/(n)2.

We write ω(G) for the set of orders of elements of a group G and ω2′(G) for
the set of odd orders. For ε ∈ {+,−}, we replace ε1 by ε in arithmetic expressions.
In Lemma 1 and Formula (2.1) below, ± in [qn1 ± 1, . . . , qns ± 1] means that we
can choose + or − for every entry independently.

Lemma 1 ([6, Corollary 4]). The set ω(Ωε
2n(q)), where q is a power of 2 and n > 4,

consists of all divisors of the following numbers:

(i) [qn1 − τ1, . . . , q
ns − τs], where s > 1, ni > 0 and τi ∈ {+,−} for 1 6 i 6 s,

n1 + · · ·+ ns = n, and τ1 . . . τs = ε;
(ii) 2[qn1 ± 1, . . . , qns ± 1], where s > 1, ni > 0 for 1 6 i 6 s, and 2 + n1 +

· · ·+ ns = n;
(iii) 2k[qn1 ± 1, . . . , qns ± 1], where k > 2, s > 1, ni > 0 for 1 6 i 6 s, and

2k−2 + 2 + n1 + · · ·+ ns = n;
(iv) 2[q ± 1, qn1 − τ1, . . . , q

ns − τs], where s > 1, ni > 0 and τi ∈ {+,−} for
1 6 i 6 s, 2 + n1 + · · ·+ ns = n, and τ1 . . . τs = ε;

(v) 4[q − τ, qn1 − τ1, . . . , q
ns − τs], where s > 1, τ ∈ {+,−}, ni > 0 and

τi ∈ {+,−} for 1 6 i 6 s, 3 + n1 + · · ·+ ns = n, and ττ1 . . . τs = ε;
(vi) 2k if n = 2k−2 + 2 for k > 3.

By Lemma 1, the set ω2′(Ω
ε
2n(q)) consists of all numbers of the form

[qn1 − τ1, . . . , q
ns − τs],

where n1 + · · · + ns = n and τ1 . . . τs = ε. In particular, it is a subset of the set
M(n, q) of all numbers of the form

(2.1) [qn1 ± 1, . . . , qns ± 1],

where n1 + · · ·+ ns = n. Denote the maximum element of M(n, q) by m1(n, q).

Lemma 2. Let q be a power of 2. If n > 2, then

m1(n, q) 6 o1(Sp2n(q)) 6 qn+1/(q − 1).

If n > 5, a ∈ ω(Sp2n(q)) and a is even, then a 6 2m1(n, q)/3.

Proof. The first assertion is proved in [2, Lemma 1.3] or [3, Lemma 2.9]. The second
one is established in the beginning of the proof of [4, Proposition 4]. �

The next formulas are well-known.

Lemma 3. Let q be an even integer. Then

(i) (qn − 1, qm − 1) = q(n,m) − 1;
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(ii) (qn − 1, qm + 1) =

{
1 if (n)2 6 (m)2

q(n,m) + 1, if (n)2 > (m)2
;

(iii) (qn + 1, qm + 1) =

{
1 if (n)2 ̸= (m)2

q(n,m) + 1, if (n)2 = (m)2
.

To work with automorphisms of Ω±
2n(2

m), it is convenient to regard these groups
as the fixed point sets of Frobenius endomorphisms. In the choice of Frobenius en-
domorphisms, we follow [7, pp. 70–71]. Let V be a 2n-dimensional vector space over
the algebraic closure of the binary field and let K = Ω(V , f) be the connected com-
ponent of O(V , f), where f is the quadratic form x1x−1+· · ·+xnx−n and xi are co-
ordinates with respect to a basis of V consisting of vectors vn, . . . , v1, v−1, . . . , v−n.
Let γ be the involution of O(V , f) that interchanges vn and v−n and fixes all other
basis vectors, and let φ be the endomorphism of O(V , f) induced by raising co-
ordinates to the second power. Then γ and φ permute, and for q = 2m, we have
Ω+

2n(q) ≃ S+(q) = CK(φm) and Ω−
2n(q) ≃ S−(q) = CK(φmγ).

We denote the automorphisms of S+(q) and S−(q) induced by γ and φ by
the same letters. These automorphisms generate the group of order 2m, which has
the form ⟨γ⟩ × ⟨φ⟩ for S+(q) and ⟨φ⟩ for S−(q). In the latter case φm = γ and
every subgroup of ⟨φ⟩ is generated by either φm/k for some k or φm/kγ for some
odd k.

