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Abstract. This article is devoted to the analysis of a one-space dimensional
high-order parabolic equation, subject to mixed boundary conditions.
The problem is set in a (possibly non-regular) non-rectangular domain
and the right hand side term of the equation is taken in a Lebesgue space.
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1. Introduction

Let Ω be an open set of R2 defined by

Ω =
{
(t, x) ∈ R2 : 0 < t < T, φ1 (t) < x < φ2 (t)

}
,

where T is a finite positive number, while φ1 and φ2 are continuous real-valued
functions defined on [0, T ] , Lipschitz continuous on [0, T ] , and such that

φ (t) := φ2 (t)− φ1 (t) > 0,

for every t ∈ ]0, T ] and with the fundamental hypothesis φ (0) = 0. The lateral
boundary of Ω is defined by

Γi =
{
(t, φi (t)) ∈ R2 : 0 < t < T

}
, i = 1, 2.

We will then assume that

(1) (−1)
i+1

φ′
i (t) ≥ 0 a.e. t ∈ ]0, T [ , i = 1, 2,

(2) φ′
i (t)φ

m (t) → 0 as t→ 0, m ∈ N∗, i = 1, 2,
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where N∗ is the set of all nonzero natural numbers. In Ω, we consider the boundary
value problems

(3)


∂tu+ (−1)m∂2mx u = f1 ∈ L2

ω (Ω) ,
∂kxu

∣∣
Γ1

= 0, k = 0, 1, ...,m− 1,

∂lxu
∣∣
Γ2

= 0, l = m,m+ 1, ..., 2m− 1,

and

(4)


∂tv + (−1)m∂2mx v = f2 ∈ L2

ω (Ω) ,
∂kxv

∣∣
Γ2

= 0, k = 0, 1, ...,m− 1,

∂lxv
∣∣
Γ1

= 0, l = m,m+ 1, ..., 2m− 1,

where L2
ω (Ω) stands for the space of square-integrable functions on Ω with the

measure ω dt dx. Here the weight ω is a real-valued function defined on [0, T ] ,
differentiable on ]0, T ] and such that

(5) ∀t ∈ [0, T ] : ω (t) > 0.

We also assume that

(6) ω is a decreasing function on ]0, T ] .

Observe that in the case m = 1, Problems (3) and (4) correspond to second-order
parabolic equations with Dirichlet-Neumann conditions and we can find studies
of such kind of problems in [20] and [9] both in bounded and unbounded non-
cylindrical domains. Note that the mixed type conditions

∂kxu
∣∣
Γ1

= ∂lxu
∣∣
Γ2

= 0, ∂kxv
∣∣
Γ2

= ∂lxv
∣∣
Γ1

= 0, k = 0, 1, . . . ,m−1; l = m, . . . , 2m−1,

can be found in the case m = 2 in [3], where the existence of multiple positive
solutions for a nonlinear fourth-order two-point boundary value problem was proved.
In the case m = 3 corresponding to a sixth-order problem, we can find such
kind of boundary conditions in Dugundji [4] and in Shi et al. [21]. These specific
boundary conditions are important for the originality of this work. Indeed, to our
knowledge, results concerning higher-order parabolic equations on time-varying
domains, subject to such kind of boundary conditions, have not appeared in the
literature to date.

Another difficulty related to this kind of problems comes from the fact that the
domain Ω considered here is nonstandard since it shrinks at t = 0 (φ (0) = 0),
which prevents the domain Ω to be transformed into a regular domain without the
appearance of some degenerate terms in the parabolic equations, see for example
Sadallah [18]. On the other hand, the semi group generating the solution cannot be
defined since the initial condition is defined on a measure zero set.

It is well known that there are two main approaches for the study of boundary
value problems in such non-smooth domains. We can work directly in the non-
regular domains and we obtain singular solutions (see, for example [13] and [19] ),
or we impose conditions on the non-regular domains to obtain regular solutions (see,
for example [11] and [18]). It is the second approach that we follow in this work. So,
under the above mentioned conditions on the functions of parametrization φi, i =
1, 2 and on the weight function ω, we will prove that Problem (3) (respectively, (4))
admits a unique solution with optimal regularity, that is a solution u (respectively,
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v) belonging to the anisotropic weighted Sobolev space

H1,2m
γ,ω (Ω) =

{
u ∈ H1,2m

ω (Ω) :
∂kxu

∣∣
Γ1

= ∂lxu
∣∣
Γ2

= 0,

k = 0, 1, ...,m− 1; l = m, ..., 2m− 1

}
,

(respectively,

H1,2m
δ,ω (Ω) =

{
v ∈ H1,2m

ω (Ω) :
∂kxv

∣∣
Γ2

= ∂lxv
∣∣
Γ1

= 0,

k = 0, 1, . . . ,m− 1; l = m, . . . , 2m− 1

}
),

with

H1,2m
ω (Ω) =

{
w ∈ L2

ω (Ω) : ∂tw, ∂
j
xw ∈ L2

ω (Ω) , j = 1, 2, . . . , 2m
}
.

The space H1,2m
ω (Ω) is equipped with the natural norm, that is

∥w∥H1,2m
ω (Ω) =

∥∂tw∥2L2
ω(Ω) +

2m∑
j=0

∥∥∂jxw∥∥2L2
ω(Ω)

1/2

.

Whereas second-order parabolic equations in non-smooth domains are well studied,
the literature concerning higher-order parabolic problems in non-cylindrical domains
does not seem to be very rich. The solvability of the first boundary-value problem for
higher-order parabolic equations in non-cylindrical domains in Sobolev spaces was
considered in Mikhailov [16] and [17] both in one-dimensional and multidimensional
cases. The author considered a class of "backward"paraboloid for which the parabolic
boundary lies below the characteristic plane t = 0. In the case of Hölder spaces
functional framework, in [1] and [5], we can find solvability results of boundary value
problems for a 2m-th order parabolic equation for non-cylindrical domains (of the
same kind but which can not include our domain) with a non-smooth (in t) “lateral”
boundary. Further references on the analysis of high-order parabolic problems in
non-cylindrical domains are: Galaktionov [6], Grimaldi Piro [7], Kheloufi [8], [10],
[12] and Labbas et al. [14].

The organization of this paper is as follows. In Section 2, we begin by deriving
some preliminary results we need to develop further arguments. In Section 3, first we
prove that Problems (3) and (4) admit (unique) solutions in the case of truncated
domains. Then, we approximate Ω by a sequence (Ωn) of such domains and we
establish (for T small enough) uniform estimates of the type

∥un∥H1,2m
ω (Ωn)

≤ K ∥f1∥L2
ω(Ωn)

, ∥vn∥H1,2m
ω (Ωn)

≤ K ∥f2∥L2
ω(Ωn)

,

where un and vn are the solutions of Problems (3) and (4), respectively, in Ωn and
K is a constant independent of n. These estimates will allow us to pass to the limit
and we will prove a local in time result. Finally, by using a trace result, we show
in Section 4 that the obtained local in time result can be extended to a global in
time one.

