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SOME CLASSICAL NUMBER SEQUENCES
IN CONTROL SYSTEM DESIGN

A.V. CHEKHONADSKIKH

Abstract. Algebraic tools of LTI control systems design need graphical
and analytical structures which depend on dimension of their control
parameter space. Essential elements for optimal low-order control systems
are the least stable system poles, i.e. the rightmost on the complex plane
characteristic roots. Their mutual location is described by critical root
diagrams; the algebraic design procedure uses the root polynomials, i.e.
factors of characteristic polynomials, which involve only the rightmost
poles. From a theoretical point of view it is important to know the
dependence between control space dimension and numbers of arising
object sets and their asymptotics; they are represented by Fibonacci
numbers and partial sums of Euler partitions. From a practical design
point of view we need complete lists of required diagrams and polynomials;
so we specify the recursive procedure to build a root polynomial list for
each control parameter dimension.

Keywords: LTI control systems, system pole, relative stability, Hurwitz
function, critical root diagram, root polynomial, Fibonacci numbers,
Euler partitions.

1. Introduction

Linear time invariant control systems (LTI CS) are described by ordinary differen-
tial equations, and after the Laplace transform they take a form of matrix equations
with polynomial elements, which include transform matrices N(s)D−1(s) and
X−1(s)Y (s) of a plant and a controller correspondingly. MatricesD(s) andN(s) are
considered to be known, and matrices X(s) and Y (s) need to be found, providing
desired properties of a closed loop system. Matrix order corresponds to a number of
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control channels; in particular, for a single-channel (SISO) system all relations are
scalar polynomial ones. In CS design its characteristic matrix (system denominator)
plays an important role; it is defined by Diophantine relation C(s) = X(s)D(s) +
Y (s)N(s). In this case many basic requirements for closed loop system transients
take form of restrictions on a location of system poles, i.e. roots z1, ..., zn of characte-
ristic equation detC(s) = 0. Thus, the Hurwitz stability means location of all
poles in the left half-plane: Rezi < 0; limited oscillations reduce to the inequality
|Imzi/Rezi| < Θ, oscillation-free suppression of disturbances requires domination of
negative real pole, etc. In full-order systems controller structure has approximately
the same or higher complexity than a controlled plant. The latter allows to reach
any pole placement, which a designer deems optimal for the closed loop system
properties and its transients; the appropriate techniques for different cases are
developed in details [1]. However, low-order controllers prevail in industry and
technology [2], their free parameter number or a way of their entry into characteristic
equation do not allow to achieve any pole location. Most of the technical construction
types offer traditional low-order controllers and well proven tuning methods [3].
Theoretically speaking, the problem of low-order controllers design allows many
approaches [4, 5]. One of the most natural version is a condition of CS poles location
in a fixed domain D (the so-called D-stability), which guarantees a satisfactory
quality of transients in a real technical system. A classic example of this type is
D-decomposition,which recently have allowed to get several important results [6,
7].

In 2004-06 Prof. A.A. Voevoda and the author offered an optimization approach
to low-order CS design. In the most widespread case the goal is the highest relative
stability of closed loop system, so Hurwitz function

H(p1, ..., pm) = max(Rez1, ...,Rezn)

is to be minimized in the control parameter space P = {(p1, ..., pm)|pk ∈ R}, where
m < n. We take Hurwitz function as objective one; being the function of controller
parameters, it characterizes the rightmost, i.e., the least stable of the system poles
and the right border of pole location on the complex plane. Moreover, comparison
of pole real parts defines preordering on characteristic root set. The general case of
root preorder ≤α and root graduation H(p1, ..., pm) is presented in [8]; of course,
for real roots it coincides with usual order on reals: xk ≤α xk+1 ⇔ xk ≤ xk+1. We
use also two important particular cases more (Fig. 1):

— comparison of oscillation considering stability:

zk ≤α zk+1 ⇔ Rezk + |Imzk| ≤ Rezk+1 + |Imzk+1| ;

it is used for minimizing an oscillatory component with prevention of a system exit
to a stability border, it corresponds to minimization of the conic function