Lemma 4. Let n > 4, k divides m, q = 2m = qk0 and β = φm/k. Then

(i) ω(S+(q)β) = k · ω(S+(q0));
(ii) ω(S+(q)βγ) = k · ω(S−(q0)) if k is even;
(iii) ω(S+(q)βγ) = k · ω(S+(q0)γ) if k is odd;
(iv) ω(S−(q)β) = k · ω(S+(q0)γ);
(v) ω(S−(q)βγ) = k · ω(S−(q0)) if k is odd.

Proof. It is similar to the proof of [8, Lemma 3.3]. �

3. Two largest orders of elements

Throughout this section q is a power of 2, q > 2 and S = Ωε
2n(q). Since q > 2,

we may expect that o1(S) and o2(S) are odd and, in particular, are contained in
M(n, q). Moreover, if n is sufficiently large, we may expect that they are contained
in its subset M c(n, q) consisting of all numbers of the form (2.1) with pairwise
coprime entries qni ± 1.

Since q2l − 1 = [ql − 1, ql + 1], the representation of a ∈ M(n, q) in the form
[qn1 ± 1, . . . , qns ± 1] is ambiguous. For definiteness, we assume that in each entry
qni − 1 the exponent ni is odd. With this assumption, Lemma 3 implies that every
element of M c(n, q) can be written as

(3.1) (qn1 + 1) . . . (qns + 1), where n1 + · · ·+ ns = n,

or

(3.2) (qn1 + 1) . . . (qns + 1)(ql − 1), where l is odd and l + n1 + · · ·+ ns = n,

and in both cases (n1)2 < (n2)2 < · · · < (ns)2.
The expressions (qn1 + 1) . . . (qns + 1) and (qn1 + 1) . . . (qns + 1)(ql − 1) in (3.1)

and (3.2) can be viewed as polynomials of degree n in q. The condition

(n1)2 < (n2)2 < · · · < (ns)2
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implies that a sum of some of ni determines its summands uniquely, and hence
the coefficients of the first polynomial lie in {0, 1}. Thus the coefficients of both
polynomials lie in {1, 0,−1}. By assumption q > 4, so

qm − qm−1 − · · · − 1 > qm−1 + · · ·+ 1.

It follows that the ordinary order on numbers of M c(n, q) is defined by the lexico-
graphic order on n-tuples of their coefficients when they are regarded as polynomials
in q. In particular, this order does not depend on q and each number a ∈ M c(n, q) is
represented by a unique polynomial, which we denote by a(q). These observations
allows us to determine largest elements of M c(n, q), where n is small, by computer
calculations: it suffices to calculate elements of M c(n, 4). We will refer to this
technique as “computation with q = 4”.

Let a ∈ M c(n, q). If the first t coefficients (beginning with the leading one) of
a(q) are equal to 1, while the (t + 1)th coefficient is not, then we say that a has
height t and write h(a) = t. For example, h((qn− 1)(q+1)) = 2 for n > 2. Clearly,
h(a1) > h(a2) yields a1 > a2. Also define l(a) = 0 if a is as in (3.1) and l(a) = l if a
is as in (3.2). By Lemma 1, it follows that a ∈ ω(Ωε

2n(q)) if and only if ε = (−1)s or
n1 = l(a). Furthermore, in the latter case a lies in both ω(Ω+

2n(q)) and ω(Ω−
2n(q)).

We set sgn(a) = (−1)s if n1 ̸= l(a) and sgn(a) = ◦ otherwise.
The next lemma shows that for sufficiently large n, the numbers o1(S) and o2(S)

are contained in the set M̃(n, q) consisting of a ∈ M c(n, q) with odd n−l(a). Denote

the ith largest elements of M̃(n, q) and M̃(n, q) ∩ ω(S) by m̃i(n, q) and m̃ε
i (n, q)

respectively.

Lemma 5. Let n > 5 and a ∈ ω(S). If a divides an element of M(n, q) \M c(n, q)

or is even, then a < qn. If n > 5 and a ∈ M c(n, q) \ M̃(n, q), then a < b, where
b = (qn−1 − 1)(q + 1) for even n and b = (q3 + 1)(q2 + 1)(qn−5 + 1) for odd n.

Proof. Let a be even. Since S < Sp2n(q), it follows from Lemma 2 and the assump-
tion q > 4 that

a 6 2m1(n, q)

3
6 2qn+1

3(q − 1)
< qn.

Let a divides [qn1 − τ1, q
n2 − τ2, . . . ], where (qn1 − τ1, q

n2 − τ2) > 1, and set
x = [qn1 − τ1, q

n2 − τ2]. If τ1 = τ2 = 1, then

x 6 (qn1 − 1)(qn2 − 1)

q − 1
<

qn1+n2

q − 1
.

If at least one of τ1, τ2 is equal to −, then

x 6 (qn1 + 1)

q + 1
· (q

n2 + 1)

q + 1
· (q + 1) 6 qn1+n2−2(q + 1) <

qn1+n2

q − 1
.