2. Preliminaries

Definition 1. The function u(t, x) ∈ H1,2m
ω (Ω) (respectively, v(t, x) ∈ H1,2m

ω (Ω))
is called solution of the mixed boundary value problem (3) (respectively, (4)), if it
satisfies the equation of Problem (3) (respectively, (4)) almost everywhere in Ω.
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2.1. Uniqueness of solutions.

Proposition 1. Problem (3) (respectively, (4)) admits at most one solution.

Proof. Let us consider u ∈ H1,2m
γ,ω (Ω) (respectively, v ∈ H1,2m

δ,ω (Ω)) a solution of
Problem (3) (respectively, (4)) with a null right-hand side term. So,

∂tu+ (−1)m∂2mx u = ∂tv + (−1)m∂2mx v = 0 in Ω.

In addition, u and v fulfil the boundary conditions

∂kxu
∣∣
Γ1

= ∂lxu
∣∣
Γ2

= 0; ∂kxv
∣∣
Γ2

= ∂lxv
∣∣
Γ1

= 0, k = 0, 1, ...,m− 1, l = m, ..., 2m− 1.

Using Green formula, we have∫
Ω

[(
∂tu+ (−1)m∂2mx u

)
u+

(
∂tv + (−1)m∂2mx v

)
v
]
ω (t) dt dx

=
∫
∂Ω

∑m−1
k=0 (∂2m−k−1

x u.∂kxu+ ∂2m−k−1
x v.∂kxv)(−1)k+mνxω (t) dσ

+
∫
∂Ω

1
2 (|u|

2
+ |v|2)νtω (t) dσ +

∫
Ω
(|∂mx u|

2
+ |∂mx v|

2
)ω (t) dtdx

−
∫
Ω

1
2 (|u|

2
+ |v|2)ω′ (t) dt dx,

where νt, νx are the components of the unit outward normal vector at ∂Ω. We shall
rewrite the boundary integral making use of the boundary conditions. On the part
of the boundary of Ω where t = T, we have νx = 0 and νt = 1. Accordingly, the
corresponding boundary integral∫ φ2(T )

φ1(T )

[
1

2
(|u|2 + |v|2]ω (T ) dx,

is nonnegative. On the parts of the boundary where x = φi (t) , i = 1, 2, we have

νx =
(−1)

i√
1 +

(
φ

′
i

)2
(t)
, νt =

(−1)
i+1

φ
′

i (t)√
1 +

(
φ

′
i

)2
(t)
,

and

∂kxu (t, φ1 (t)) = ∂lxu (t, φ2 (t)) = ∂kxv (t, φ2 (t)) = ∂lxv (t, φ1 (t)) = 0,

k = 0, 1, ...,m − 1; l = m,m + 1, ..., 2m − 1. Consequently, the corresponding
boundary integral is∫ T

0

−φ
′
2 (t)

2
u2 (t, φ2 (t))ω (t) dt+

∫ T

0

φ′
1 (t)

2
v2 (t, φ1 (t))ω (t) dt.

Then, we obtain∫
Ω
[
(
∂tu+ (−1)m∂2mx u

)
u+

(
∂tv + (−1)m∂2mx v

)
v] ω (t) dt dx

=
∫ T

0
−φ

′
2 (t)

2
u2 (t, φ2 (t))ω (t) dt+

∫ T

0

φ′
1 (t)

2
v2 (t, φ1 (t))ω (t) dt

+
1

2

∫ φ2(T )

φ1(T )
[u2 (T, x) + v2 (T, x)] ω (T ) dx+

∫
Ω
[|∂mx u|

2
+ |∂mx v|

2
]ω (t) dt dx

−
∫
Ω

1
2 [|u|

2
+ |v|2]ω′ (t) dt dx.
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Consequently∫
Ω

(
∂tu+ (−1)m∂2mx u

)
u ω (t) dt dx =

∫
Ω

(
∂tv + (−1)m∂2mx v

)
v ω (t) dt dx = 0,

yields ∫
Ω

(
|∂mx u|

2
)
ω (t) dt dx =

∫
Ω

(
|∂mx v|

2
)
ω (t) dt dx = 0,

because ∫ φ2(T )

φ1(T )

1

2
[|u|2 + |v|2]ω (T ) dx−

∫
Ω

1

2
[|u|2 + |v|2]ω′ (t) dt dx ≥ 0,

thanks to the conditions (5) and (6) and∫ T

0

−φ
′
2 (t)

2
u2 (t, φ2 (t))ω (t) dt+

∫ T

0

φ′
1 (t)

2
v2 (t, φ1 (t))ω (t) dt ≥ 0,

thanks to the condition (1). This implies that |∂mx u|
2
= |∂mx v|

2
= 0 and consequently

∂2mx u = ∂2mx v = 0. Then, the hypothesis ∂tu+(−1)m∂2mx u = ∂tv+(−1)m∂2mx v = 0

gives ∂tu = ∂tv = 0. Thus, u =
∑m−1

k=0 akx
k, v =

∑m−1
k=0 bkx

k, ak, bk ∈ R, k =
0, 1, ...,m−1. The boundary conditions imply that u = v = 0 in Ω. This proves the
uniqueness of the solutions of Problems (3) and (4). �
Remark 1. In the sequel, we will be interested only by the question of the existence
of solutions of Problems (3) and (4).

2.2. Technical Lemmas.

Lemma 1. There exists a positive constant K1 such that for each (u, v) ∈ H2m
γ (0, 1)×

H2m
δ (0, 1)∥∥∥u(j)∥∥∥

L2(0,1)
≤ K1

∥∥∥u(2m)
∥∥∥
L2(0,1)

and
∥∥∥v(j)∥∥∥

L2(0,1)
≤ K1

∥∥∥v(2m)
∥∥∥
L2(0,1)

,

j = 0, 1, ..., 2m− 1, where

H2m
γ (0, 1) =

{
u ∈ H2m (0, 1) :

u(k) (0) = u(l)(1) = 0,
k = 0, 1, ...,m− 1; l = m, ..., 2m− 1

}
,

and

H2m
δ (0, 1) =

{
v ∈ H2m (0, 1) :

v(k) (1) = v(l)(0) = 0,
k = 0, 1, ...,m− 1; l = m, ..., 2m− 1

}
.

Here, w(j), j = 1, 2, ..., 2m is the derivative of order j of w on (0, 1) and w(0) = w.

Proof. Let h1, h2 be arbitrary fixed elements of L2 (0, 1) . Every solution of the
ordinary differential equation u(2m) = h1, (respectively, v(2m) = h2,) is of the form

u (x) =

∫ x

0

∫ x2m−1

0

∫ x2m−2

0

...

∫ x1

0

h1 (s) dsdx1...dx2m−2dx2m−1 +

2m−1∑
j=0

u(j) (0)

j!
xj ,

x ∈ [0, 1] , (respectively,

v (x) =

∫ x

0

∫ x2m−1

0

∫ x2m−2

0

...

