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Abstract. We define a class of self-similar dendrites in R2 generated
by system S of similarity maps of a convex polygon P and find upper
bound for the order of their ramification points, show that such dendrites
are continua of bounded turning and prove Hölder continuity of their
isomorphisms.
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1. Introduction

The study of dendrites occupies a significant place in general topology [12, 15, 19].
One can refer to the paper [5] of J.Charatonik and W.Charatonik for exhaustive
overview covering more than 75-year research in this area. At the same time, in
the theory of self-similar sets there are individual attempts to work out some
approaches to self-similar dendrites in certain situations. In 1985, Hata [8] studied
connectedness properties of attractor K of a system S of weak contractions in a
complete metric space and showed that if K is a dendrite then it has infinite set
of end points. In 1990 Ch. Bandt showed in [2] that the Jordan arcs connecting
pairs of points of a post-critically finite self-similar set are self-similar, and the set
of possible values for dimensions of such arcs is finite, applying these results to
dendrites. He also considered factorisation of address space giving rise to dendrites
in [3]. Jun Kigami in his work [9] applied the methods of harmonic calculus on
fractals to dendrites. D.Croydon in his thesis [6] obtained heat kernel estimates for
continuum random tree and for certain family of p.c.f. random dendrites on the
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plane. D.Dumitru and A.Mihail [7] made an attempt to get a sufficient condition
for a self-similar set to be a dendrite in terms of sequences of intersection graphs
for the refinements of the system S.

There are several questions arising in the study of self-similar dendrites. What
kind of topological restrictions characterise the class of dendrites generated by
systems of similarities in Rd? What are the explicit construction algorithms for
self-similar dendrites? What are the metric and analytic properties of morphisms
of self-similar structures on dendrites?

The aim of our work is to make clear basic topological and metric properties
of self-similar dendrites in the most simple settings. For that reason we consider
systems of similarities in the plane, which we call polygonal tree systems (Definition
9). We show that the attractor K of such system S is a dendrite (Theorem 12),
that, by the construction, each such system S satisfies open set condition, one-
point intersection property and is post-critically finite (Proposition 10, Corollary
21); for the dendrite K we define its main tree (Definition 16) and show that each
cut point of K lies in some image Sj(γ̂) of the main tree (Theorem 20) and get
the upper bound for the order of ramification points of K, depending only on the
initial polygon P of the system S. We show that the dendrite K is a continuum
with bounded turning in the sense of P.Tukia (Theorem 26). Finally, we show
that each combinatorial equivalence of polygonal tree systems S,S′ defines unique
homeomorphism ϕ : K → K ′, compatible with S and S′ and prove Hölder continuity
of ϕ and ϕ−1 (Theorem 27).

The authors would like to thank V.Aseev and Ch.Bandt for useful comments and
D. Mekhontsev for his excellent programs IFSTile [14] and Fractracer [13] which
served as main visualisation tools in our study.

1.1. Preliminaries. Dendrites. A dendrite is a locally connected continuum con-
taining no simple closed curve.

In the case of dendrites the order Ord(p,X) of the point p with respect to X
is equal to the number of components of the set X \ {p}. Points of order 1 in a
continuum X are called end points of X; the set of all end points of X will be
denoted by EP (X). A point p of a continuum X is called a cut point of X provided
that X \ {p} is not connected; the set of all cut points of X will be denoted by
CP (X). Points of order at least 3 are called ramification points of X; the set of all
ramification points of X will be denoted by RP (X).

We will use the following statements selected from [5, Theorem 1.1]:

Theorem 1. For a continuum X the following conditions are equivalent:

(a) X is dendrite;
(b) every two distinct points of X are separated by a third point;
(c) each point of X is either a cut point or an end point of X;
(d) each nondegenerate subcontinuum of X contains uncountably many cut

points of X.
(e) for each point p ∈ X the number of components of the set X \ {p} =

ord(p,X) whenever either of these is finite;
(f) the intersection of every two connected subsets of X is connected;
(g) X is locally connected and uniquely arcwise connected.
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Self-similar sets. Let (X, d) be a complete metric space. A mapping
F : X → X is a contraction if LipF < 1. The mapping S : X → X is called a
similarity if

(1) d(S(x), S(y)) = rd(x, y)

for all x, y ∈ X and some fixed r.