Thus

a 6 x ·m1(n− n1 − n2, q) 6
qn1+n2

q − 1
· q

n−n1−n2+1

q − 1
=

q

(q − 1)2
· qn < qn.

Let a ∈ M c(n, q) \ M̃(n, q) and let a be defined by l(a), n1, . . . , ns according to
(3.1) or (3.2). Since n− l(a) is even, all ni are even too, and so

(qn1 + 1) . . . (qns + 1) 6 m1((n− l(a))/2, q2) 6 qn−l(a) + qn−l(a)−2 + · · ·+ 1.
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If n is even, then l(a) = 0 and we have

a 6 qn + qn−2 + · · ·+ 1 < qn + qn−1 − q − 1 = b.

If n is odd, then

a < (qn−l(a) + qn−l(a)−2 + · · ·+ 1)ql(a) < qn + qn−2 + qn−3 < b.

The proof is complete. �

We proceed with determining m̃ε
1(n, q) and m̃ε

2(n, q). The result substantially
depends on parity of n, and we begin with the case of even n.

Let n be even. Then M̃(n, q) consists of the numbers of the form

(qn1 + 1) · · ·+ (qns + 1)(ql − 1),

where 1 = (n1)2 < · · · < (ns)2 and l is odd.

Denote by Cm the set of those element of M̃(n, q) for which n1 = 1, n2 = 2, . . . ,
nm = 2m−1 and nm+1 ̸= 2m. Let a ∈ Cm. All numbers nm+1, . . . , ns are divisible
by 2m and not equal to 2m, therefore, we can write them as n′

12
m, . . .n′

s′2
m for

some n′
i ̸= 1. Define c = c(a) = n′

1+ · · ·+n′
s′ . Then n1+ · · ·+ns = 2m−1+ c ·2m,

and hence

(3.3) (c+ 1)2m 6 n.

Since (n′
i)2 are pairwise distinct, it follows that

(3.4) s′ = 1 for c 6 4.

This shows that for every c 6 4, there is at most one a with such c and we denote
this a by am,c. Similarly,

(3.5) if c = 5, 6, then either s′ = 1, or s′ = 2, {n′
1, n

′
2} = {2, c− 2},

and we denote the corresponding a by am,c and am,c,c−2 respectively.
Next we show that

h(a) = min(2m, n− (c+ 1)2m + 1),

or equivalently,

(3.6) h(a) =

{
2m if n > (c+ 2)2m

n− (c+ 1)2m + 1 if n < (c+ 2)2m
.

Since

a = (q + 1) . . . (q2
m−1

+ 1)(qc·2
m

+ · · ·+ 1)(qn−(c+1)2m+1 − 1)

and

(q + 1) . . . (q2
m−1

+ 1) = q2
m−1 + q2

m−2 + · · ·+ 1,

the polynomial a(q) is the difference of two polynomial with non-negative coeffi-
cients of degrees n and (c+1)2m−1. The first 2m coefficients of the first polynomial
is equal to 1, that is, the last of them is in term with qn−2m+1. Thus h(a) = 2m if
n− 2m + 1 > (c+ 1)2m − 1 and h(a) = n− (c+ 1)2m + 1 otherwise. It remains to
note that n+ 2 > (c+ 2)2m is equivalent to n > (c+ 2)2m.
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Table 1. The numbers m̃i(n, q), 1 6 i 6 4, for even n > 10

m̃1(n, q), sgn m̃2(n, q), sgn m̃3(n, q), sgn m̃4(n, q), sgn

5 6 n/2k < 6 fk+1(n, q), −τ fk+2(n, q), τ gk(n, q), −τ fk(n, q), τ

6 6 n/2k < 7 fk+2(n, q), τ fk+1(n, q), −τ gk(n, q), −τ fk(n, q), τ

7 6 n/2k < 9 fk+2(n, q), τ fk+1(n, q), −τ gk+1(n, q), τ gk(n, q), −τ

9 6 n/2k < 10 fk+2(n, q), τ fk+1(n, q), −τ gk+1(n, q), τ fk+3(n, q), −τ

Lemma 6. Let n be even and n > 10. Suppose that we choose k > 1 so that
5 · 2k 6 n < 5 · 2k+1, put τ = (−1)k and define

fm(n, q) = (q + 1)(q2 + 1) . . . (q2
m−1

+ 1)(qn−2m+1 − 1),

gm(n, q) = (q + 1)(q2 + 1) . . . (q2
m−1

+ 1)(q2
m+1

+ 1)(qn−3·2m+1 − 1)

for every m > 1. Then m̃i(n, q) and sgn(m̃i(n, q)) for 1 6 i 6 4 are as in Table 1.
In particular, {m̃i(n, q) | 1 6 i 6 4} = {m̃+

1 (n, q), m̃
+
2 (n, q), m̃

−
1 (n, q), m̃

−
2 (n, q)}

and m̃4(n, q) > (q + 1)(qn−1 − 1).

