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Abstract. This paper is a part of the ongoing program on analysing
the complexity of various problems in computable analysis in terms of the
effective Borel and Lusin hierarchies. We give an answer to the question
by A. Morozov and K. Weihrauch that concerns a characterisation of
image complexity of partial computable functions over computable Polish
spaces.
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1. Introduction

In this paper we work with an effectivisation of Polish spaces (see [12, 4, 17]
among others) which is compatible with the notion of a computable (recursive)
metric space [13].

We assume that a computable Polish space is a complete computable metric
space without isolated points. In this paper we consider the computable Polish
spaces as a proper subclass of the effectively enumerable topological spaces [9].

Computability theory has a long term tradition to study partial computable
functions. While the class of computable Polish spaces is one of the main objects
for investigation in the Effective Descriptive Set Theory [17] the class of partial
computable functions over computable Polish spaces has not been deeply investigated
yet. In this paper we address natural problems related to partial computable functions
over computable Polish spaces:
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• Does the class of partial computable functions have a universal partial
computable function?
• What descriptive complexity do images of partial computable functions

have?
We give positive answers to these questions. To construct a universal function we

establish the correspondence between partial computable functions and the classical
enumeration operators [14]. In order to study images of partial computable functions
we use the effective Borel and Lusin hierarchies on computable Polish spaces [12, 17].
In particular our proofs are based on the following properties of Borel and analytic
subsets of a computable Polish space X :

• A set B is a Π0
2–set in the effective Borel hierarchy on X (a Π0

2–subset of X)
if and only if B =

∩
n∈ω An for a computable sequence of effectively open

sets {An}n∈ω.
• A set A ∈ is a Σ1

1–set in the effective Lusin hierarchy on X (a Σ1
1–subset

of X) if and only if A = {y | (∃x ∈ X)B(x, y)}, where B is a Π0
2–subset of

X ×X.
The paper is organised as follows. Section 2 and Section 3 contain preliminaries

and basic background.
In Section 4 we introduce the class of effectively enumerable T0–spaces with

point recovering which contains computable Polish spaces among others and plays
an important role in the description of the images of surjective partial computable
functions.

In Section 5 we propose the notion of a partial computable function in the settings
of effectively enumerable spaces. On the computable Polish spaces this definition
agrees with the definition of a computable function introduced by K. Weihrauch for
computable metric spaces [20]. We show that this class is closed under composition
over effectively enumerable spaces.

Section 6 contains main results, where we work with computable Polish spaces.
After showing the correspondence between the partial computable functions and
the classical enumeration operators we prove the existence of a universal partial
computable function. Then we turn to our main goal that is an investigation of
images of partial computable functions. First we show the existence of a partial
computable surjection between any computable Polish space and any effectively
enumerable topological space with point recovering. Using this result we prove
that for any computable Polish spaces X and Y, the images of partial computable
functions f : X → Y are precisely Σ1

1–subsets of Y . We conclude with the future
work.

2. Preliminaries

We refer the reader to [14] and [15] for basic definitions and fundamental concepts
of recursion theory. We recall that, in particular, φe denotes the partial computable
(recursive) function with an index e in the Kleene numbering, φs

e denotes the
computation of φe for s steps such that the function φs

e is uniformly primitive
recursive. In this paper we also use notations We = dom(φe), W s

e = dom(φs
e),

and πe = im(φe). A sequence {Vi}i∈ω of computably enumerable (c.e.) sets is
computable (or uniformly computably enumerable) if {(n, i)|n ∈ Vi} is computably
enumerable. It is worth noting that this is equivalent to existence of a computable
function f : ω → ω such that Vi = Wf(i).
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In the major part of our paper we work with the following notion of a computable
Polish space. A computable Polish space is a complete separable metric space X
without isolated points and with a metric d such that there is a countable dense
set B = {b1, b2, . . . } called a basis of X that makes the following two relations:
{(n,m, i) | d(bn, bm) < qi, qi ∈ Q} and {(n,m, i) | d(bn, bm) > qi, qi ∈ Q}
computably enumerable (c.f. [13]). The standard notations B(x, y) and B(x, y) are
used for open and closed balls with the center x and the radius y. We consider this
concept in the framework of effectively enumerable spaces (see Section 3.1).

We use the Baire space N = (ωω, τN ) defined as follows.

ω0 = {⊥}, where ⊥ is the empty word,

ω<ω =
∪
n∈ω

ωn,

ωω = {f | f : ω → ω}
(informally, the set of all paths in the tree ω<ω).

The standard topology τN on ωω is generated by the base that contains all clopen
sets of the type

Aw = {f ∈ N | f [s] = w, s = length(w)},
where w ∈ ω<ω and the interpretation of f [s] is as follows:

f [0] = ⊥,
f [s] = ⟨f(0), . . . , f(s− 1)⟩ .