∫ x1

0

h2 (s) dsdx1....dx2m−2dx2m−1 +
2m−1∑
j=0

v(j) (0)

j!
xj ,

x ∈ [0, 1]). The variables u(j) (0) , j = 0, 1, ..., 2m − 1, (respectively, v(j) (0) , j =
0, 1, ..., 2m − 1,) are to be determined in a unique way such that the boundary
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conditions u(k) (0) = u(l)(1) = 0, (respectively, v(k) (1) = v(l)(0) = 0) k =
0, 1, ...,m− 1; l = m,m+ 1, ..., 2m− 1, are satisfied.

From the preceding representation of the solution and thus also its derivatives

u(2m−p) (x) =

∫ x

0

∫ xp−1

0

. . .

∫ x1

0

h1 (s) dsdx1 . . . dxp−1 +

p−1∑
q=0

1

q!
u(2m+q−p) (0)xq,

x ∈ [0, 1] , (respectively,

v(2m−p) (x) =

∫ x

0

∫ xp−1

0

. . .

∫ x1

0

h2 (s) dsdx1 . . . dxp−1 +

p−1∑
q=0

1

q!
v(2m+q−p) (0)xq,

x ∈ [0, 1]) for p = 1, 2, . . . , 2m, and from the required boundary conditions, we
obtain the following system to be solved :

AX = b

with A = (aij) is an upper triangular matrix, X = (Xi), b = (bi) for i, j =
0, 1, . . . , 2m− 1, where

aij =


0 if i < j; i, j = 1, . . . ,m− 1

1
(j−i)! if i < j; i = 0, . . . , 2m− 2; j = m, . . . , 2m− 1

−1 if i = j; i = 0, ...,m− 1
1 if i = j; i = m, ..., 2m− 1
0 if i > j,

Xi =

{
u(i)(1) if i = 0, . . . ,m− 1
u(i)(0) if i = m, . . . , 2m− 1

and

bi = −
∫ 1

0

∫ x2m−i−1

0

. . .

∫ x1

0

h1 (s) dsdx1 . . . dx2m−i−1, i = 0, . . . , 2m− 1

(respectively,
BY = b′

withB = (bij) is a lower triangular matrix, Y = (Yi), b
′ = (b′i) for i, j = 0, 1, . . . , 2m−

1, where

bij =


0 if i < j
−1 if i = j; i = 0, . . . ,m− 1
1 if i = j; i = m, . . . , 2m− 1
0 if i > j; i = 1, . . . ,m− 1; j = 0, . . . ,m− 1

1
(i−j)! if i > j; i = m+ 1, . . . , 2m− 1; j = m, . . . , 2m− 2,

Yi =

{
v(2m−i−1)(1) if i = 0, . . . ,m− 1
v(2m−i−1)(0) if i = m, . . . , 2m− 1

and

b′i = −
∫ 1

0

∫ xi

0

. . .

∫ x1

0

h2 (s) dsdx1 . . . dxi, i = 0, . . . , 2m− 1).

Finally, the unique solution of the problem
u(2m) = h1,
u(k) (0) = 0, k = 0, 1, . . . ,m− 1,
u(l) (1) = 0, l = m, . . . , 2m− 1,
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(respectively, 
v(2m) = h2,
v(k) (1) = 0, k = 0, 1, . . . ,m− 1,
v(l) (0) = 0, l = m, . . . , 2m− 1, )

is given by

u (x) =

∫ x

0

∫ x2m−1

0

∫ x2m−2

0

...

∫ x1

0

h1 (s) dsdx1....dx2m−2dx2m−1+
2m−1∑
j=m

u(j) (0)

j!
xj ,

x ∈ [0, 1] , (respectively,

v (x) =

∫ x

0

∫ x2m−1

0

∫ x2m−2

0

...

∫ x1

0

h2 (s) dsdx1....dx2m−2dx2m−1 +
m−1∑
j=0

v(j) (0)

j!
xj ,

x ∈ [0, 1],) where

u(2m−p) (0) =

p−1∑
k=0

(−1)k+1

∫ 1

0

∫ xp−k−1

0

. . .

∫ x1

0

h1 (s) dsdx1 . . . dxp−k−1,

for p = 1, . . . ,m, (respectively,

v(2m−p) (0) =

p−1∑
k=0

(−1)k+1

∫ 1

0

∫ xp−k−1

0

. . .

∫ x1

0

h2 (s) dsdx1 . . . dxp−k−1,

for p = m + 1, . . . , 2m). Using the Cauchy-Schwarz inequality, we obtain the
following estimates∣∣u(k) (0)∣∣ ≤ C ∥h1∥L2(0,1) , k = m,m+ 1, . . . , 2m− 1∣∣u(l) (1)∣∣ ≤ C ∥h1∥L2(0,1) , l = 0, 1, . . . ,m− 1,

(respectively, ∣∣v(k) (1)∣∣ ≤ C ∥h2∥L2(0,1) , k = m,m+ 1, . . . , 2m− 1∣∣v(l) (0)∣∣ ≤ C ∥h2∥L2(0,1) , l = 0, 1, . . . ,m− 1, )

where C is a positive constant, which will allow us to obtain the desired estimates.
�

Lemma 2. There exists a positive constant K2 (independent of a and b) such that
for each (u, v) ∈ H2m

γ (a, b)×H2m
δ (a, b)∥∥∥u(k)∥∥∥2

L2(a,b)
≤ K2 (b− a)

2(2m−k)
∥∥∥u(2m)

∥∥∥2
L2(a,b)

, k = 0, . . . , 2m− 1

∥∥∥v(k)∥∥∥2
L2(a,b)

≤ K2 (b− a)
2(2m−k)

∥∥∥v(2m)
∥∥∥2
L2(a,b)

, k = 0, . . . , 2m− 1

where,

H2m
γ (a, b) =

{
u ∈ H2m (a, b) :

u(k)(a) = u(l)(b) = 0,
k = 0, . . . ,m− 1; l = m, . . . , 2m− 1

}
,

H2m
δ (a, b) =

{
v ∈ H2m (a, b) :

v(k)(b) = v(l)(a) = 0,
k = 0, . . . ,m− 1; l = m, . . . , 2m− 1

}
.
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Proof. It is a direct consequence of Lemma 1 by using the following affine change
of variable

[0, 1] −→ [a, b] , x 7→ (1− x) a+ xb = y.

Indeed, we set w (x) = u (y) . then if w ∈ H2m
γ (0, 1) , u belongs to H2m

γ (a, b) . We
have ∥∥w(k)

∥∥2
L2(0,1)

=
∫ 1

0

(
w(k)

)2
(x) dx

=
∫ b

a

(
u(k)

)2
(y) (b− a)2k dy

b−a

=
∫ b

a

(
u(k)

)2
(y) (b− a)2k−1dy

= (b− a)2k−1
∥∥u(k)∥∥2

L2(a,b)

where k ∈ {0, 1, ..., 2m− 1} . On the other hand, we have∥∥w(2m)
∥∥2
L2(0,1)

=
∫ 1

0

(
w(2m)

)2
(x) dx

=
∫ b

a

(
u(2m)

)2
(y) (b− a)4m−1dy

= (b− a)4m−1
∥∥u(2m)

∥∥2
L2(a,b)

.