Proof. Since n < 10 ·2k, it follows from (3.3) that Cm = ∅ for all m > k+3. Using
the properties of Cm established above, one can easily verify Table 2, in which we
describe Ck+1, Ck+2 and Ck+3 depending on the integer part of n/2k. The column
“Cm” gives all elements of Cm in decreasing order together with their signs. Observe
that fm = fm(n, q) and gm = gm(n, q) defined in the statement of the lemma are
precisely the unique elements of Cm with c = 0 and c = 2 respectively (see (3.4)).
By hm we denote the unique element of Cm with c = 3.

Consider the set C = Ck+1 ∪ Ck+2 ∪ Ck+3.

Table 2

n/2k Ck+1 Ck+2 Ck+3

[5, 6) fk+1 fk+2

h(fk+1) = 2k+1 h(fk+2) = n− 2k+2 + 1 ∅
2k+1 > h(fk+2) > 2k

[6, 7) fk+1 > gk+1 fk+2

h(fk+1) = 2k+1 h(fk+2) = n− 2k+2 + 1 > 2k+1 ∅
h(gk+1) = n− 3 · 2k+1 + 1 < 2k

[7, 8) fk+1 > gk+1 fk+2

h(fk+1) = 2k+1 h(fk+2) = n− 2k+2 + 1 > 2k+1 ∅
h(gk+1) = n− 3 · 2k+1 + 1 > 2k

[8, 9) fk+1 > gk+1 > hk+1 fk+2 fk+3

h(fk+1) = h(gk+1) = 2k+1 h(fk+2) = 2k+2 h = h(hk+1)

h(hk+1) = n− 2k+3 + 1 < 2k

[9, 10) fk+1 > gk+1 > hk+1 fk+2 fk+3

h(fk+1) = h(gk+1) = 2k+1 h(fk+2) = 2k+2 h = h(hk+1)

h(hk+1) = n− 2k+3 + 1 > 2k
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Let 9 · 2k 6 n < 10 · 2k. Then C consists of five elements, all of them having
height larger than 2k, and hence C contains the desired elements. The least height
of an element of C is that of hk+1 and fk+3, so it remains to compare these numbers.
Since

fk+3

hk+1
=

(q2
k+1

+ 1)(q2
k+2

+ 1)

q3·2k+1 + 1
> 1,

we see that fk+2 > fk+1 > gk+1 > fk+3 are the four largest elements, as claimed.
Note that l(m̃i(n, q)) > l(fk+3) = n− 8 · 2k + 1 > 1, and hence sgn(mi(n, q)) ̸= ◦.

Suppose that n < 9 · 2k. If 5 · 2k 6 n < 7 · 2k (or 7 · 2k 6 n < 9 · 2k), then
C contains only two (or three) elements whose height is larger than 2k, therefore,
we need the two (or one) largest elements of Ck. We claim that these are gk and
fk (or gk). Since h(fk) = h(gk) = 2k, it suffices to compare gk and fk with other
elements of height 2k. Let a ∈ Ck, c = c(a) > 2 and h(a) = 2k. By (3.6), we
have that (c + 2)2k 6 n and, in particular, c 6 6. By (3.4) and (3.5), we need to
consider the elements hk = ak,3 (for all n), ak,4 (for n > 6 · 2k), ak,5 and ak,2,3 (for
n > 7 ·2k), ak,6 and ak,2,4 (for n > 8 ·2k). The inequality qc+1 < (q2+1)(qc−2+1)
yields ak,c < ak,2,c−2 and so eliminates ak,5 and ak,6. Define l = n − 2k + 1 and

dk = (q + 1)(q2 + 1) . . . (q2
k−1

+ 1). Then

fk = dk(q
l − 1),

gk = dk(q
2·2k + 1)(ql−2·2k − 1),

hk = dk(q
3·2k + 1)(ql−3·2k − 1),

ak,4 = dk(q
4·2k + 1)(ql−4·2k − 1),

ak,2,3 = dk(q
2·2k + 1)(q3·2

k

+ 1)(ql−5·2k − 1),

ak,2,4 = dk(q
2·2k + 1)(q4·2

k

+ 1)(ql−6·2k − 1).