We take a standard agreement [14] that a downward closed nonempty subset T ⊆
ω<ω is a tree and [T ] denotes the set {f ∈ N | (∀s ∈ ω)f [s] ∈ T}. Further on we
use the Cantor space C = (2ω, τC) with the standard topology τC defined similar to
τN .

3. Basic Background

3.1. Effectively Enumerable Topological Spaces. Now we recall the notion of
an effectively enumerable topological space. Let (X, τ, α) be a topological space,
where X is a non-empty set, Bτ ⊆ 2X is a base of the topology τ and α : ω → Bτ

is a numbering.

Definition 1. [9] A topological space (X, τ, α) is effectively enumerable if the
following conditions hold.

(1) There exists a computable function g : ω × ω × ω → ω such that

α(i) ∩ α(j) =
∪
n∈ω

α(g(i, j, n)).

(2) The set {i|α(i) ̸= ∅} is computably enumerable.

For a computable Polish space (X,B, d) in a natural way we define the numbering
of the base of the standard topology as follows. First we fix a computable numbering
α∗ : ω \ {0} → (ω \ {0})×Q+. Then,

α(0) = ∅,
α(i) = B(bn, r) if i > 0 and α∗(i) = (n, r).

For α∗(i) = (n, r) later we use notation n = u(i) and r = ri.
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It is easy to see that (X, τ, α) is an effectively enumerable topological space.
Therefore we consider the computable Polish spaces as a proper subclass of the
effectively enumerable topological spaces. For details we refer to [9]. In this paper for
such effectively enumerable topological space (X, τ, α) we use the standard relations
on the indices of basic balls defined as follows:

i ≺X j � d(bu(i), bu(j)) + ri < rj ,

i |X j � d(bu(i), bu(j)) > ri + rj ,

for details see, e.g., [16]. The relation ≺X is irreflexive and transitive and if i ≺X

j then cl(α(i)) ⊆ α(j). It is easy to see that these relations are computably
enumerable on the indices of basic balls. Below we use the following properties
of computable Polish spaces and these relations.

Theorem 1 (Nested Sphere principle). [5] A necessary and sufficient condition
that the metric space X be complete is that every sequence of closed nested spheres
in X with radii tending to zero have nonvoid intersection, moreover the intersection
is a one point set.

Lemma 1. Let (X, τ, α) be a computable Polish space. Suppose y ̸∈ B(b, q) and
{y} =

∩
n∈ω B(an, rn), where rn →∞ and B̄(an+1, rn+1) ⊆ B(an, rn). Then, there

exists n ∈ ω such that B(an, rn) |X B(b, q).

Proof. Let us find n ∈ ω such that 2 · rn < d(y, b) − q. Then, d(an, b) ≥ d(y, b) −
d(an, y) > d(y, b)− rn > q + rn. By definition, B(an, rn) |X B(b, q). �

Lemma 2. Let (X, τ, α) be a computable Polish space. Suppose y ∈ B(b, q) and
{y} =

∩
n∈ω B(an, rn), where rn →∞ and B̄(an+1, rn+1) ⊆ B(an, rn). Then, there

exists n ∈ ω such that B(an, rn) ≺X B(b, q).

Proof. The proof is similar to the proof of Lemma 1. �

We recall the notion of an effectively open set.

Definition 2. [9] Let (X, τ, α) be an effectively enumerable topological space. A set
A ⊆ X is effectively open if there exists a computably enumerable set V such that

A =
∪
n∈V

α(n).

It is worth noting the set of all effectively open subsets of X is closed under
intersection and union since the class of effectively enumerable sets is a lattice.

4. Effectively Enumerable T0–spaces with Point Recovering

In this section we introduce effectively enumerable T0–spaces with point recovering.
Further on we will see that they play an important role in the description of images
of surjective partial computable functions.

Definition 3. Let X = (X, τ, α) be an effectively enumerable T0–space. We say
that X admits point recovering if {Ax | x ∈ X} is a Σ1

1-subset of P(ω), where
Ax = {n | x ∈ β(n)}. Here P(ω) is considered as the Cantor space C.

Proposition 1. Every computable Polish space X = (X, τ, α) admits point recovering.
Moreover, {Ax | x ∈ X} is a Π0

2–subset of C.
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Proof. Let X = (X, τ, α) be a computable Polish space. We prove that the set
{Ax | x ∈ X} is a Π0

2-set in the effective Borel hierarchy on C. For that let us show
that, for I ⊆ ω, (∃x ∈ X) I = Ax if and only if the following conditions hold.

Cond 1: (∀k ∈ ω)(∃m ∈ ω)(∃n ∈ ω)(∃r ∈ Q+)(∃l ∈ ω)(∃r′ ∈ Q+)
(
k ∈ I →(

α∗(k) = (n, r) ∧ α∗(m) = (l, r′) ∧ r′ <
r

2
∧m ≺X k ∧m ∈ I

))
where α∗ is defined on the page 2.