K(p1, ..., pm) = max(Rezk + |Imzk|) ;

— comparison of stability considering oscillations:

zk ≤α zk+1 ⇔ Rezk +

√
L2 + Im2zk ≤ Rezk+1 +

√
L2 + Im2zk+1 ;

it is used to maximize stability with limited oscillations; it corresponds to minimiza-
tion of the hyperbolic function (its domain family is close to widespread in CS design
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truncated cones):

G(p1, ..., pm) = max(Rezk +

√
L2 + Im2zk)− L .

Fig. 1. Root optimization principle: reaching pole location in the
leftmost possible domain Dα∗ in a family of enclosed domains
{Dα|Dα ⊂ Dβ ⇔ α < β} of some fixed type. On the left – the
family of conic type associated with conic graduationK(p1, ..., pm).
On the right – a family of hyperbolic type associated with
hyperbolic graduation G(p1, ..., pm).

2. Root Simplexes and Symplectic Graphs

Due to the root preorder ≤α orderless sets of characteristic real roots and
complex pairs can be enumerated in α-ascending: z1 ≤α ... ≤α zn. Presenting
complex pairs with using real and imaginary parts, we’ll see different tuples like,
for example,

〈x1;x2 ± iy3;x4;x5 ± iy6; ...;xn−1 ± iyn〉 ,
where x1 ≤α x2 ± iy3 ≤α x4 ≤α x5 ± iy6 ≤α ... ≤α xn−1 ± iyn; (the latter in the

Hurwitz case is equal to x1 ≤ x2 ≤ x4 ≤ x5 ≤ ... ≤ xn−1; yj > 0).
If characteristic polynomial is separable, a coefficients↔roots correspondence is

differentiable [9], and while the strict inequality (for example, x1 <α x2 ± iy3 <α
x4 <α x5 ± iy6 <α ... <α xn−1 ± iyn) holds, it is the diffeomorphism between some
domain in polynomial coefficient space and the corresponding segment in ordered
root space, and root enumeration remains the same, so we can speak of piecewise
real coordinatization of root tuples, whether they are real or complex. In Hurwitz
case such segment is defined by strict inequalities as above, which in our example
are equal to x1 < x2 < x4 < x5 < ... < xn−1; yj > 0. These segments are bordering
on with each other along the boundaries defined by tuples with α-equalities, e.g.
the two segments ... ≤α x4 ≤α x5 ± iy6 ≤α ... and ... ≤α x4 ± iy5 ≤α x6 ≤α ... are
bordering on along the boundary with the two possible enumerations:

... ≤α x4 =α x5 ± iy6 ≤α ... ∼= ... ≤α x4 ± iy5 =α x6 ≤α ...
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Segment↔boundary correspondence in a root simplex of polynomial of degree n can
be represented by an unoriented graph Hn, whose vertices represent root segments
and edges represent their boundaries [9]. For a cubic polynomial its root simplex
and symplectic graph are presented on Fig.2; it is similar to root distribution in
classic Vyshnegradsky diagram. However, for higher polynomial degrees it is less
foreseeable, because simplex root construction and the symplectic graph structure
grows exponentially. For polynomials of high degrees their root simplex construction
is facilitated by the recurrence between their graphs: Hn+1

∼= Hn t Hn−1, where
the sign t denotes uncomplete graph juxtaposing [10]. As the easy conclusion from
this statement we get the following:

Proposition 1. Symplectic graph power dependence of the polynomial degree
n is represented by Fibonacci numbers: |Hn| = ϕn+1.

Fig. 2. Root simplex of a cubic polynomial (leftwards) and its
symplectic graph (rightwards).

Since some zones in control parameter space, defined by strict root α-inequalities,
can be empty, segment↔boundary correspondence in a parameter space can be
somewhat simpler than adequate one in a root simplex. Nevertheless the proposition
provides an estimate of complexity of different root distributions in a parameter
space, arising in numeric design procedures [10].