Definition 2. Let S = {S1, S2, . . . , Sm} be a system of (injective) contraction maps
on the complete metric space (X, d). A nonempty compact set K⊂X is said to be

invariant with respect to S, if K =
m⋃
i=1

Si(K).

We also call the subset K⊂X self-similar with respect to S. Throughout the
whole paper, the maps Si ∈ S are supposed to be similarities and the set X to be
R2.
Notation. I = {1, 2, ...,m} is the set of indices, I∗ =

∞⋃
n=1

In - is the set of all

finite I-tuples, or multiindices j = j1j2...jn, where ij is the concatenation of the
corresponding multiindices;
we write Sj = Sj1j2...jn = Sj1Sj2 ...Sjn and for the set A ⊂ X we denote Sj(A) by
Aj; we also denote by GS = {Sj, j ∈ I∗} the semigroup, generated by S;
I∞ = {α = α1α2 . . . , αi ∈ I} – index space; and π : I∞ → K is the index map ,

which sends α to the point
∞⋂
n=1

Kα1...αn
.

Definition 3. The system S satisfies the open set condition (OSC) if there exists
a non-empty open set O⊂X such that Si(O), {1 ≤ i ≤ m} are pairwise disjoint and
all contained in O.

We say the self-similar set K defined by the system S satisfies the one-point
intersection property if for any i 6= j, Si(K)

⋂
Sj(K) is not more than one point.

The union C of all Si(K) ∩ Sj(K), i, j ∈ I, i 6= j is called the critical set of the
system S. The post-critical set P of the system S is the set of all α ∈ I∞ such that
for some j ∈ I∗, Sj(π(α)) ∈ C. [10]

We use the following convenient criterion of connectedness of the attractor of a
system S [8, 10].

Theorem 4. Let K be the attractor of a system of contractions S in a complete
metric space (X, d). Then the following statements are equivalent:
1) for any i, j ∈ I there are {i0, i1, . . . , in}⊂I such that i0 = i, in = j and
Sik(K)

⋂
Sik+1

(K) 6= ∅ for any k = 0, 1, . . . , n− 1.
2) K is arcwise connected.
3) K is connected.

Proposition 5. [10] If a self-similar set K is connected, it is locally connected.

Zippers and multizippers. The simplest way to construct a self-similar curve
is to take a polygonal line and then replace each of its segments by a smaller copy
of the same polygonal line; this construction is called zipper and was studied by
Aseev, Tetenov and Kravchenko [1].
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Definition 6. Let X be a complete metric space. A system S = {S1, . . . , Sm} of
contraction mappings of X to itself is called a zipper with vertices {z0, . . . , zm}
and signature ε = (ε1, . . . , εm), εi ∈ {0, 1}, if for i = 1 . . .m, Si(z0) = zi−1+εi and
Si(zm) = zi−εi .

More general approach for building self-similar curves and continua is provided
by a graph-directed version of zipper construction, which is called multizipper [17]:

Definition 7. Let {Xu, u ∈ V } be a system of spaces, all isomorphic to Rd. For
each Xu let a finite array of points be given {x(u)0 , . . . , x

(u)
mu}. Suppose for each

u ∈ V and 0 ≤ k ≤ mu we have some v(u, k) ∈ V and ε(u, k) ∈ {0, 1} and a map
S
(u)
k : Xv → Xu such that
S
(u)
k (x

(v)
0 ) = x

(u)
k−1 or x

(u)
k and S(u)

k (x
(v)
mv ) = x

(u)
k or x(u)k−1, depending on the signature

ε(u, r).
The graph directed iterated function system (IFS) defined by the maps S(u)

k is called
a multizipper Z.

The attractor of multizipper Z is a system of connected and arcwise connected
compact sets Ku⊂Xu satisfying the system of equations

Ku =

mu⋃
k=1

S
(u)
k (Kv(u,k)), u ∈ V

We call the sets Ku the components of the attractor of Z.
We call Z Jordan multizipper if the components of Ku of its attractor are Jordan

arcs and if it satisfies one point intersection property. The following Theorem gives
conditions under which Z is a Jordan multizipper:

Theorem 8. Let Z0 = {S(u)
k } be a multizipper with node points x(u)k and a signature

ε = {(v(u, k), ε(u, k)), u ∈ V, k = 1, . . . ,mu}. If for any u ∈ V and any i, j ∈
{1, 2, . . . ,mu}, the set K(u,i) ∩ K(u,j) = ∅ if |i − j| > 1 and is a singleton if
|i − j| = 1, then any linear parametrization {fu : Iu → Ku} is a homeomorphism
and each Ku is a Jordan arc with endpoints x(u)0 , x

(u)
m .