Cond 2: (∀k ∈ ω)(∀m ∈ ω)
((

k ∈ I ∧m ∈ I
)
→ α(k) ∩ α(m) ̸= ∅

)
.

Cond 3: I ̸= ∅.

Cond 4: (∀k ∈ ω)(∀m ∈ ω)
((

k ∈ I ∧ k ≺X m
)
→ m ∈ I

)
.

Let us denote Ψ(I) = Cond 1(I)∧Cond 2(I)∧Cond 3(I)∧Cond 4(I). By definition,
Ψ is in Π0

2-form.
If there exists x ∈ X such that I = Ax then Ψ(Ax) holds by the definition of Ax.

Assume now that, for I ⊆ ω, Ψ(I) holds. We are going to show that there exists
y ∈ X such that

∩
l∈I α(l) = {y}. To construct y we start with some k ∈ I since,

by Cond 3, I is nonempty. Using Cond 1 we choose a chain of elements of I such
that k = k1 ≻X k2 ≻X · · · ≻X kn ≻X . . . and, for all s ∈ ω, rks+1 <

rks

2 .

By the property of the relation ≻X , α(ks) ⊃ α(ks+1) for all s ∈ ω. From
Theorem 1 it follows that their intersection is one point set. Put

∩
s∈ω α(ks) = {y}.

To show that I ⊆ Ay assume k ∈ I and α(k) = B(a, r). We check that y ∈
B(a, r). Suppose contrary that y ̸∈ B(a, r), i.e., d(y, a) > r. Using Cond 1 we can
find m ∈ I such that α(m) = B(b, q), where d(a, b) < r − q and q < r

2 . It is clear
that B̄(b, q) ⊂ B(a, r) therefore y ̸∈ B̄(b, q). By Lemma 1, there exists s ∈ ω such
that α(ks) ∩B(b, q) = ∅. This contradicts to Cond 2. Therefore y ∈ B(a, r).

To show that Ay ⊇ I, assume n ∈ Ay. Then by Lemma 2 there exists s ∈ ω such
that ks ≺X n. By the condition Cond 4, n ∈ I. Therefore, {Ax | x ∈ X} is a Π0

2-set
in the effective Borel hierarchy on C. �

Remark 1. It is easy to see than Cond 1(I)− Cond 4(I) in Proposition 1 can be
rewritten in the special form

∀k̄
(
η(k̄, I) ∨ Φ(k̄, I)

)
,

where η is a disjunction of formulas of the kind ki ̸∈ I and Φ is a computable
disjunction (possible infinite) of ∃–formulas with positive occurrences of I i.e. Φ
does not contain formulas of the kind ki ̸∈ I. Indeed, for example, Cond 4(I) can
be rewritten as follows:

(∀k ∈ ω)(∀m ∈ ω)
(
k ̸∈ I ∨m ∈ I ∨ ¬k ≺X m

)
.

Since ¬k ≺X m � (∀l ∈ ω)Q(m, k, l), where Q(m, k, l) defines computable subset
of ω3, we have

Cond 4 (I)↔ (∀k ∈ ω)(∀m ∈ ω)(∀l ∈ ω)
(
k ̸∈ I ∨m ∈ I ∨Q(m, k, l)

)
.

Later we use this form in the proof of Theorem 3.
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Proposition 2. There exists an effectively enumerable topological space that does
not admit point recovering.

Proof. Let us consider C as a subset of R and take Y ⊆ C such that {Ax | x ∈ Y }
is non-analytic. It is possible to do this since the number of subsets Y ⊆ C with
analytic {Ax | x ∈ Y } is no more than continuum. Then put X = R \ Y and
X = (X, τX), where the topology τX is induced by τR.

It is clear that X is an effectively enumerable topological space since C is nowhere
dense in R. Taking into account that {Ax | x ∈ X} = {Ax | x ∈ R} \ {Ax | x ∈ Y }
we conclude that X does not admit point recovering.

�

5. Partial Computable Functions over Effectively Enumerable
Topological Spaces

In this section we introduce the notion of a partial computable function f :
X → Y, where X = (X, τX , α) is an effectively enumerable topological space and
Y = (Y, τY , β) is an effectively enumerable T0–space.

Definition 4. Let X = (X, τX , α) be an effectively enumerable topological space
and Y = (Y, τY , β) be an effectively enumerable T0–space. A function f : X → Y is
called partial computable if the following properties hold. There exist a computable
sequence of effectively open sets {On}n∈ω and a computable function H : ω2 → ω
such that

(1) dom(f) =
∩

n∈ω On and
(2) f−1(β(m)) =

∪
i∈ω α(H(m, i)) ∩ dom(f).

In the following if a partial computable function f is everywhere defined we say
f is a total computable function.