3. Critical Root Diagrams

Root preorder and related root numbering let one schematically represent a
mutual location of CS poles on the complex plane as a root diagram, i.e., as a
picture, which represents pole α-ordering and α-equalities. Obviously only one real
root (maybe multiple) can be placed on the right boundary of all poles location.
Poles with larger α-values are shown to the right of poles with lower ones; poles with
equal α-graduation values are shown on the same vertical line so that a complex root
pair x3 ± iy4 is further apart than an α-equal to it pair x1 ± iy2 with 0 < y2 < y4;
we specify multiplicities of real roots and complex pairs near their depicting points,
see Fig. 3.

Since values of functions of a graduation type are defined by α-rightmost roots,
equality (multiplicity) or α-equality of such roots leads to a non-differentiable
objective function [8] and, consequently, to a critical set represented by a critical root
zone in control parameter space. Dimension of a critical zone is defined by number
of corresponding root multiplicities and α-equalities. Each α-equality bounds one
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degree of freedom in a parameter space, whether it is multiplicity of a real root or
α-equality of complex conjugate pairs; duplicity of complex conjugate pair bounds
two degrees of freedom; n-plicity of complex pairs bounds 2n−2 degrees of freedom.

Thus, rightmost roots multiplicities or α-equalities define a manifold of lower
dimension in the parameter space. If this dimension is positive, it is possible to
minimize objective function further along this manifold until we add a few more
equalities (i.e., until several more roots fall onto the right boundary of their common
location), and the manifold dimension vanishes.

Fig. 3. Critical root diagram list for a 3-parameter control space.
A pole multiplicity is labeled near a point which depicts this
pole. Vertical point placement schematically shows location of the
rightmost poles on a border of a graduation set domain. Other
poles are represented as a grey segment leftwards.

Therefore, a three-dimensional parameter space has eight possibilities (see Fig. 3)
for which from 4 to 8 roots are located on the right boundary; roots, which are
smaller with respect to α-preordering, are located in a grey segment in the left
part of each diagram. All such root locations appear to be zero-dimensional, i.e.,
critical points in the usual meaning. For control parameter number m > 3 the same
diagrams define (m− 3)-dimensional critical manifolds.

Practical effectiveness of critical diagram concept depends on how quickly a
critical root diagram number increases while control space dimension grows. The
stated below theorem specifies the exact growth rate [8]. Let us assume that the
degree of a characteristic polynomial is large enough, so that the number of roots
doesn’t influence the realization of critical diagrams.

Theorem 1. Number of different critical root diagrams for a polynomial, whose
coefficients depend on m control parameters, equals to (m+ 3)-d Fibonacci number
ϕm+3.

Proposition 1 and Theorem 1 lead to the following statement:
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Corollary. Numbers of different symplectic graphs and critical root diagrams
grow asymptotically as ∼ ( 1+

√
5

2 )m, where m is a number of control parameters
included in the polynomial’s coefficients.

Proof of Theorem 1 shows a recursive way to construct critical diagram list for
an arbitrary number m [8].

4. Root Polynomials

As LTI control system design involves root polynomials, which include only the
α-rightmost poles [8], the estimate of such polynomial number deserve attention as
well as effective procedure of polynomial list drawing for each control parameter
dimension.

Particular techniques close to root polynomials were used in numerous series
of papers by A.M. Shubladze and his colleagues (e.g. [11-13]), though the general
notion wasn’t formulated there. For the sake of simplicity we will illustrate it with
the following examples (for general notion see [8]).

Let us denote the index of all roots as l = 1, ..., n, the index of the rightmost
roots as j = 1′, ..., k′, so that a real root z1′ = x1′ of multiplicity a1′ and complex
pairs z2′,3′ = x2′ ± iy2′ , ..., z(2k−2)′,(2k−1)′ = xk′ ± iyk′ of multiplicities a2′ , ..., ak′
are placed on the right boundary of all roots location.