2. Polygonal tree systems.

Let P be a convex polygon in R2 and VP = {A1, . . . , AnP
} be the set of its

vertices, where nP = #VP .
Consider a system of contracting similarities S = {S1, . . . , Sm}, which possesses the
following properties:
(D1) For any k ∈ I, the set Pk = Sk(P ) is contained in P ;
(D2) For any i 6= j, i, j ∈ I, Pi

⋂
Pj is either empty or is a common vertex of Pi

and Pj ;
(D3) For any Ak ∈ VP there is the map Si ∈ S and a vertex Al ∈ VP such that
Si(Al) = Ak;

(D4) The set P̃ =
m⋃
i=1

Pi is contractible.

Definition 9. The system (P, S) satisfying the conditions D1-D4 is called a poly-
gonal tree system associated with the polygon P .

Some properties of the attractor K of a polygonal tree system S follow directly
from its definition:
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Proposition 10. Let S be a polygonal tree system associated with a polygon P and
let K be its attractor. Then (i) S satisfies open set condition; (ii) S satisfies
one point intersection property.

Proof. (i) Since for any i, j = 1, . . . ,m, Pi⊂P and Ṗi ∩ Ṗj = ∅ for i 6= j, Ṗ can be
taken for the open set; (ii) follows directly from (D2). �

Thus, to define a polygonal tree system, we specify a polygon P , a system of
its subpolygons Pi and the similarities Si, sending P to Pi. Applying Hutchinson
operator T (A) =

⋃
i∈I

Si(A) of the system S to the polyhedron P , we get the set

P̃ =
⋃
i∈I

Pi. We define P̃ (1) = T (P ), P̃ (n+1) = T (P̃ (n)). Thus we get a nested family

of sets P̃ (1)⊃P̃ (2)⊃ . . .⊃P̃ (n)⊃ . . . , whose intersection is K.

Example 2.1. Hata’s tree-like set.

A1 = S1(A1)

A2 = S2(A6) A3 = S2(A5)

A4 = S2(A4)

A5 = S1(A4)

A6 = S1(A3)

A7 = S1(A2)

P1

P2

Hata’s tree-like set [8] is a widely used example of self-similar dendrite [6, 10, 11]. The
picture represents it as the attractor of a polygonal tree system and shows how the
condition D3 holds. For different values of parameters the polygon P for the set has
5 to 7 vertices and the system S contains two maps. Here the maps are S1(z) = (1+ i)z̄/2,
S2(z) = (z̄ + 1)/2.

Example 2.2.

P1

P2

A1 = S1(A1) A2 = S2(A1)

A4 = S2(A3) A3 = S2(A2)

A dendrite, considered in R. Zeller’s thesis [20, Ch.1, p.18] is contained in one-parameter
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family of polygonal dendrites where P is a trapezium. The picture shows the one with
S1(z) = z/2 and S2(z) = iz/

√
2 + 1.

Composition of two Hutchinson operators corresponding to two polygonal tree
systems associated with the same polygon P is also an operator of the same type:

Lemma 11. (i) Let (P, S) and (P, S′) be polygonal tree systems of similarities
associated with P . Then the system S′′ = {Si ◦ S′j , Si ∈ S, Sj ∈ S′} is a polygonal
tree system of similarities associated with P .
(ii) For any n ∈ N, S(n) = {Sj, j ∈ In} is also a polygonal tree system associated
with P .