Using the inequality ∥∥w(k)
∥∥2
L2(0,1)

≤ K2

∥∥w(2m)
∥∥2
L2(0,1)

of Lemma 1, we obtain the desired inequality∥∥u(k)∥∥2
L2(a,b)

≤ K2 (b− a)
2(2m−k) ∥∥u(2m)

∥∥2
L2(a,b)

, k = 0, 1, . . . , 2m− 1,

with K2 = K2
1 . The inequality,∥∥∥v(k)∥∥∥2
L2(a,b)

≤ K2 (b− a)
2(2m−k)

∥∥∥v(2m)
∥∥∥2
L2(a,b)

, k = 0, . . . , 2m− 1

can be proved by a similar argument. �
Remark 2. In Lemmas 1 and 2 we can replace ∥.∥L2 by ∥.∥L2

ω
.

3. Local in time result

3.1. Case of a truncated domain Ωn. In this subsection, we replace Ω by Ωn,
n ∈ N∗ and 1

n < T :

Ωn =

{
(t, x) ∈ Ω :

1

n
< t < T

}
.

Theorem 1. For each n ∈ N∗ such that 1
n < T, the problem

(7)


∂tun + (−1)m∂2mx un = f1,n ∈ L2

ω (Ωn) ,
un|t= 1

n
= 0,

∂kxun
∣∣
Γ1,n

= ∂lxun
∣∣
Γ2,n

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1,

(respectively,

(8)


∂tvn + (−1)m∂2mx vn = f2,n ∈ L2

ω (Ωn) ,
vn|t= 1

n
= 0,

∂kxvn
∣∣
Γ2,n

= ∂lxvn
∣∣
Γ1,n

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1, )

admits a unique solution un ∈ H1,2m
ω (Ωn) (respectively, vn ∈ H1,2m

ω (Ωn)). Here,

fi,n = fi|Ωn
and Γi,n = {(t, φi(t)) ∈ R2 :

1

n
< t < T}, i = 1, 2.
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Proof. The uniqueness of the solution is easy to check, thanks to the boundary
conditions. Let us prove the existence. The change of variables

Φ : (t, x) 7→ (t, y) =

(
t,
x− φ1 (t)

φ (t)

)
,

transforms Ωn into the rectangle Rn =
]
1
n , T

[
× ]0, 1[ . Putting

un (t, x) = w1,n (t, y) , vn (t, x) = w2,n (t, y) and fi,n (t, x) = gi,n (t, y) , i = 1, 2,

then Problems (7) and (8) become
∂tw1,n + a (t, y) ∂yw1,n + c (t) ∂2my w1,n = g1,n,
w1,n|t= 1

n
= 0,

∂kyw1,n

∣∣
y=0

= ∂lyw1,n

∣∣
y=1

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1,

and 
∂tw2,n + a (t, y) ∂yw2,n + c (t) ∂2my w2,n = g2,n,
w2,n|t= 1

n
= 0,

∂kyw2,n

∣∣
y=1

= ∂lyw2,n

∣∣
y=0

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1,

where a (t, y) = −yφ
′ (t) + φ′

1 (t)

φ (t)
and c (t) =

(−1)m

φ2m (t)
. The above change of variables

conserves the spaces L2
ω and H1,2m

ω because the functions a and c are bounded when
t ∈

]
1
n , T

[
. In other words

fi,n ∈ L2
ω (Ωn) ⇐⇒ gi,n ∈ L2

ω (Rn) , i = 1, 2,

and
un, vn ∈ H1,2m

ω (Ωn) ⇐⇒ w1,n, w2,n ∈ H1,2m
ω (Rn) .

Lemma 3. For each n ∈ N∗ such that 1
n < T, the following operator is compact

H1,2m
γ,ω (Rn) −→ L2

ω (Rn) , w1,n 7→ a (t, y) ∂yw1,n,

(respectively, H1,2m
δ,ω (Rn) −→ L2

ω (Rn) , w2,n 7→ a (t, y) ∂yw2,n), where

H1,2m
γ,ω (Rn) =

{
w1,n ∈ H1,2m

ω (Rn) :
w1,n|t= 1

n
= ∂kyw1,n

∣∣
y=0

= ∂lyw1,n

∣∣
y=1

= 0,

k = 0, . . . ,m− 1; l = m, . . . , 2m− 1

}
(respectively,

H1,2m
δ,ω (Rn) =

{
w2,n ∈ H1,2m

ω (Rn) :
w2,n|t= 1

n
= ∂kyw2,n

∣∣
y=1

= ∂lyw2,n

∣∣
y=0

= 0,

k = 0, . . . ,m− 1; l = m, . . . , 2m− 1

}
).

Proof. Rn has the "horn property"of Besov [2], so

∂y : H1,2m
γ,ω (Rn) −→ H1− 1

2m ,2m−1
ω (Rn) , w1,n 7→ ∂yw1,n,

(respectively,

∂y : H1,2m
δ,ω (Rn) −→ H1− 1

2m ,2m−1
ω (Rn) , w2,n 7→ ∂yw2,n),

is continuous. Since Rn is bounded, the canonical injection is compact from
H1− 1

2m ,2m−1
ω (Rn) into L2

ω(Rn), (see for instance [2]), where

H1− 1
2m ,2m−1

ω (Rn) = L2
ω

(
1

n
, T ;H2m−1

ω ]0, 1[

)
∩H1− 1

2m
ω

(
1

n
, T ;L2

ω ]0, 1[

)
.
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For the complete definitions of the Hr,s Hilbertian Sobolev spaces, see for instance
[15]. Then, ∂y is a compact operator from H1,2m

γ,ω (Rn) into L2
ω (Rn) , (respectively,

from H1,2m
δ,ω (Rn) into L2

ω (Rn)). Furthermore, since a (., .) is a bounded function,
the operator a∂y is then compact from H1,2m

γ,ω (Rn) into L2
ω (Rn) , (respectively, from

H1,2m
δ,ω (Rn) into L2

ω (Rn)). �

So, it is sufficient to show that the operator ∂t +
(−1)m

φ2m
∂2my is an isomorphism

from H1,2m
γ,ω (Rn) into L2

ω (Rn) , (respectively, from H1,2m
δ,ω (Rn) into L2

ω (Rn)). A
simple change of variable t = h (s) with h′ (s) = φ2m (t) , transforms the problems

∂tw1,n +
(−1)m

φ2m (t)
∂2my w1,n = g1,n,

w1,n|t= 1
n
= 0,

∂kyw1,n

∣∣
y=0

= ∂lyw1,n

∣∣
y=1

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1,

and 
∂tw2,n +

(−1)m

φ2m (t)
∂2my w2,n = g2,n,

w2,n|t= 1
n
= 0,

∂kyw2,n

∣∣
y=1

= ∂lyw2,n

∣∣
y=0

= 0, k = 0, . . . ,m− 1; l = m. . . , 2m− 1,

into the following problems

(9)


∂sw

1
n(s, y) + (−1)m∂2my w1

n(s, y) = ξ1n(s, y),
w1

n

∣∣
s=h−1( 1

n )
= 0,

∂kyw
1
n

∣∣
y=0

= ∂lyw
1
n

∣∣
y=1

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1,

and

(10)


∂sw

2
n(s, y) + (−1)m∂2my w2

n(s, y) = ξ2n(s, y),
w2

n

∣∣
s=h−1( 1

n )
= 0,

∂kyw
2
n

∣∣
y=1

= ∂lyw
2
n

∣∣
y=0

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1,

with
ξin (s, y) =

gi,n (t, y)

h′ (s)
and wi

n (s, y) = wi,n (t, y) , i = 1, 2.