Proposition 3. Let X = (X, τ, α) be an effectively enumerable topological space
and Y = (Y, λ, β) be an effectively enumerable T0-space.

(1) If f : X → Y is a computable function, then f is continuous at every points
of dom(f).

(2) A total function f : X → Y is computable if and only if f is effectively
continuous.

Proof. The claims are straightforward form Definition 4. �

The following theorem shows that, for effectively enumerable T0–spaces, the set
of partial computable functions is closed under composition.

Theorem 2. Let X = (X, τX , α), Y = (Y, τY , β) and Z = (Y, τZ , ϱ) be effectively
enumerable T0–spaces. If f : X → Y and g : Y → Z are partial computable functions
then the composition h = g ◦ f is a partial computable function.

Proof. In the following, we check (1) and (2) properties of partial computability.
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(1).

dom(h) = dom(f) ∩ f−1(dom(g)) =

= dom(f) ∩ f−1(
∩
m∈ω

Bm) =

= dom(f) ∩

( ∩
m∈ω

f−1(Bm)

)
=

= dom(f) ∩

( ∩
m∈ω

Om

)
,

where {Om}m∈ω is a computable sequence of effectively open subsets of X and
{Bm}m∈ω is a computable sequence of effectively open subsets of Y . So h satisfies
the property (1).
(2). It is easy to see that

h−1(ϱ(n)) = f−1(g−1(ϱ(n))) = f−1(dom(g) ∩Bn) = dom(h) ∩ f−1(Bn),

where Bn ia an effectively open subset of Y . Therefore h satisfies the property
(2). �

Proposition 4. Let X = (X, τX , α), Y = (Y, τY , β) be computable Polish spaces,
f : X → Y be a partial computable function and B be a Π0

2-subset of Y . Then
the preimage f−1(B) is a Π0

2-subset of X.

Proof. Assume Y0 is a Π0
2–subset of Y. By definition,

y ∈ Y0 ↔ U(y),

where U =
∩
n∈ω

An and An =
∪

j∈Tn

β(j) for a c.e. set Tn.

Let f : X → Y be a partial computable function. Then

x ∈ f−1(B)↔
x ∈ dom(f) ∧ U(f(x))↔

x ∈ dom(f) ∧ (∀n ∈ ω)(∃j ∈ Tn)
(
f(x) ∈ β(j)

)
.

This is a Π0
2-condition on X since, for x ∈ dom(f), f(x) ∈ β(j)↔ x ∈ f−1(β(j))↔

x ∈
∪

i∈ω α(H(j, i)) for a computable function H. �

6. Partial Computable Functions over Computable Polish Spaces

In this section we consider the partial computable functions over the subclass of
effectively enumerable topological spaces which is the class of computable Polish
spaces. We give a characterisation of partial computability in terms of classical
enumeration operators (see e.g. [14]). Then based on this characterisation we show
the existence of a universal partial computable function for the partial computable
functions f : X → Y , where X and Y are computable Polish spaces.
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6.1. Characterisation.

Definition 5. [14] A function Γe : P(ω)→ P(ω) is called enumeration operator if

Γe(A) = B ↔ B = {j|∃i c(i, j) ∈We, Di ⊆ A},
where We is the e-th computably enumerable set, and Di is the i-th finite set.
A function Γe : P(ω)→ P(ω) is called reduced enumeration operator if

Γe(A) = B ↔ B = {j|(∃i ∈ A) c(i, j) ∈We},
where We is the e-th computably enumerable set.

Now we recall the notion of a computable function introduced in [9].

Definition 6. [9] Let X = (X, τ, α) be an effectively enumerable topological space
and Y = (Y, λ, β) be an effectively enumerable T0-space.
A partial function f : X → Y is called computable if there exists an enumeration
operator Γe : P(ω)→ P(ω) such that, for every x ∈ X,

(1) If x ∈ dom(f) then

Γe({i ∈ ω|x ∈ α(i)}) = {j ∈ ω | f(x) ∈ β(j)}.
(2) If x ̸∈ dom(f) then, for all y ∈ Y ,∩

j∈ω

{β(j)|j ∈ Γe(Ax)} ̸=
∩
j∈ω

{β(j)|j ∈ By},

where Ax = {i ∈ ω|x ∈ α(i)}, By = {j ∈ ω|y ∈ β(j)}.
In this case we say that Γe completely defines the function f .

Remark 2. It is easy to see that if we work with effectively enumerable topological
spaces then a function is computable if and only if there exists a reduced enumeration
operator satisfying the requirements of Definition 6.

Proposition 5. Let Γe be an enumeration operator and X = (X, τ, α) and Y =
(Y, λ, β) be computable Polish spaces. Then E = {x | Ψ(Γe(Ax))} is a Π0

2-subset of
X, where Ψ is a Π0

2-condition from Proposition 1. Moreover, the function f : X → Y
defined as follows: dom(f) = E and, for x ∈ dom(f), f(x) = y ↔ Γe(Ax) = By is
a partial computable function.