Proof. (i) The condition (D1) is obvious because Si ◦ S′j(P )⊂Si(P )⊂P .
(D2) Let Q1 = Si1 ◦ S′j1(P ) and Q2 = Si2 ◦ S′j2(P ) be two polygons in S′′ and
consider their intersection:
if i1 6= i2, Q1

⋂
Q2⊂Pi1

⋂
Pi2 , where the left-hand side intersection contains at

most one point.
if i1 = i2, Q1

⋂
Q2 = Si1(P

′
j1

⋂
P ′j2) which is either empty or a one-point set,

containing Si1(A′) where A′ is a common vertex of P ′j1 and P ′j2 .
(D3) holds because for any vertex Ak, there is a similarity Si ∈ S and a vertex
Ak1 such that Si(Ak1) = Ak and a similarity S′j ∈ S′ and a vertex Ak2 such that
S′j(Ak2) = Ak1 , therefore Si · S′j(Ak2) = Ak.

(D4) The sets P̃ =
m⋃
i=1

Pi and P̃ ′ =
m′⋃
i=1

P ′i are strong deformation retracts of the

polygon P , both containing the set VP . Let ϕ′(X, t) : P × [0, 1] → P be a strong

deformation retraction from P to
m′⋃
i=1

P ′i . So the map ϕ′ satisfies the conditions

ϕ′(x, 0) = Id, ϕ′(x, 1)(P ) = P̃ ′ and for any t ∈ [0, 1], ϕ′(x, t)|P̃ ′ = IdP̃ ′ .
Define a map ϕ′i : Pi × [0, 1]→ Pi by the formula

ϕ′i(x, t) = Si ◦ ϕ′(Si−1(x), t).

Each map ϕ′i is a strong deformation retraction from Pi to Si(P̃ ′).
Observe that the map ϕ′i keeps all the vertices Si(Ak) of the polygon Pi fixed.
Therefore we can define a strong deformation retraction ϕ̃(x, t) : P̃ × [0, 1] →
m⋃
i=1

Si(P̃
′) = P̃ by a formula

ϕ̃(x, t) = ϕ′i(x, t), if x ∈ Pi
The map ϕ̃ is well-defined and continuous because if Pi

⋂
Pj = {Si(Ak)} = {Sj(Al)}

for some k and l, then ϕ′i(Si(Ak), t) ≡ ϕ′j(Sj(Al), t) ≡ Si(Ak).

Moreover, ϕ̃(x, 0) = x on P̃ , and ϕ̃(P̃ , 1) ≡
m⋃
i=1

Si(P̃
′) and ϕ̃(x, t)|P̃ ′′ ≡ Id.

So ϕ̃(x, t) is a strong deformation retraction from P̃ to P̃ ′′.
Therefore, the set P̃ ′′ =

⋃
Si ◦ S′j(P ) is contractible.

(ii) is proved by induction. Suppose S(n) is a polygonal tree system associated
with P . Then by (i), S(n+1) = S(n) ◦ S is also such a system. �

Theorem 12. Let S be a polygonal tree system of similarities associated with P ,
and let K be its attractor. Then K is a dendrite.



SELF-SIMILAR POLYGONAL DENDRITES 743

Proof. By Lemma 11, the sets P̃ (n) are contractible compact sets, satisfying the
inclusions P̃ (1)⊃P̃ (2)⊃P̃ (3) . . .. The diameter of connected components of the interior
of each P̃ (n) does not exceed diamP · qn, where q = maxLip(Si). Therefore the
set K =

⋂
P̃ (n) is contractible and has empty interior. Since the system {Pi}

satisfies conditions of Theorem 4, the attractor K is connected, locally connected
and arcwise connected [10, Theorem 1.6.2, Proposition 1.6.4]. Since any simple
closed curve in a contractible set X on a plane bounds a disc in X which has interior
points, the set K contains no simple closed curve and therefore is a dendrite. �

Corollary 13. For any j ∈ I∗ the set Sj(VP ) of vertices of the polygon Pj is
contained in K.

Proof. Since for any n ∈ N, S(n) is the polygonal tree system associated with P , each
of the vertices VP⊂P̃ (n). Therefore VP⊂K. Then for any j ∈ I∗, Sj(VP )⊂K. �

The dendrite K lies in the polygon P , and its intersection with the sides of P
can be uncountable, or even contain the whole sides of P . This is also true for any
subpolygon Si(P ). Nevertheless, the dendrite K can "penetrate"to each Pj only
through its vertices, namely:

Proposition 14. Let j ∈ I∗ be a multiindex. For any continuum L⊂K, whose
intersection with both Pj and CPj is nonempty, L\Pj ∩ Pj ⊂ Sj(VP ).