Note that this change of variables preserves the spaces L2
ω and H1,2m

ω . It follows
that there exists a unique w1

n ∈ H1,2m
ω (respectively, w2

n ∈ H1,2m
ω ) solution of the

problem (9) (respectively, (10)). This implies that Problem (7) (respectively, (8))
admits a unique solution un ∈ H1,2m

ω (Ωn) (respectively, vn ∈ H1,2m
ω (Ωn)). We

obtain the functions un and vn by setting

un (t, x) = w1,n (t, y) = w1
n

(
h−1 (t) , y

)
and vn (t, x) = w2,n(t, y) = w2

n(h
−1(t), y).

�

We shall need the following result in order to justify the calculus of the next
section.

Lemma 4. For each n ∈ N∗ such that 1
n < T, the space{

un ∈ D

(
[
1

n
, T ];H2m

ω (0, 1)

)
:
un|t= 1

n
= ∂kyun

∣∣
y=0

= ∂lyun
∣∣
y=1

= 0,

k = 0, . . . ,m− 1; l = m, . . . , 2m− 1

}
,
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(respectively,{
vn ∈ D

(
[
1

n
, T ];H2m

ω (0, 1)

)
:
vn|t= 1

n
= ∂kyvn

∣∣
y=1

= ∂lyvn
∣∣
y=0

= 0,

k = 0, . . . ,m− 1; l = m, . . . , 2m− 1

}
),

is dense in{
un ∈ H1,2m

ω

(]
1

n
, T

[
× ]0, 1[

)
:
un|t= 1

n
= ∂kyun

∣∣
y=0

= ∂lyun
∣∣
y=1

= 0,

k = 0, . . . ,m− 1; l = m, . . . , 2m− 1

}
,

(respectively,{
vn ∈ H1,2m

ω

(]
1

n
, T

[
× ]0, 1[

)
:
vn|t= 1

n
= ∂kyvn

∣∣
y=1

= ∂lyvn
∣∣
y=0

= 0,

k = 0, . . . ,m− 1; l = m, . . . , 2m− 1

}
).

It is a particular case of Theorem 2.1 [15].

Remark 3. We can replace in Lemma 4 Rn =
]
1
n , T

[
× ]0, 1[ by Ωn with the help

of the change of variables defined above.

3.2. Case of a triangular domain. Now, we return to the non-rectangular domain
Ω and we suppose that the function φ1 (respectively, φ2) satisfies conditions (1)
and (2) in the case of Problem (3) (respectively, (4)).
For each n ∈ N∗ such that 1

n < T, we denote fi,n = fi|Ωn
∈ L2

ω(Ωn), i = 1, 2

and un ∈ H1,2m
γ,ω (Ωn) (respectively, vn ∈ H1,2m

δ,ω (Ωn)) the solution of Problem (3)
(respectively, (4)) in Ωn. Such solutions exist by Theorem 1.

Theorem 2. For T small enough, there exists a constant C > 0 independent of n
such that

∥un∥2H1,2m
ω (Ωn)

≤ C ∥f1,n∥2L2
ω(Ωn)

≤ C ∥f1∥2L2
ω(Ω) ,

∥vn∥2H1,2m
ω (Ωn)

≤ C ∥f2,n∥2L2
ω(Ωn)

≤ C ∥f2∥2L2
ω(Ω) .

In order to prove Theorem 2, we need some preliminary results.

Lemma 5. For every ϵ > 0 satisfying (φ2 (t)− φ1 (t)) ≤ ϵ, there exists a constant
C1 > 0 independent of n, such that∥∥∂jxun∥∥2L2

ω(Ωn)
≤ C1ϵ

2(2m−j)
∥∥∂2mx un

∥∥2
L2

ω(Ωn)
, j = 0, 1, . . . , 2m− 1∥∥∂jxvn∥∥2L2

ω(Ωn)
≤ C1ϵ

2(2m−j)
∥∥∂2mx vn

∥∥2
L2

ω(Ωn)
, j = 0, 1, . . . , 2m− 1.

Proof. Replacing in Lemma 2 u by un, v by vn and ]a, b[ by ]φ1 (t) , φ2 (t)[ , for a
fixed t, we obtain for j = 0, 1, . . . , 2m− 1∫ φ2(t)

φ1(t)

(
∂jxun

)2
dx ≤ C1 (φ2 (t)− φ1 (t))

2(2m−j) ∫ φ2(t)

φ1(t)

(
∂2mx un

)2
dx

≤ C1ϵ
2(2m−j)

∫ φ2(t)

φ1(t)

(
∂2mx un

)2
dx,

and ∫ φ2(t)

φ1(t)

(
∂jxvn

)2
dx ≤ C1 (φ2 (t)− φ1 (t))

2(2m−j) ∫ φ2(t)

φ1(t)

(
∂2mx vn

)2
dx

≤ C1ϵ
2(2m−j)

∫ φ2(t)

φ1(t)

(
∂2mx vn

)2
dx,

where C1 is the constant of Lemma 2. Multiplying the previous inequality by ω(t)
(which is positive) and integrating with respect to t, we obtain the desired estimates.

�
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Proof of Theorem 2 : Let us denote the inner product in L2
ω (Ωn) by ⟨., .⟩ ,

and set L = ∂t + (−1)m∂2mx , then we have

∥f1,n∥2L2
ω(Ωn)

= ⟨Lun, Lun⟩ = ∥∂tun∥2L2
ω(Ωn)

+
∥∥∂2mx un

∥∥2
L2

ω(Ωn)
+2⟨∂tun, (−1)m∂2mx un⟩,

and

∥f2,n∥2L2
ω(Ωn)

= ⟨Lvn, Lvn⟩ = ∥∂tvn∥2L2
ω(Ωn)

+
∥∥∂2mx vn

∥∥2
L2

ω(Ωn)
+2⟨∂tvn, (−1)m∂2mx vn⟩.

Estimation of 2⟨∂tun, (−1)m∂2mx un⟩ : We have

(−1)m∂tun.∂
2m
x un =

∑m−1
k=0 ∂x

(
∂kx∂tun.∂

2m−k−1
x un

)
(−1)m+k + 1

2∂t (∂
m
x un)

2
.