Proof. Let us show that the condition Ψ(Γe(Ax)) defines a Π0
2-subset of X. From

Remark 1 it follows that Ψ(I) is a conjunction of some Π0
2-formulas in the form

∀k̄
( ∨
i∈D

ki ̸∈ I ∨ Φ(k̄, I)
)
,

where D is a finite subset of the indices of k̄ and Φ is a computable disjunction
of ∃–formulas with positive occurrences of I. Therefore, for i = 1, . . . , 4 every
Cond i(Γe(Ax)) defines the set

{x | ∀k̄ x ∈ Ai
k̄}, where

Ai
k̄ = {x |

∨
j∈D

kj ̸∈ Γe(Ax) ∨ Φi(k̄,Γe(Ax))} =

{x |
∨
j∈D

kj ̸∈ Γe(Ax)} ∪ {x | Φi(k̄,Γe(Ax))}.
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Let us make a close look at Ai
k̄
. The first element of the union is a Π0

1-subset of
X and the second one is a Σ0

1-subset of X according to the following observation.
By the definition of the enumeration operator Γe,

{x | k ∈ Γe(Ax)} =
∪

<k,j>∈We

∩
j∈Dk

α(j).

Therefore it is effectively open and its complement is co-effectively closed. As a
corollary every set {x | Cond i(Γe(Ax))} is a Π0

2-subset of X .
Let us show that f is a partial computable function. It is worth noting that

x ∈ dom(f) ↔ Γe(Ax) ∈ {By | y ∈ Y } ↔ Ψ(Γe(Ax)). So dom(f) is a Π0
2-subset of

X. For x ∈ dom(f),

x ∈ f−1(β(j))↔ f(x) ∈ β(j)↔ ∃k (k ∈ {i|x ∈ α(i)} ∧ c(k, j) ∈We)↔∨
c(k,j)∈We

x ∈ α(k)↔ x ∈
∪
m∈ω

α(H(j,m))

for a computable function H : ω × ω → ω. Therefore f is a partial computable
function.

�

Further on if Γe and f satisfy the conditions of Proposition 5 we say that Γe

defines f .

Theorem 3. Let X = (X, τ, α) and Y = (Y, λ, β) be computable Polish spaces. A
function f : X → Y is computable if and only if it is partial computable.

Proof. →) The claim follows from Proposition 5.
←) Now suppose, dom(f) =

∩
n∈ω On and, for x ∈ dom(f), f(x) ∈ β(n) ↔

x ∈
∪

i∈ω α(H(n, i)), where {On}n∈ω is a computable sequence of effectively open
sets such that On+1 ⊆ On and H : ω2 → ω is a computable function. It is worth
noting that, for all n ∈ ω and i ∈ ω, On ∩ α(H(n, i)) is an effectively open set. So,
On ∩ α(H(n, i)) =

∪
t∈Tni

α(t), where n ∈ ω, i ∈ ω and {Tni}n, i∈ω is a computable
sequence of c.e. sets. Put

We = {c(t, n) | (∃ i ∈ ω) t ∈ Tni}.

Let Γe be a reduced enumeration operator that corresponds to We. By Proposition 5
this operator defines a function fΓe . Let us show that f = fΓe . We first prove that
dom(f) = dom(fΓe). If x ∈

∩
n∈ω On then, by construction, Γe(Ax) = Bf(x).

Indeed, let n ∈ ω be such that f(x) ∈ β(n). By definition, (∃i ∈ ω)x ∈ α(H(n, i)).
This means that x ∈ α(t) for t ∈ Tni, therefore n ∈ Γe(Ax). Conversely, if n ∈
Γe(Ax) then (∃i ∈ ω)(∃t ∈ Tni) f(x) ∈ β(n). So Γe(Ax) = Bf(x) and x ∈ dom(fΓe).
So dom(f) ⊆ dom(fΓe).

If x ̸∈
∩

n∈ω On then there exists k ∈ ω such that x ̸∈ On for all n ≥ k. In other
words, x ̸∈

∪
t∈Tni

α(t) for all n ≥ k. This means that, for all n ≥ k, ¬(∃ t ∈ Tni)x ∈
α(t), i.e., n ̸∈ Γe(Ax). Therefore Γe(Ax) is finite and B = ∩{β(j) | j ∈ Γe(Ax)} is
a finite intersection of basic open balls. Since we consider spaces without isolated
points, B ̸= ∩{β(j) | j ∈ By} = {y} for any y ∈ Y . In particular, x ̸∈ dom(fΓe).