Proof. Suppose j ∈ Ik. Let P cj denote the closure of the set P̃ (k)\Pj. Observe that
P cj =

⋃
i∈Ik\{j}

Pi, therefore P cj ∩ Pj ⊂ Sj(VP ). By the condition D3 applied to the

system S(k), this intersection is nonempty and the set P̃ (k)\Sj(VP ) is disconnected,
while Pj\Sj(VP ) is its component.

The continuum L lies in P̃ (k). If L∩ (Pj\Sj(VP )) = ∅, then L∩Pj ⊂ Sj(VP ) and
L ∩ Pj consists of unique vertex A of Pj, so that L\Pj ∩ Pj = {A}.

Now, let L ∩ (Pj\Sj(VP )) 6= ∅. Since L\Pj⊂P cj , we have

L\Pj ∩ Pj ⊂ P cj ∩ Pj ⊂ Sj(VP )

The set on the left side is nonempty because L intersects both Pj\Sj(VP ) and
P̃ (k)\Pj. �

2.1. The main tree and ramification points. Let γij be the arc inK, connecting
the vertices Ai and Aj . As it was proved by C. Bandt [2] in more general situation
of post-critically finite sets, these arcs are the components of the attractor of a
graph-directed system of similarities. We emphasise that this system is a Jordan
multizipper [17]:

Theorem 15. The arcs γij are the components of an invariant set of some multizipper
Z.

Proof. We say that the polygons Pi1 , . . . , Pim form a chain connecting x and y, if
Pi1 3 x, Pim 3 y and Pik

⋂
Pil is empty if |l−k| > 1 and is a common vertex of Pik

and Pil when |l − k| = 1.
For any Ai, Aj , there is a unique chain of polygons Pijk, k = 1, . . .mij connecting
Ai and Aj .
Let u(i, j, k) и v(i, j, k) be the indices of vertices P , for which
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S′ijk(Au) = P ′ij(k−1)
⋂
P ′ijk = zij(k−1)

and S′ijk(Av) = P ′ijk
⋂
P ′ij(k+1) = zijk, if 1 < k < mij ,

and if k = 1 or k = mij , u(i, j, 1) = Ai = zij0 and v(i, j,mij) = Aj = zijmij
.

Thus for any triple (i, j, k),1 ≤ k ≤ mij , such u, v ∈ {1, ..., nP } are specified,
that S′ijk(zuv0) = zij(k−1) and S′ijk(zuvmuv

) = zijk.
Therefore the system {S′ijk} is a multizipper Z with node points zijk.

Since the relations:

γij =

mij⋃
i=1

S′ijk(γu(i,j,k),v(i,j,k)) =

mij⋃
i=1

γijk

are satisfied, the arcs γij form a complete set of the components of the attractor of
the multizipper Z.

Since each arc γijk lies in Pijk,

γijk
⋂
γijl = ∅,

if |k − l| > 1 and
γijk

⋂
γijl = {zijk},

and l = k±1. Therefore Z satisfies the conditions of the Theorem 8 and is a Jordan
multizipper. �

Definition 16. The union γ̂ =
⋃
i 6=j

γij is called the main tree of the dendrite K.

The ramification points of the tree γ̂ are called the main ramification points of the
dendrite K.

Example 2.3.

P4

Two polygonal dendrites, their main trees and main ramification points. Surprisingly,
instead of having a main ramification point of order 4, the polygon P4 has two main
ramification points of order 3. In second dendrite, the only main ramification point is a
common vertex of 2 polygons.

There is a simple way to know whether a point x ∈ K lies in γ̂ and belongs to
the set CP (γ̂) of its cut points or to the set EP (γ̂) of its end points:

Lemma 17. Let x ∈ K. (a) x ∈ CP (γ̂) iff there are vertices Ai1 , Ai2 , belonging
to different components of K\{x}; (b) x ∈ EP (γ̂) iff x is a vertex and x /∈ CP (γ̂).
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Proof. First part of (a) is obvious. Since the union γxAi1
∪ γxAi2

is a Jordan arc,
it is equal to γi1i2 . So x is a cut point of γi1i2 , and therefore of γ̂. To check (b),
suppose x ∈ γ̂ is not a vertex, then x lies in some γi1i2 , so it is a cut point of γ̂.
The second part of (b) is obvious. �

There are points in K for which their order in K and in γ̂ is the same:

Lemma 18. Let x ∈ CP (K). If each component Cl of K\{x} contains a vertex of
P , then Ord(x,K) is finite and Ord(x,K) = Ord(x, γ̂)

Proof. The number of components of K\{x} is not greater than n, so it’s finite.
Let Cl, l = 1, ..., k, k = Ord(x,K) be the components of K\{x}. By Lemma 17,
x ∈ γ̂. It also follows from Lemma 17 that two vertices Ai1 and Ai2 lie in the same
component Cl if and only if x /∈ γi1i2 . Therefore, all the vertices of P , belonging
to the same component Cl of K\{x}, belong to the same component of γ̂\{x}.
Therefore Ord(x, γ̂) = Ord(x,K). �

For x ∈ R, we denote by dxe the ceiling of x, or the minimal integer n which is
greater or equal to x.

Proposition 19. a) For any x ∈ γ̂, γ̂ =
n⋃
j=1

γAjx.

b) Ai is a cut point of γ̂, if there are j1, j2 such that γj1i ∩ γj2i = {Ai};
c) the only end points of γ̂ are the vertices Aj such that Aj /∈ CP (γ̂);
d) if #π−1(Ai) = 1, then Ord(Ai,K) ≤ nP − 1, otherwise Ord(Ai,K) ≤ (nP −

1)(

⌈
θmax
θmin

⌉
−1), where θmax, θmin are maximal and minimal values of vertex angles

of P .

Proof. For any j1, j2, γj1j2⊂γAj1
x ∪ γAj2

x, which implies a). Repeating argument
of Lemma 17, we see that Ai is a cut point of γi1i2 and therefore of γ̂, thus proving
b). If x ∈ γ̂ is not a vertex, then for some j1, j2, x ∈ γj1j2 , so x is a cut point of
γj1j2 and therefore of γ̂, which implies c).

Let {Cl, l = 1, ..., k} be some set of components of K\{Ai}. Since {Ai} is the
intersection of unique nested sequence of polygons Pj1⊃Pj1j2⊃...⊃Pj1..js .., there is
such s, that diamPj1..js < diamCi for any i = 1, ..., k. Then, by Proposition 14,
each Cl contains some vertex of Pj1..js , different from Ai, therefore k ≤ nP − 1 so
Ord(Ai,K) ≤ nP − 1 is finite. So we can suppose that we took k = Ord(Ai,K)
initially and {C1, ..., Ck} was the set of all components of K \ {Ai}.

Let j = j1..js and Ai = Sj(A
′). The sets Cl ∩Pj are the components of Kj\{Ai}.

Since (K ∩ Pj)\{Ai} = Sj(K\{A′}), there are k components C ′l of K\{A′}, such
that Sj(C

′
l) = Cl ∩ Pj. Since each set C ′l contains the vertices of P , by Lemma 18,

Ord(A′, γ̂) = Ord(A′,K) = Ord(Ai,K) ≤ nP − 1.
Suppose #π−1(Ai) > 1, and let Pj1⊃Pj1j2⊃.. and Pj′1⊃Pj′1j′2⊃...⊃Pj′1..j′s .. be

two different nested sequences of polygons whose intersection is Ai. For any two
polygons Pj, Pj′ either their intersection is Ai or one of these polygons contains the
other. Therefore, there is some k such that Pj1..js = Pj′1..j′s for s < k and Pj1..js ∩
Pj′1..j′s = {Ai} for s ≥ k. Since the vertex angles of respective polygons at Ai form
a decreasing sequence assuming finite set of values, both sequences of these values
are eventually constant. These final values are greater or equal to θmin. Therefore,
there is a finite number of polygons Pjk 3 Ai, whose pairwise intersections are {Ai},
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such that any other polygon Pj′ , containing Ai, either contains one of them, or is
contained in some Pjk and has the same vertex angle at Ai. Then Ord(Ai,K) =∑
Ord(Ai, Pjk) =

∑
Ord(Ai, Sjk(γ̂)). The number of polygons Pjk is not greater

than
⌈
θmax
θmin

⌉
− 1, therefore Ord(Ai,K) ≤ (nP − 1)

⌈
θmax
θmin

− 1

⌉
�

Example 2.4.