Since (qa + 1)(ql−a − 1) decreases with respect to a, we see that gk > hk > ak,4
and ak,2,3 > ak,2,4. Also 4 · 2k < l < 8 · 2k, and hence l − 2 · 2k > 2 · 2k and
l − 5 · 2k < 3 · 2k, which yields gk > fk and gk > ak,2,3. Thus gk is the largest
element of Ck for all n with 5·2k 6 n < 9·2k. Now let 5 6 n/2k < 7, or equivalently,
4 · 2k < l < 6 · 2k. Then l− 3 · 2k < 3 · 2k and l− 5 · 2k < 2 · 2k, so fk > hk > ak,2,3,
and hence fk is the second largest element of Ck.

Thus if 5 · 2k 6 n < 6 · 2k, then the desired elements are fk+1 > fk+2 > gk > fk.
Similarly, for 6 ·2k 6 n < 7 ·2k or 7 ·2k 6 n < 9 ·2k, they are fk+2 > fk+1 > gk > fk
or fk+2 > fk+1 > gk+1 > gk respectively. It is easy to see that q − 1 divides none
of these elements, and so their signs are not ◦.

In all cases, we have either h(m̃4(n, q)) = 2k, in which case m̃4(n, q) > fk, or
h(m̃4(n, q)) > 2k. Since h((q + 1)(qn−1 − 1)) = 2 and (q + 1)(qn−1 − 1) = f1(n, q),
the last inequality of the lemma also follows. �

Now let n be odd. Then M̃(n, q) consists of the numbers of the form

(qn1 + 1) · · ·+ (qns + 1),

where 1 = (n1)2 < · · · < (ns)2. Put tn = |M̃(n, q)| and denote by M̃l(n, q) the set

of those elements of M̃(n, q) for which n1 = l. Note that the smallest element of

M̃l(n, q) is (q
l + 1)(qn−l + 1). It is clear that

(3.7) M̃l(n, q) = (ql + 1)M̃((n− l)2′ , q
(n−l)2),

and hence M̃l(n, q) contains t(n−l)2′
numbers.
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Lemma 7. Let n > 3 be odd and n′ = (n− 1)2′ . Then

m̃i(n, q) = (q + 1) · m̃i

(
n′, q(n−1)2

)
for i = 1, . . . , tn′ .

If in addition n > 9 and (n− 3)2 = 2, then

m̃tn′+i(n, q) = (q3 + 1)(q2 + 1) · m̃i

(
(n− 5)2′ , q

(n−5)2
)

for i = 1, . . . , t(n−5)2′
.

Proof. If a ∈ M̃1(n, q), then h(a) > 2, while for a ∈ M̃l(n, q) with l > 3, we have

h(a) = 1. Thus M̃1(n, q) > M̃l(n, q) for all l > 3, and so the first assertion follows
from (3.7).

Let n > 9 and (n− 3)2 = 2. Then (n− 3)2′ = (n− 3)/2 > 3. Since

M̃3(n, q) = (q3 + 1)M̃((n− 3)/2, q2)

and ((n−3)/2−1)2′ = (n−5)2′ , it follows from the first part that the t(n−5)2′
largest

numbers of M̃3(n, q) are exactly the elements of (q3+1)(q2+1)M̃((n−5)2′ , q
(n−5)2).

It remains to check that a < (q3 + 1)(q2 + 1)(qn−5 + 1) for any a ∈ Ml(n, q) with
l > 5. Indeed, we have

a 6 (ql + 1)(qn−l+2 − 1)

q2 − 1
6 (q5 + 1)(qn−3 − 1)

q2 − 1
< (q3 + 1)(q2 + 1)(qn−5 + 1),

where the strong inequality follows by comparing coefficients in term with qn−3. �
By Lemma 5, if the number m̃−ε

i ((n− 1)2′ , q) exists, then

(3.8) m̃ε
i (n, q) = (q + 1)m̃−ε

i ((n− 1)2′ , q
2).

So, if (n − 1)2′ is not very small, then all the numbers m±
1 (n, q) and m±

2 (n, q) are

contained in (q+1)M̃((n−1)2′ , q
2) and, therefore, can be found by induction. The

basis of induction is provided by the next lemma.

Lemma 8. Let n be odd and suppose that (n−1)2′ 6 5. Then m̃±
i (n, q) for i = 1, 2

are as in Tables 3–6.

Proof. For n 6 13 and n = 17, 21, the desired numbers are found by computation
with q = 4 and given in Table 3. Assume from now that n > 15 and n ̸= 17, 21.
The condition (n− 1)2′ 6 5 is equivalent to the fact that n is of the form 2t +1, or
3 · 2t + 1, or 5 · 2t + 1.

Let n = 2t+1. Since n ̸= 9, 17, it follows that t > 5, and in particular (n−3)2 = 2.
By (3.8), we have

m̃1(n, q) = (q + 1)m̃1(1, q
2t) = (q + 1)(q2

t

+ 1) = m̃+
1 (n, q),

and this is the only element of M̃1(n, q). Lemma 7 implies that the next largest
elements are contained in

(3.9) (q3 + 1)(q2 + 1)M̃((n− 5)2′ , q
4).