Now if x ∈ dom(f) = dom(fΓe) then, by the definitions of f and Γe,

Γe(Ax) = {j|∃sH(j, s) ∈ Ax} = {j|x ∈ f−1(β(j)} = {j|f(x) ∈ β(j)}.
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Therefore Bf(x) = BfΓe (x)
. Since any point y is uniquely defined by the set of basic

neighborhoods, f(x) = fΓe(x). So Γe completely defines f .
�

6.2. Universal Partial Computable Function. For computable Polish spaces
X and Y we denote the set of partial computable functions f : X → Y as PCFXY .

A partial computable function F : ω ×X → Y is called universal for PCFXY if
{F (n) : X → Y | n ∈ ω} = PCFXY .

Theorem 4. There exists a universal partial computable function for PCFXY .

Proof. The claim follows from Proposition 5 and Theorem 3. Indeed, for every
partial computable function f : X → Y we can effectively construct an enumeration
operator Γe which defines this function. Therefore e is one of the indices of f . Any
enumeration operator Γe defines the function fe. So, define F (e, x) = y iff fe(x) = y,
where fe is defined by Γe. From uniformity of the constructions in Proposition 5
and Theorem 3 it follows that F is a partial computable function. �

7. On Images of Partial computable Functions

7.1. Images of Partial Computable Surjections. In this section we propose
a characterisation of effectively enumerable topological spaces that are images of
partial computable surjections from computable Polish spaces.

Theorem 5. Let X = (X, τ, α) be a computable Polish space and Y = (Y, λ, β) be
an effectively enumerable T0-space. Then the following assertions are equivalent.

(1) There exists a partial computable surjection f : X � Y.
(2) The space Y admits point recovering.

Proof. 1) → 2). Assume f : X � Y is a partial computable surjection. It means
that dom(f) =

∩
n∈ω On =

∩
n∈ω

∪
s∈ω α(g(n, s)) and, for all x ∈ dom(f), f(x) ∈

β(n) ↔ x ∈
∪

i∈ω α(H(n, i)), where g : ω2 → ω and H : ω2 → ω are computable
functions. Recall that Ax = {n | x ∈ α(n)} and By = {m | y ∈ β(m)}. In order to
show that Y admits recovering let us prove that {By | y ∈ Y } is a Σ1

1-subset of P(ω)
considered as the Cantor space. Since f is a surjection, for I ⊆ ω, (∃y ∈ Y ) I = By

if and only if (∃x ∈ dom(f)) I = Bf(x). Let us make analysis. If I = Bf(x) then

n ∈ I ↔ (∃x ∈ dom(f))f(x) ∈ β(n)↔ (∃x ∈ dom(f))x ∈
∪
i∈ω

β(H(n, i))↔

(∃x ∈ dom(f))(∃i ∈ ω)H(n, i) ∈ Ax.

From Proposition 1 it follows that J ∈ {Ax | x ∈ X} ↔ Ψ(J), where Ψ(J) is
a Π0

2-subset of C. It is easy to see that x ∈ dom(f) ↔ (∀n ∈ ω)x ∈ On ↔ (∀n ∈
ω)(∃s ∈ ω)g(n, s) ∈ Ax. Finally, we have

(∃y ∈ Y ) I = By ↔ (∃J ⊆ ω)
(
Ψ(J) ∧ (∀n ∈ ω)

(
n ∈ I ↔

(
(∃i ∈ ω)H(n, i) ∈ J∧

(∀m ∈ ω)(∃s ∈ ω) g(n, s) ∈ J
)))

.

Now we can see that {By | y ∈ Y } is a Σ1
1-subset of C.

2)→ 1). Let Y admit point recovering. We construct a required partial computable
surjection in few steps:

X � N � C � C2 � Y.
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Step 1. First we construct a homeomorphism F : N → X such that F−1 : X →
N is a partial computable surjection (see e.g. [6]). It is worth noting that for
any ball B(x, r) one can choose two nonempty balls B(x1, r1) and B(x2, r2) which
are inside of B(x, r) and don’t intersect each other. Continuing the process one
can effectively generate infinitely many disjoint nonempty balls which are inside
of B(x, r) therefore one can produce a computable infinite sequence of such balls.
Without loss of generality we could assume that, for all n ∈ ω, rn < 1. Now we
construct F by stages.
Stage 1. Put B(x1

n, r
1
n) = B(xn, rn) and make the correspondence between each

⟨n⟩ ∈ ω<ω and the ball B(x1
n, r

1
n).

Stage s+1. Assume that on the step s we already constructed balls B(xs
w, r

s
w),

where w ∈ ω<ω and length(w) = s, and made the correspondence between each w
and the ball B(xs

w, r
s
w). Next we proceed as follows. Inside of every ball B(xs

w, r
s
w)

we construct an effective sequence of disjoint nonempty balls B(xs+1
w⊔⟨n⟩, r

s+1
w⊔⟨n⟩) such

that, for all n ∈ ω, rs+1
w⊔⟨n⟩ ≤

1
2 r

s
w. Then we make the correspondence between each

w ⊔ ⟨n⟩ and the ball B(xs+1
w⊔⟨n⟩, r

s+1
w⊔⟨n⟩).