— Root polynomial for the Hurwitz graduation has the form

r(s) = (s−H)a1′ (s2 − 2Hs+H2 + y22′)
a2′ · ... · (s2 − 2Hs+H2 + y2k′)

ak′ ,

because here H = max(Rez1, ...,Rezn) = x1′ = ... = xk′ .
— For conic graduation root polynomial has the form

r(s) = (s− x1′)a1′
k′∏
j=2′

(s2 − 2xj′s+ x2j′ + y2j′)
aj′ =

= (s−K)a1′
k′∏
j=2′

(s2 − 2xj′s+ 2x2j′ − 2Kxj′ +K2)aj′ ,

because here y2j′ = (K − xj′)2 and

K = maxl=1,...,n(Rezl + |Imzl|) = x1′ = x2′ + y2′ = ... = xk′ + yk′ .

— For hyperbolic graduation root polynomial has the form

r(s) = (s− x1′)a1′
k′∏
j=2′

(s2 − 2xj′s+ x2j′ + y2j′)
aj′ =

= (s−G)a1′
k′∏
j=2′

(s2 − 2xjs+ x2j − (xj −G− L)2 + L2)aj ,

because here y2j = (xj − xC)2 − L2 (where xC = G + L is abscissa of hyperbola

center), G = max(xl +
√
L2 + y2l − L) = x1′ = xj +

√
L2 + y2j − L, see Fig. 1.

The important feature of root polynomial construction is algebraic dependence
of root polynomial coefficients on the real and imaginary parts of the roots. Due
to it root polynomials allow to establish links between control parameters and root
coordinates (like yj and xj above) and to minimize objective functions in difficult
design problems[15, 16]. Obviously, each critical root diagram allows us to write
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down corresponding root polynomial. But because we needn’t specify a comparison
of root imaginary parts, a few different diagrams can have the same root polynomial,
e.g. the two diagrams (f ) and (g) in Fig. 3 correspond to the root polynomial

r(s) = (s2 − 2Hs+H2 + y22′)
2(s2 − 2Hs+H2 + y23′) ,

Therefore, some practical design relief may be caused by a slower growth of root
polynomial number. It may be clarified with the help of tuples of the rightmost
roots multiplicities.

Let us define codes of root polynomials, which are universal for all graduation
types. They differ from the critical root diagram codes [8] due to the feature, that
only multiplicities but not the size imaginary parts of complex root pairs are taken
into account. So we can dispose complex pair multiplicities of some root set in
nonascending order. As above, generating index for each code set is the control
space dimension m, or equal to it number of connections between the real and
imaginary parts of characteristic roots. For the sake of simplicity (without loss of
generality) let us consider the case of Hurwitz objective function.

Definition. Code of root polynomial

r(s) = (s−H)a1′ (s2 − 2Hs+H2 + y22′)
a2′ · ... · (s2 − 2Hs+H2 + y2k′)

ak′

have the form of a row with natural elements (a1′ a2′ ... ak′), where a1′ ≥ 0;
ap ≥ aq ≥ 1 for 1 < p < q; a number k′ is the code length.

Lemma. Dimension of control parameter space is connected with a polynomial
code by equation m = a1′ + 2a2′ + ...+ 2ak′ − k′.

Proof. As above, we can assume, that in order to reach a pole location cor-
responding to critical root diagram, m free control parameters allow to obtain m
equalities including real or imaginary parts of characteristic roots: Rezp = Rezq
or Imzp = Imzq (the latter for multiple complex pairs). Real root multiplicity
a1′ means a1′ − 1 equalities x1′ = ... = xa1′ ; an appearance of a simple complex
pair on the same boundary results in one more equality, but if the complex pair
xa1′+1±iya1′+1 has a multiplicity a2′ > 1, then there are achieved 2a2−2 equalities
more: x1′ = ... = xa1′ = xa1′+1 = ... = xa1′+a2′ and ya1′+1 = ... = ya1′+a2′ , so the
total number of equalities is (a1′ − 1) + 1 + (2a2′ − 2) = (a1′ − 1) + (2a2′ − 1). The
same is true for an appearance of a few complex pairs, therefore finally we get

m = (a1′ − 1) + (2a2′ − 1) + ...+ (2ak′ − 1) = a1′ + 2a2′ + ...+ 2ak′ − k′. �
Hence we can regard dimensionm of control parameter space as generating index

for root polynomial code set.
Theorem 2. The number N(m) of different root polynomials of index m is equal

to partial sum
∑
m+2 of Euler partitions sequence for natural numbers.