Furthermore, since (n−5)2′ > 7, all the numbers m̃±
1 ((n−5)2′ , q

4), m̃±
2 ((n−5)2′ , q

4)
exist, and we can choose three of them with necessary number of factors. to obtain
m̃−

1 (n, q) and m̃±
2 (n, q). Using the expansion

(n− 5)2′ = 2t−2 − 1 = 7 · 2t−5 + 2t−6 + · · ·+ 1

and repeatedly applying Lemma 7, we result in

(3.10) m̃i((n− 5)2′ , q
4) = (q4 + 1) . . . (q2

t−4

+ 1)m̃i(7, q
2t−3

).
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Table 3. The numbers m̃±
1 (n, q) and m̃±

2 (n, q) for small odd n

n m̃+
1 (n, q) m̃+

2 (n, q)

1 − −
3 (q + 1)(q2 + 1) −
5 (q + 1)(q4 + 1) (q3 + 1)(q2 + 1)

7 (q + 1)(q6 + 1) (q5 + 1)(q2 + 1)

9 (q + 1)(q8 + 1) (q7 + 1)(q2 + 1)

11 (q + 1)(q10 + 1) (q9 + 1)(q2 + 1)

13 (q + 1)(q12 + 1) (q11 + 1)(q2 + 1)

17 (q + 1)(q16 + 1) (q3 + 1)(q2 + 1)(q4 + 1)(q8 + 1)

21 (q + 1)(q20 + 1) (q7 + 1)(q2 + 1)(q4 + 1)(q8 + 1)

n m̃−
1 (n, q) m̃−

2 (n, q)

1 q + 1 −
3 q3 + 1 −
5 q5 + 1 −
7 (q + 1)(q2 + 1)(q4 + 1) q7 + 1

9 (q3 + 1)(q2 + 1)(q4 + 1) q9 + 1

11 (q + 1)(q2 + 1)(q8 + 1) (q + 1)(q4 + 1)(q6 + 1)

13 (q + 1)(q4 + 1)(q8 + 1) (q3 + 1)(q2 + 1)(q8 + 1)

17 (q3 + 1)(q2 + 1)(q12 + 1) (q11 + 1)(q2 + 1)(q4 + 1)

21 (q + 1)(q4 + 1)(q16 + 1) (q + 1)(q8 + 1)(q12 + 1)

Table 3 says that m̃+
1 (7, q) = (q+1)(q6+1) and m̃−

1 (7, q) = (q+1)(q2+1)(q4+1).
Combining this with (3.9) and (3.10), we conclude that the set {m̃+

2 (n, q), m̃
−
1 (n, q)}

consists of

(q3 + 1)(q2 + 1) . . . (q2
t−4

+ 1)(q2
t−3

+ 1)(q3·2
t−2

+ 1),

(q3 + 1)(q2 + 1) . . . (q2
t−4

+ 1)(q2
t−3

+ 1)(q2
t−2

+ 1)(q2
t−1

+ 1).

Similarly, m̃−
2 (n, q) is equal to

(q3 + 1)(q2 + 1) . . . (q2
t−4

+ 1)(q7·2
t−3

+ 1)

or

(q3 + 1)(q2 + 1) . . . (q2
t−4

+ 1)(q5·2
t−3

+ 1)(q2
t−2

+ 1)

depending on the parity of t.
Let n = 3 · 2t + 1, where t > 3. By (3.8), we have

(3.11) m̃ε
1(n, q) = (q + 1)m̃−ε

1 (3, q2
t−1

),

and there are no other elements in M̃1(n, q). Since (n − 5)2′ > 5, both numbers
m̃±

1 ((n− 5)2′ , q) exist and by Lemma 7

m̃ε
2(n, q) = (q3 + 1)(q2 + 1)m̃ε

1((n− 5)2′ , q
4).
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Table 4. The numbers m̃±
1 (n, q) and m̃±

2 (n, q) for n = 2t + 1, t > 5

m̃+
1 (n, q)