Then

2⟨∂tun, (−1)m∂2mx un⟩ = 2

∫
Ωn

m−1∑
k=0

∂x
(
∂kx∂tun.∂

2m−k−1
x un

)
(−1)m+kω(t)dtdx

+

∫
Ωn

∂t (∂
m
x un)

2
ω(t)dtdx

= 2

∫
∂Ωn

m−1∑
k=0

(
∂kx∂tun.∂

2m−k−1
x un

)
(−1)m+kνxω(t)dσ

+

∫
∂Ωn

(∂mx un)
2
νtω(t)dσ −

∫
Ωn

(∂mx un)
2
ω′(t)dtdx

where νt, νx are the components of the unit outward normal vector at the boundary
of Ωn.We shall rewrite the boundary integral making use of the boundary conditions.
On the part of the boundary of Ωn where t = 1

n , we have un = 0 and consequently
∂kxun = 0, k = 0, . . . , 2m − 1. The corresponding boundary integral vanishes. On
the part of the boundary where t = T, we have νx = 0 and νt = 1. Accordingly the
corresponding boundary integral∫ φ2(T )

φ1(T )

(∂mx un)
2
(T, x)ω (T ) dx

is nonnegative. On the parts of the boundary where x = φi (t) , i = 1, 2, we have

νx =
(−1)

i√
1 + (φ′

i)
2
(t)
, νt =

(−1)
i+1

φ′
i (t)√

1 + (φ′
i)

2
(t)
,

and

∂kxun (t, φ1 (t)) = ∂lxun (t, φ2 (t)) = 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1.

Differentiating ∂kxun (t, φ1 (t)) , k = 0, . . . ,m− 1 with respect to t, we obtain

∂t∂
k
xun (t, φ1 (t)) = −φ′

1 (t) ∂
k+1
x un (t, φ1 (t)) .

The boundary conditions on Γ1,n lead to

∂t∂
k
xun (t, φ1 (t)) =

{
0 if k = 0, . . . ,m− 2
−φ′

1 (t) ∂
m
x un (t, φ1 (t)) if k = m− 1.

Consequently, the corresponding integral is

In,1 = −
∫ T

1
n

φ′
1 (t) [∂

m
x un (t, φ1 (t))]

2
ω(t)dt.
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Then, we have

(11) 2⟨∂tun, (−1)m∂2mx un⟩ ≥ − |In,1| .

Estimation of 2⟨∂tvn, (−1)m∂2mx vn⟩ : We have

(−1)m∂tvn.∂
2m
x vn =

∑m−1
k=0 ∂x

(
∂kx∂tvn.∂

2m−k−1
x vn

)
(−1)m+k + 1

2∂t (∂
m
x vn)

2
.

Then

2⟨∂tvn, (−1)m∂2mx vn⟩ = 2

∫
Ωn

m−1∑
k=0

∂x
(
∂kx∂tvn.∂

2m−k−1
x vn

)
(−1)m+kω(t)dtdx

+

∫
Ωn

∂t (∂
m
x vn)

2
ω(t)dtdx

= 2

∫
∂Ωn

m−1∑
k=0

(
∂kx∂tvn.∂

2m−k−1
x vn

)
(−1)m+kνxω(t)dσ

+

∫
∂Ωn

(∂mx vn)
2
νtω(t)dσ −

∫
Ωn

(∂mx vn)
2
ω′(t)dtdx

where νt, νx are the components of the unit outward normal vector at the boundary
of Ωn.We shall rewrite the boundary integral making use of the boundary conditions.
On the part of the boundary of Ωn where t = 1

n , we have vn = 0 and consequently
∂kxvn = 0, k = 0, . . . , 2m − 1. The corresponding boundary integral vanishes. On
the part of the boundary where t = T, we have νx = 0 and νt = 1. Accordingly the
corresponding boundary integral∫ φ2(T )

φ1(T )

(∂mx vn)
2
(T, x)ω (T ) dx

is nonnegative. On the parts of the boundary where x = φi (t) , i = 1, 2, we have

νx =
(−1)

i√
1 + (φ′

i)
2
(t)
, νt =

(−1)
i+1

φ′
i (t)√

1 + (φ′
i)

2
(t)
,

and

∂kxvn (t, φ2 (t)) = ∂lxvn (t, φ1 (t)) = 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1.

Differentiating ∂kxvn (t, φ2 (t)) , k = 0, . . . ,m− 1 with respect to t, we obtain

∂t∂
k
xvn (t, φ2 (t)) = −φ′

2 (t) ∂
k+1
x vn (t, φ2 (t)) .

The boundary conditions on Γ2,n lead to

∂t∂
k
xvn (t, φ2 (t)) =

{
0 if k = 0, . . . ,m− 2
−φ′

2 (t) ∂
m
x vn (t, φ2 (t)) if k = m− 1.

Consequently, the corresponding integral is

In,2 =

∫ T

1
n

φ′
2 (t) [∂

m
x vn (t, φ2 (t))]

2
ω(t)dt.

Then, we have

(12) 2⟨∂tvn, (−1)m∂2mx vn⟩ ≥ − |In,2| .
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Estimation of In,k, k = 1, 2 : There exists a constant K3 > 0 independent of n
such that

(13) |In,1| ≤ K3ϵ
∥∥∂2mx un

∥∥2
L2

ω(Ωn)
and |In,2| ≤ K3ϵ

∥∥∂2mx vn
∥∥2
L2

ω(Ωn)
.

Indeed, we convert the boundary integral In,1 into a surface integral by setting

[∂mx un (t, φ1 (t))]
2

= − φ2(t)−x
φ(t) [∂mx un (t, x)]

2
∣∣∣x=φ2(t)

x=φ1(t)

= −
∫ φ2(t)

φ1(t)
∂x

{
φ2(t)−x

φ(t) [∂mx un]
2
}
dx

= −2
∫ φ2(t)

φ1(t)
φ2(t)−x

φ(t) ∂mx un.∂
m+1
x undx+

∫ φ2(t)

φ1(t)
1

φ(t) [∂
m
x un]

2
dx.

Then, we have

In,1 = −
∫ T

1
n
φ′
1 (t) [∂

m
x un (t, φ1 (t))]

2
ω (t) dt

= −
∫
Ωn

φ′
1(t)
φ(t) [∂mx un (t, x)]

2
ω (t) dtdx

+2
∫
Ωn

φ2(t)−x
φ(t) φ′

1 (t) (∂
m
x un)

(
∂m+1
x un

)
ω (t) dtdx.

Thanks to Lemma 5, we can write∫ φ2(t)

φ1(t)
[∂mx un]

2
dx ≤ K2 [φ (t)]

2m ∫ φ2(t)

φ1(t)

[
∂2mx un

]2
dx.