Finally, we define
{F (v)} =

∩
s>0

B(xs
v[s], r

s
v[s]).

By the Nested Sphere principle (see Theorem 1), F is correctly defined on N
since rsv[s] → 0. Moreover {F (v)} =

∩
s>0 B(xs

v[s], r
s
v[s]) since, by construction,

B(xs
v[s], r

s
v[s]) ⊃ B(xs+1

v[s]⊔⟨n⟩, r
s+1
v[s]⊔⟨n⟩). Using this strict inclusion we show that

im(F ) is a Π0
2-set in the effective Borel hierarchy on X .

Indeed, assume, for all s ∈ ω, there exists a word w of the length s, x ∈ B(xs
w, r

s
w).

By assumption,
x ∈

∪
w:length(w)=s+1

B(xs+1
w , xs+1

w )

and, by construction, B(xs
u, r

s
u) ∩ B(xs

v, r
s
v) = ∅ for any different words u and v of

the length s. Therefore if x ∈ B(xs
v, r

s
v) then there exist n and a word w = v ⊔ ⟨n⟩

of the length s + 1 such that x ∈ B(xs+1
w , rs+1

w ). So we construct a chain of words
w1 ⊑ w2 ⊑ . . . such that v[s] = ws for some v ∈ N and x = F (v). Therefore
x ∈ im(F ) if and only if, for all s ∈ ω, there exists a word w of the length s such that
x ∈ B(xs

w, r
s
w). This is a Π0

2-condition. Therefore im(F ) is a Π0
2-set in the effective

Borel hierarchy on X . By construction, F (Aw) = B(xs
w, r

s
w)
∩

im(F ), where s =
length(w). Since X is a computable Polish space, F−1 is a partial computable
function.
Step 2. A partial computable surjection g : N � C is defined in the following
standard way g(f) = λn.f(n)mod 2.
Step 3. A partial computable bijection λ : C2 � C is defined in the following
standard way λ(I, J) = {2n | n ∈ I} ∪ {2n+ 1 | n ∈ J}.
Step 4. Let us construct a partial computable surjection h : C2 � Y. Assume Θ
is a Σ1

1-condition that certifies point recovering of Y i.e. I = By for some y ∈ Y
iff Θ(I) � (∃J ⊆ ω)Φ(I, J), where Φ(I, J) is a Π0

2-condition (see e.g. [12]). Put
D = {(I, J) | Φ(I, J)} ⊆ C2.

If (I, J) ∈ D then I = By for some y ∈ Y . Since Y is a T0-space, this y is
uniquely defined by I. Define h(I, J) = y. We have (I, J) ∈ h−1(β(n)) ↔ I =
Bz for some z ∈ β(n) ↔ Φ(I, J) ∧ n ∈ I. So, dom(h) = D is a Π0

2-subset of C2
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and h−1(β(n)) = D ∩ ({I ⊆ ω | n ∈ I} × C). Therefore h is a partial computable
surjection.
Step 5. A required partial computable surjection is the composition f = h ◦ λ−1 ◦
g ◦ F−1 i.e.

F−1 g λ−1 h
X � N � C � C2 � Y.

�

7.2. Complexity of Images of Partial Computable Functions. In this section
we characterise the images of the partial computable functions over computable
Polish spaces in terms of the effective Lusin hierarchy.

Proposition 6. Let X be a computable Polish space, Y be an effectively enumerable
T0-space and Y0 ⊆ Y . Then the following assertions are equivalent.

(1) Y0 is the image of a partial computable function f : X → Y.
(2) {By | y ∈ Y0} is a Σ1

1–subset of C.

Proof. 1)→ 2). Assume Y0 is the image of a partial computable function f : X → Y.
For x ∈ dom(f) and y = f(x) ∈ Y0, we have

n ∈ Bf(x) ↔ f(x) ∈ β(n)↔ x ∈
∪
i∈ω

α(H(n, i))↔ {H(n, i) | i ∈ ω} ∩Ax ̸= ∅.

Then, for I ⊆ ω,

I ∈ {By | y ∈ Y0} ↔

∃J ∈ {Ax | x ∈ dom(f)}(∀n ∈ ω)
(
n ∈ I ↔ {H(n, i) | i ∈ ω} ∩Ax ̸= ∅

)
.

This is a Σ1
1-condition since

J ∈ {Ax | x ∈ dom(f)} ↔ (∀m ∈ ω)J ∩ Jm ̸= ∅,

where {Jm}m∈ω is a computable sequence of c.e. sets such that dom(f) =
∩

m∈ω Om

and Om =
∪

i∈Jm
α(i).