(q + 1)(q2
t

+ 1)

m̃+
2 (n, q), m̃

−
1 (n, q), m̃

−
2 (n, q)

t odd (q3 + 1)(q2 + 1) . . . (q2
t−4

+ 1)(q2
t−3

+ 1)(q3·2
t−2

+ 1),

(q3 + 1)(q2 + 1) . . . (q2
t−4

+ 1)(q2
t−3

+ 1)(q2
t−2

+ 1)(q2
t−1

+ 1),

(q3 + 1)(q2 + 1) . . . (q2
t−4

+ 1)(q7·2
t−3

+ 1)

t even (q3 + 1)(q2 + 1) . . . (q2
t−4

+ 1)(q2
t−3

+ 1)(q2
t−2

+ 1)(q2
t−1

+ 1),

(q3 + 1)(q2 + 1) . . . (q2
t−4

+ 1)(q2
t−3

+ 1)(q3·2
t−2

+ 1),

(q3 + 1)(q2 + 1) . . . (q2
t−4

+ 1)(q5·2
t−3

+ 1)(q2
t−2

+ 1)

Table 5. The numbers m̃±
1 (n, q) and m̃±

2 (n, q) for n = 3 · 2t + 1, t > 3

m̃+
1 (n, q), m̃

−
1 (n, q)

(q + 1)(q3·2
t

+ 1),

(q + 1)(q2
t

+ 1)(q2
t+1

+ 1)

m̃τ
2(n, q), m̃

−τ
2 (n, q), where τ = (−1)t−1

(q3 + 1)(q2 + 1) . . . (q2
t−2

+ 1)(q2
t−1

+ 1)(q2
t+1

+ 1)

(q3 + 1)(q2 + 1) . . . (q2
t−2

+ 1)(q5·2
t−1

+ 1)

Table 6. The numbers m̃±
1 (n, q) and m̃±

2 (n, q) for n = 5 · 2t + 1, t > 3

m̃+
1 (n, q), m̃

−
1 (n, q), m̃

−
2 (n, q)

(q + 1)(q5·2
t+1 + 1),

(q + 1)(q2
t

+ 1)(q2
t+2

+ 1),

(q + 1)(q3·2
t

+ 1)(q2
t+1

+ 1)

m̃+
2 (n, q)

t odd (q3 + 1)(q2 + 1) . . . (q2
t−2

+ 1)(q2
t−1

+ 1)(q2
t+2

+ 1)

t even (q3 + 1)(q2 + 1) . . . (q2
t−2

+ 1)(q3·2
t−1

+ 1)(q2
t

+ 1)(q2
t+1+1 + 1)

Since (n− 5)2′ = 3 · 2t−2 − 1 = 5 · 2t−3 + 2t−4 + · · ·+ 1, it follows that

(3.12) m̃ε
1((n− 5)2′ , q

4) = (q4 + 1) . . . (q2
t−2

+ 1)m̃
(−1)t−1ε
1 (5, q2

t−1

).

It remains to take the values of m̃±
1 (3, q

2t−1

) and m̃±
1 (5, q

2t−1

) from Table 3 and
substitute them into (3.11) and (3.12).

Similarly, if n = 5 · 2t + 1, where t > 3, then

m̃i(n, q) = (q + 1)m̃i(5, q
2t)

for i = 1, 2, 3 and thus we determine m̃±
1 (n, q) and m̃−

2 (n, q). Also

m̃+
2 (n, q) = (q2 + 1)(q3 + 1)m̃+

1 ((n− 5)2′ , q
4).
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Since (n− 5)2′ = 5 · 2t−2 − 1 = 9 · 2t−3 + 2t−4 + · · ·+ 1, it follows that

m̃+
1 ((n− 5)2′ , q

4) = (q4 + 1) . . . (q2
t−2

+ 1)m̃
(−1)t−1

1 (9, q2
t−1

),

and substituting the relevant values form Table 3 completes the proof. �
Lemma 9. Let n > 7 be odd, n = n1 + · · · + ns be a binary expansion of n with
ns > · · · > n1 = 1 and τ = (−1)s. Then m̃ε

i (n, q), where ε ∈ {+,−} and i ∈ {1, 2},
is as follows.

(i) If ns = 2tns−1, where t > 3, then

m̃ε
i (n, q) = (qn1 + 1) . . . (qns−2 + 1)m̃ετ

i (2t + 1, qns−1).

(ii) If ns = 2ns−1 and ns−1 = 2tns−2, then

m̃ε
i (n, q) = (qn1 + 1) . . . (qns−3 + 1)m̃−ετ

i (3 · 2t + 1, qns−2).

(iii) If ns = 4ns−1 and ns−1 = 2tns−2, then

m̃ε
i (n, q) = (qn1 + 1) . . . (qns−3 + 1)m̃−ετ

i (5 · 2t + 1, qns−2).

In particular, m̃±
2 (n, q) > (q3 + 1)(q2 + 1)(qn−5 + 1) for n > 21.

Proof. Since n > 7, Lemma 8 implies that m̃±
i (c · 2t + 1, q), with c = 1, 3, 5, exist.