Proof. We have to find the number of different polynomial codes corresponding
to the fixed index m. At first, the number of Euler partitions of zero is considered
to be equal to 1; it is the first element of Euler partitions sequence and it equals to
the sum

∑
1.

Second, for m = 0 we have two possible polynomials: s− x1′ with code (1) and
s2 − 2x1′s + x21′ + y21′ with code (0 1); taking into account the beginning of Euler
partitions sequence 1, 1, 1, 2, 2, 3, 4, 5, 6,. . . we see in that case

∑
2 = 2, and the

statement of Theorem holds.
Third, the equality of lemma can be rewritten as

m− a1′ + 1 = (2a2′ − 1) + ...+ (2ak′ − 1) .
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Finally, the real root multiplicity a1′ can take all values from 0 to m + 1, i.e. the
number of distinct root polynomial codes for each index m is the sum of all of these
cases without gaps of summands. �

Remark. The beginning of sequence A036469 is the following [14]: 1, 2, 3, 5, 7,
10, 14, 19, 25, 33, 43, 55, 70, 88, 110, 137, 169, 207, 253, 307, 371, 447, 536,. . . As
stated ibid., in February 2015 Vaclav Kotesovec gave the estimate of the growth
rate of the sequence, which shows that the number of root polynomials is growing
slower, than the number of critical root diagrams: Am ∼ eπ

√
m/3

2π 4
√
m/3

.

Listing of root polynomials is carried out by double recursion — on root
polynomial index m and on maximum multiplicity a2′ of complex root pairs.

As we have mentioned above, root polynomial code list of index m = 0 consists
of two polynomials, whose codes are (1) and (0 1).

A list of index m > 0 starts with single element row (m + 1), and further the
following:

for a2′ = 1 (i.e. for simple complex roots) it has the form

(0 1 . . . 1︸ ︷︷ ︸
m+1

), (1 1 . . . 1︸ ︷︷ ︸
m

), (2 1 . . . 1︸ ︷︷ ︸
m−1

), ..., (m 1);

the code list of index m with an element a2′ = q > 1 (i.e. for complex roots of
maximal multiplicity q ≤ [m/2]+1) consists of code lists of forms (a−1′ q a

−
2′ . . . a

−
k′),

where (a−1′ a
−
2′ . . . a

−
k′) are code lists of indexes l− = m− 2q + 1 with a−1′ ≤ q.

Finally, if the index m is even and q = m/2 + 1 (i.e. m− 2q+ 1 = −1), then the
list includes the single code (0 q).

5. Conclusion

The current state of the control theory doesn’t offer a universal approach to
the low-order control system design. This is one of the reasons why the design of
three-parameter PID systems remains a topical area of control theory and practice.
Slightly more complicated systems are extremely hard for the standard tools of
numerical analysis and design. The algebraic approach allows to carry on low-order
CS design for the parameter space dimensions more than three (in particular, the
root polynomial technique proved to be effective for CS design with 6-7 control
parameters, [15, 16]), but its practical implementation also depends on the number
of emerging options.

Elements of number theory and recursion became rather useful means of assessing
the applicability of this approach in higher dimension parameter spaces. We found
Fibonacci numbers and Euler partitions partial sums as the laws of the growth rate
of emerging objects; the latter is sufficiently lower than the first one. Therefore,
the exponential asymptotics of the critical diagram and root polynomial numbers
stimulates the development of exploration methods for each case and automation
of the entire design process.
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