Therefore∫ φ2(t)

φ1(t)
[∂mx un]

2 |φ′
1|
φ ω (t) dx ≤ K2 |φ′

1| [φ (t)]
2m−1 ∫ φ2(t)

φ1(t)

[
∂2mx un

]2
ω (t) dx,

consequently

|In,1| ≤ K2

∫
Ωn

|φ′
1| [φ (t)]

2m−1 (
∂2mx un

)2
ω (t) dtdx

+2
∫
Ωn

|φ′
1| |∂mx un|

∣∣∂m+1
x un

∣∣ ω (t) dtdx,

since
∣∣∣φ2(t)−x

φ(t)

∣∣∣ ≤ 1. Using the inequality

2 |φ′
1∂

m
x un|

∣∣∂m+1
x un

∣∣ ≤ ϵ
(
∂m+1
x un

)2
+ 1

ϵ (φ
′
1)

2
(∂mx un)

2

for all ϵ > 0, we obtain

|In,1| ≤ K2

∫
Ωn

|φ′
1| [φ]

2m−1 (
∂2mx un

)2
ω (t) dtdx

+
∫
Ωn
ϵ
(
∂m+1
x un

)2
ω (t) dtdx+ 1

ϵ

∫
Ωn

(φ′
1)

2
(∂mx un)

2
ω (t) dtdx.

Lemma 5 yields
1

ϵ

∫
Ωn

(φ′
1)

2
(∂mx un)

2
ω (t) dtdx ≤ K2

1

ϵ

∫
Ωn

(φ′
1)

2
[φ]

2m (
∂2mx1

un
)2
ω (t) dtdx.

Thus,

|In,1| ≤ K2

∫
Ωn

[
|φ′

1| [φ]
2m−1

+ 1
ϵ (φ

′
1)

2
[φ]

2m
] (
∂2mx un

)2
ω (t) dtdx

+
∫
Ωn
ϵ
(
∂m+1
x un

)2
ω (t) dtdx

≤ (K2 + 1) ϵ
∫
Ωn

(
∂2mx un

)2
ω (t) dtdx,

since
∣∣φ′

1φ
m
(
φm−1 + φ′

1φ
m
)∣∣ ≤ ϵ. Finally, taking K3 = K2 + 1, we obtain

|In,1| ≤ K3ϵ
∥∥∂2mx un

∥∥
L2

ω(Ωn)
.

The inequality
|In,2| ≤ K3ϵ

∥∥∂2mx vn
∥∥
L2

ω(Ωn)
,
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can be proved by a similar argument.
Now, we can complete the proof of Theorem 2. Summing up the estimates (11),

(12) and (13), and making use of Lemma 5, we then obtain

∥f1,n∥2L2
ω(Ωn)

≥ ∥∂tun∥2L2
ω(Ωn)

+
∥∥∂2mx un

∥∥2
L2

ω(Ωn)
−K3ϵ

∥∥∂2mx un
∥∥2
L2

ω(Ωn)

≥ ∥∂tun∥2L2
ω(Ωn)

+ (1−K3ϵ)
∥∥∂2mx un

∥∥2
L2

ω(Ωn)
,

and

∥f2,n∥2L2
ω(Ωn)

≥ ∥∂tvn∥2L2
ω(Ωn)

+
∥∥∂2mx vn

∥∥2
L2

ω(Ωn)
−K3ϵ

∥∥∂2mx vn
∥∥2
L2

ω(Ωn)

≥ ∥∂tvn∥2L2
ω(Ωn)

+ (1−K3ϵ)
∥∥∂2mx vn

∥∥2
L2

ω(Ωn)
,

whereK3 is a positive number. Then, it is sufficient to choose ϵ such that (1−K3ϵ) >
0, to get a constant K4 > 0 independent of n such that

∥f1,n∥2L2
ω(Ωn)

≥ K4 ∥un∥2H1,2m
ω (Ωn)

and ∥f2,n∥2L2
ω(Ωn)

≥ K4 ∥vn∥2H1,2m
ω (Ωn)

.

But
∥f1,n∥L2

ω(Ωn)
≤ ∥f1∥L2

ω(Ω) and ∥f2,n∥L2
ω(Ωn)

≤ ∥f2∥L2
ω(Ω) ,

then, there exists a constant C > 0, independent of n satisfying

∥un∥2H1,2m
ω (Ωn)

≤ C ∥f1,n∥2L2
ω(Ωn)

≤ C ∥f1∥2L2
ω(Ω)

and
∥vn∥2H1,2m

ω (Ωn)
≤ C ∥f2,n∥2L2

ω(Ωn)
≤ C ∥f2∥2L2

ω(Ω) .

This ends the proof of Theorem 2.

Passage to the limit

We are now in position to prove the first main result of this work.

Theorem 3. Let us assume that the function of parametrization φ1, (respectively,
φ2) fulfils assumptions (1) and (2) and the weight function ω verifies conditions
(5) and (6). Then, for T small enough, Problem (3) (respectively, Problem (4))
admits a unique solution u (respectively, v) belonging to H1,2m

γ,ω (Ω) (respectively,
H1,2m

δ,ω (Ω)).

Proof. Choose a sequence (Ωn)n∈N∗ of the domains defined above. Then, we have
Ωn → Ω, as n→ +∞. Consider the solutions un, vn ∈ H1,2m

ω (Ωn) of the boundary
value problems

∂tun + (−1)m∂2mx un = f1,n ∈ L2
ω (Ωn) ,

un|t= 1
n
= 0,

∂kxun
∣∣
Γ1,n

= ∂lxun
∣∣
Γ2,n

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1,

and 
∂tvn + (−1)m∂2mx vn = f2,n ∈ L2

ω (Ωn) ,
vn|t= 1

n
= 0,

∂kxvn
∣∣
Γ2,n

= ∂lxvn
∣∣
Γ1,n

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1,

Γi,n are the parts of the boundary of Ωn where x = φi (t) , i = 1, 2. Such solutions
un, vn exist by Theorem 1. Let ũn and ṽn the 0−extensions of un and vn, respectively,
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to Ω. In virtue of Theorem 2, we know that there exists a constant K > 0
independent of n such that

∥ũn∥2L2
ω(Ω) +

∥∥∥∂̃tun∥∥∥2
L2

ω(Ω)
+

2m∑
j=1

∥∥∥∥∂̃jxun∥∥∥∥2
L2

ω(Ω)

≤ K ∥f1∥2L2
ω(Ω) ,

and

∥ṽn∥2L2
ω(Ω) +

∥∥∥∂̃tvn∥∥∥2
L2

ω(Ω)
+

2m∑
j=1

∥∥∥∥∂̃jxvn∥∥∥∥2
L2

ω(Ω)

≤ K ∥f2∥2L2
ω(Ω) .