So the formulas for m̃ε
i (n, q) follow from (3.8). If n > 21, then these formulas and

Lemma 8 guarantee that both m̃+
2 (n, q) and m̃−

2 (q) are divisible by either q + 1 or
(q3+1)(q2+1), and hence they are greater than or equal to (q3+1)(q2+1)(qn−5+1)
(cf. the proof of Lemma 7). �

Now we are ready to determine o1(S) and o2(S).

Theorem 1. Let S = Ωε
2n(q), where n > 4, q = 2m > 4, ε ∈ {+,−}, and let

i = 1, 2. If n 6 9 or (n, ε) = (11,+), (13,+), then oi(S) is as in Tables 7 and 8.
Otherwise, oi(S) = m̃ε

i (n, q), and so its value is given in Lemmas 6, 8 and 9. In
both cases, oi(AutS) = oi(S) provided that S ̸= Ω+

8 (q).

Proof. Let n = 4. By Lemma 1, the set ω(S) consists of all divisors of the following
numbers:

q4 − 1, q3 ± 1, 2(q2 ± 1), 4(q ± 1), 8 for ε = +,

q4 ± 1, (q3 ± 1)(q ∓ 1), 2(q2 + 1)(q ± 1), 4(q2 − 1), 8 for ε = −.

It is easily seen that two largest numbers in these lists are q4 − 1, q3 + 1 and
(q3 − 1)(q + 1), q4 + 1 respectively. Also it is clear that every proper divisor of
(q3 − 1)(q + 1) is less than q4 + 1, and so for ε = − we are done. Since q4 − 1 is
divisible by 3 and (q4 − 1)/3 > q3 + 1, for ε = + the assertion follows too.

Let n > 5. Then M c(n, q) ∩ ω(S) consists of at least two numbers greater than
qn. Thus oi(S) > qn, and so Lemma 5 implies that oi(S) divides some element of
M c(n, q), say ai. If oi(S) ̸= ai, then

oi(S) 6
ai
3

6 qn+1

3(q − 1)
< qn,

which is a contradiction. Hence oi(S) = ai, and it remains to find the two largest
elements of M c(n, q).

For all n 6 21, we found these numbers by computation with q = 4. It turns

out that they are contained in M̃(n, q) if n > 10 and (n, ε) ̸= (11,+), (13,+). For
other n and ε, they are given in Tables 7 and 8.
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Table 7. S = Ω+
2n(q), n small, q > 4 even

o1(S) o2(S)

n = 4 q4 − 1 (q4 − 1)/3

n = 5, 7, 9 (q + 1)(qn−1 + 1) (q2 + 1)(qn−2 + 1)

n = 6 (q + 1)(q2 + 1)(q3 − 1) (q2 + 1)(q4 + 1)

n = 8 (q + 1)(q2 + 1)(q5 − 1) (q + 1)(q4 + 1)(q3 − 1)

n = 11, 13 (q + 1)(q10 + 1) (q2 + 1)(q4 + 1)(qn−6 − 1)

Table 8. S = Ω−
2n(q), n small, q > 4 even

o1(S) o2(S)

n = 4, 6 (q + 1)(qn−1 − 1) qn + 1

n = 5 (q2 + 1)(q3 − 1) q5 + 1

n = 7, 9 (q2 + 1)(q4 + 1)(qn−6 + 1) (q2 + 1)(qn−2 − 1)

n = 8 (q + 1)(q7 − 1) (q2 + 1)(q6 − 1)

Suppose that n > 21. By Lemmas 5, 6 and 9, there is a number b such that

m̃ε
2(n, q) > b, while all elements of M c(n, q)\M̃(n, q) are less than b. Thus oi(S) =

m̃ε
i (n, q).
Now assume that S ̸= Ω+

8 (q). Then AutS = So⟨φ, γ⟩, where φ and γ are defined
before Lemma 4. Let S1 = So ⟨γ⟩. It is clear that ω2′(S1) = ω2′(S). Furthermore,
S1 is isomorphic to the general orthogonal group Oε

2n(q) and Oε
2n(q) 6 Sp2n(q). So

arguing as in the proof of Lemma 5, we see that the even elements of ω(S1) are less
than qn. Thus oi(S1) = oi(S).

Let g ∈ AutS \ S1. Then g ∈ Sα, where ⟨α⟩ is equal to ⟨φm/k⟩ or ⟨φm/kγ⟩,
where k > 1 divides m. Writing q0 = q1/k, we deduce from Lemma 4 that ω(Sα) =
k · ω(S0), where S0 is one of Ω±

2n(q0) and Ω±
2n(q0)γ. Thus |g| 6 k · qn+1

0 /(q0 − 1),
and so

|g| 6 kqn+1
0 6 qkn0 = qn < oi(S).

The proof is complete. �

We are grateful to the referee for thorough and helpful comments.
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