2) → 1). Let {By | y ∈ Y0} ∈ Σ1
1. This means that J ∈ {By | y ∈ Y0} ↔ (∃I ⊆

ω)Q(I, J), where Q(I, J) is a Π0
2–condition on C (see e.g. [12]). Put D = {(I, J) |

Q(I, J)} ⊆ C2. Let us construct a partial computable function h : C2 → Y such
that dom(h) = D and im(h) = Y0.

If Q(I, J) then J = By for some y ∈ Y . Since Y is a T0-space, y is uniquely defined
by I. Define h(I, J) = y. We have (I, J) ∈ h−1(β(n)) ↔ J = Bz for some z ∈
β(n)↔ Q(I, J)∧n ∈ J . So, dom(h) = D is a Π0

2-condition on C2 and h−1(β(n)) =
D ∩ ({I ⊆ ω | n ∈ I} × C). Therefore h is a partial computable function. Using
Theorem 5 we construct the composition of partial computable surjections f , g
and h as follows:

f g h
X � C � C2 → Y.

This is the required function. �

Proposition 7. Let Y be a computable Polish space, Y0 ⊆ Y and Ỹ0 = {By | y ∈
Y0}. Then Y0 is a Σ1

1–subset of Y if and only if Ỹ0 is a Σ1
1–subset of C.
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Proof. →). Assume Y0 is a Σ1
1–subset of Y. By definition,

y ∈ Y0 ↔ (∃z ∈ Y )U(y, z),

where U is a Π0
2-subset of Y. Let F : C � Y be a partial computable surjection.

Then

J ∈ {By | y ∈ Y0} ↔

(∃y ∈ Y )
(
J = By ∧ (∃K ∈ dom(F ))U(y, F (K))

)
↔

(∃I ∈ dom(F ))(∃K ∈ dom(F ))
(
U(F (I), F (K)) ∧ (∀n ∈ ω)

(
F (I) ∈ β(n)↔ n ∈ J

))
.

From Proposition 4 and the note that, for z ∈ dom(F ), F (z) ∈ β(j) ↔ z ∈
F−1(β(j))↔ z ∈

∪
i∈ω βC(H(j, i)) for a computable function H it follows that this

is a Σ1
1-condition on C. So Ỹ0 is a Σ1

1-subset of C.
←). Let Ỹ0 be a Σ1

1-subset of C. By definition, J ∈ Ỹ0 ↔ (∃I ∈ C)V (I, J). Let
G : Y � C be a partial computable surjection.

Then,

y ∈ Y0 ↔

(∃I ∈ {By | y ∈ Y0})(∀n ∈ ω)
(
y ∈ β(n)↔ n ∈ I

)
↔

(∃z ∈ dom(G))G(z) ∈ {By | y ∈ Y0} ∧ (∀n ∈ ω)
(
y ∈ β(n)↔ n ∈ G(z)

)
↔

(∃z ∈ dom(G))(∃b ∈ dom(G))
(
V (G(b), G(z)) ∧ (∀n ∈ ω)

(
y ∈ β(n)↔ n ∈ G(z)

))
.

By analogy, Y0 is a Σ1
1-subset of Y .

�

Theorem 6. Let X and Y be computable Polish spaces and Y0 ⊆ Y . Then the
following assertions are equivalent.

(1) Y0 is the image of a partial computable function f : X → Y.
(2) Y0 is a Σ1

1–subset of Y .

Proof. The claim follows from Proposition 6 and Proposition 7.
�

8. Conclusions and Future Work

We presented several results in the framework of the effective descriptive set
theory (EDST) on computable Polish spaces. Informally, for PCFXY we showed
the following:

• the existence of a universal partial computable function;
• the existence of a partial computable surjection between any computable

Polish space and any effectively enumerable topological space with point
recovering;
• the descriptive complexity of images of partial computable functions between

computable Polish spaces.
These results give a rise on new research directions:
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• Investigations of bounds on the descriptive complexity of the images of total
computable functions over computable Polish spaces. We make a conjecture
that bounds will be different for particular classes of computable Polish
spaces. For example, it is easy to see that for the total computable real
functions, the images range over intervals of special kind.
• Characterisations of complexity of index sets for important problems on
PCFXY . In the previous papers [8, 6] we already did few steps in this
direction. For the real-valued partial computable functions PCFXR defined
on the computable Polish space X we characterised the complexity of
important problems such as totality and root verification. We also showed
that for some problems the corresponding complexity does not depend on
the choice of a computable Polish space while for other ones the corresponding
choice plays a crucial role. It will be challenging to get similar results for
the general class PCFXY .
• Generalisations of EDST on computable Polish spaces to EDST on the

wider class of effective topological spaces. One of the promising candidates
could be effectively enumerable topological spaces with point recovering.
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