This means that ũn, ṽn, ∂̃tun, ∂̃tvn, ∂̃
j
xun, ∂̃

j
xvn, for j = 1, . . . , 2m are bounded

functions in L2
ω (Ω) . So, for a suitable increasing sequence of integers nk, k = 1, 2, ...,

there exist functions

u, v, w1, w2, w1
j and w2

j , j = 1, . . . , 2m,

in L2
ω (Ω) such that

ũnk
⇀ u, ∂̃tunk

⇀ w1, ∂̃jxunk
⇀ w1

j , j = 1, . . . , 2m,

and
ṽnk

⇀ v, ∂̃tvnk
⇀ w2, ∂̃jxvnk

⇀ w2
j , j = 1, . . . , 2m,

weakly in L2
ω (Ω) , as k → +∞. Clearly

w1 = ∂tu, w
1
j = ∂jxu, and w2 = ∂tv, w

2
j = ∂jxv, j = 1, . . . , 2m,

in the sense of distributions in Ω. So, u, v ∈ H1,2m (Ω) and

∂tu+ (−1)m∂2mx u = f1 and ∂tv + (−1)m∂2mx v = f2,

in Ω. On the other hand, the solutions u, v satisfy the boundary conditions

∂kxu
∣∣
Γ1

= ∂lxu
∣∣
Γ2

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1

and
∂kxv

∣∣
Γ2

= ∂lxv
∣∣
Γ1

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1,

since
∀n ∈ N∗, u|Ωn

= un and v|Ωn
= vn.

This proves the existence of solution to Problems (3) and (4). �

4. Global in time result

In the case where T is not in the neighborhood of zero, we set Ω = D1∪D2∪ΓT1 ,
where

D1 = {(t, x) ∈ Ω : 0 < t < T1} , D2 = {(t, x) ∈ Ω : T1 < t < T} ,
and

ΓT1 =
{
(T1, x) ∈ R2 : φ1 (T1) < x < φ2 (T1)

}
,

with T1 small enough. In the sequel, k1, k2 stand for arbitrary fixed elements of
L2
ω (Ω) and k1,i = k1|Di

, k2,i = k2|Di
, i = 1, 2.

Theorem 3 applied to the triangular domain D1, shows that there exist unique
solutions w1, w2 ∈ H1,2m

ω (D1) of the problems

(14)
{
∂tw1 + (−1)m∂2mx w1 = k1,1 ∈ L2

ω (D1) ,
∂kxw1

∣∣
Γ1,1

= ∂lxw1

∣∣
Γ2,1

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1
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and

(15)
{
∂tw2 + (−1)m∂2mx w2 = k2,1 ∈ L2

ω (D1) ,
∂kxw2

∣∣
Γ2,1

= ∂lxw2

∣∣
Γ1,1

= 0, k = 0, . . . ,m− 1; l = m, . . . , 2m− 1,

Γi,1 are the parts of the boundary of D1 where x = φi (t) , i = 1, 2.

Lemma 6. If u ∈ H1,2m
ω (]0, T [× ]0, 1[) , then

u|t=0 ∈ Hm
ω (γ0) , u|x=0 ∈ H

1− 1
2m

ω (γ1) , and u|x=1 ∈ H
1− 1

2m
ω (γ2) ,

where γ0 = {0} × ]0, 1[ , γ1 = ]0, T [× {0} and γ2 = ]0, T [× {1} .

It is a particular case of Theorem 2.1 ([15], Vol.2). The transformation

(t, x) 7−→ (t′, x′) = (t, φ (t)x+ φ1 (t)) ,

leads to the following lemma :

Lemma 7. If u ∈ H1,2m
ω (D2) , then

u|ΓT1
∈ Hm

ω (ΓT1) , u|x=φ1(t)
∈ H

1− 1
2m

ω (Γ1,2) , and u|x=φ2(t)
∈ H

1− 1
2m

ω (Γ2,2) ,

where Γi,2 are the parts of the boundary of D2 where x = φi (t) , i = 1, 2.

Hereafter, we denote the trace w1|ΓT1
by ψ1, and w2|ΓT1

by ψ2, which are in
the Sobolev space Hm

ω (ΓT1) because w1, w2 ∈ H1,2m
ω (D1) (see Lemma 7). Now,

consider the following problems in D2

(16)


∂tw3 + (−1)m∂2mx w3 = k1,2 ∈ L2

ω (D2) ,
w3|ΓT1

= ψ1,

∂kxw3

∣∣
Γ1,2

= 0, k = 0, . . . ,m− 1,

∂lxw3

∣∣
Γ2,2

= 0, l = m, . . . , 2m− 1,

and

(17)


∂tw4 + (−1)m∂2mx w4 = k2,2 ∈ L2

ω (D2) ,
w4|ΓT1

= ψ2,

∂kxw4

∣∣
Γ2,2

= 0, k = 0, . . . ,m− 1,

∂lxw4

∣∣
Γ1,2

= 0, l = m, . . . , 2m− 1,

Γi,2 are the parts of the boundary of D2 where x = φi (t) , i = 1, 2. We use
the following result, which is a consequence of Theorem 4.3 ([15], Vol.2), to solve
Problems (16) and (17).

Proposition 2. Let Q be the rectangle ]0, T [× ]0, 1[ , l1, l2 ∈ L2
ω (Q) and ϕ1, ϕ2 ∈

Hm
ω (γ0) . Then, the problems

∂tu+ (−1)m∂2mx u = l1 ∈ L2
ω (Q) ,

u|γ0
= ϕ1,

∂kxu
∣∣
γ1

= 0, k = 0, . . . ,m− 1

∂lxu
∣∣
γ2

= 0, l = m, . . . , 2m− 1,

and 
∂tv + (−1)m∂2mx v = l2 ∈ L2

ω (Q) ,
v|γ0

= ϕ2,

∂kxv
∣∣
γ2

= 0, k = 0, . . . ,m− 1

∂lxv
∣∣
γ1

= 0, l = m, . . . , 2m− 1,
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where γ0 = {0} × ]0, 1[ , γ1 = ]0, T [ × {0} and γ2 = ]0, T [ × {1} , admit (unique)
solutions u, v ∈ H1,2m

ω (Q) .

Remark 4. In the application of Theorem 4.3 ([15], Vol.2) we can observe that
there are no compatibility conditions to satisfy because ∂xϕ1 and ∂xϕ2 are only in
L2(γ0).

Thanks to the transformation (t, x) 7−→ (t, y) = (t, φ (t)x+ φ1 (t)) , we deduce
the following result:

Proposition 3. Problems (16) and (17) admit (unique) solutions w3, w4 ∈ H1,2m
ω (D2) .

So, the function u (respectively, v) defined by

u :=

{
w1 in D1,
w3 in D2,

(respectively

v :=

{
w2 in D1,
w4 in D2),

is the (unique) solution of Problem (3) (respectively, (4)) for an arbitrary T.
Our second main result is proved, that is,

Theorem 4. Let us assume that the function of parametrization φ1, (respectively,
φ2) fulfils assumptions (1) and (2) and the weight function ω verifies conditions (5)
and (6). Then, Problem (3) (respectively, Problem (4)) admits a unique solution u

(respectively, v) belonging to H1,2m
γ,ω (Ω) (respectively, H1,2m

δ,ω (Ω)).
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