A C

D

B

E

A polygonal system, generated by 9 maps of a quadrilateral ABCD with vertex angles 30,
110, 110 and 110 degrees. The main tree γ̂ is the union of line segments AB, AC and AD.
For the vertex A, Ord(A,K) = Ord(A, γ̂) = 3. The vertices B and D have order 1 both in
γ̂ and in the dendrite K. The vertex C has Ord(C, γ̂) = 1 but Ord(C,K) = 9. The point
E has the maximal order 24. By Theorem 20, for this type of polygon, maximal possible
order may be 33.

Theorem 20. CP (K)⊂
⋃

j∈I∗
Sj(γ̂).

For each cut point y ∈ K\
⋃

j∈I∗
Sj(γ̂) there is Si and x ∈ γ̂, such that y = Si(x) and

Ord(y,K) = Ord(x, γ̂).
Otherwise, there are multiindices ik, k = 1, .., s and vertices x1, ..., xs, such that
for any k, Sik(xk) = y, for any l 6= k, Sik(P ) ∩ Sil(P ) = {y} and Ord(y,K) =
s∑

k=1

Ord(xk, γ̂) ≤ (nP − 1)

(⌈
2π

θmin

⌉
− 1

)
.

Proof. Let {C1, ..., Ck}, k > 1, be some set of the components of K \ {y}. Take
0 < ρ < min

i=1,...,k
diam(Ci). Let j ∈ I∗ be a multiindex such that Pj 3 y and

diam(Pj) ≤ ρ and let y = Sj(x).
Suppose the point x is not a vertex of the polygon P . Then y ∈ Ṗj and the sets

Ci ∩Pj are the components of Kj\{y}. Since (K ∩Pj)\{y} = Sj(K\{x}), there are
k components C ′i of K\{x}, such that Sj(C

′
i) = Ci ∩ Pj. By Proposition 14, each

set C ′i contains the vertices of P , therefore k ≤ n and Ord(y,K) ≤ n. So we can
suppose that we took k = Ord(y,K) initially and {C1, ..., Ck} was the set of all
components of K \ {y}. Since each set C ′i contains the vertices of P , by Lemma 18,
Ord(x, γ̂) = Ord(x,K) = Ord(y,K).

The proof of the last part repeats the proof of d) in Proposition 19. Suppose y ∈
GS(VP ). Considering nested sequences of polygons Pj1⊃Pj1j2⊃.. whose intersection
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is y, we see that there is a finite number of polygons Pjk 3 y, whose pairwise
intersections are {y}, such that any other polygon Pj′ , containing y, either contains
one of them, or is contained in some Pjk and has the same vertex angle at y. Then

the number of polygons Pjk is not greater than
⌈

2π

θmin

⌉
− 1, therefore Ord(y,K) ≤

(nP − 1)

⌈
2π

θmin
− 1

⌉
. �

Corollary 21. Let (P, S) be a polygonal tree system and K be its attractor. (i) For

any x ∈ K, π−1(x) contains at most (nP − 1)

(⌈
2π

θmin

⌉
− 1

)
elements;

(ii) The system S is post-critically finite.

Proof. (i) was proved in previous Theorem. Since post-critical set is contained in
π−1(VP ), it is finite. �

2.2. Metric properties of polygonal dendrites. Following [18], we remind that
for c ≥ 1, a set A⊂Rn is of c-bounded turning if each pair of points a, b ∈ A can be
joined by a continuum F⊂A with diameter diam(F ) ≤ c|a− b|. In this subsection
we prove that a dendrite K, defined by a polygonal tree system, is of c-bounded
turning for some c ≥ 1.

Lemma 22. Let {P, S} be a polygonal tree system. There is such ρ that
(i) for any vertex A, Vρ(A)

⋂
Pk 6= ∅⇒ Pk 3 A;

(ii) for any x, y ∈ P such that there are Pk, Pl : x ∈ Pk, y ∈ Pl and Pk
⋂
Pl =

∅, d(x, y) ≥ ρ. �

Let α denote the minimal angle between the sides of polygons Pi, Pj , having
common vertex.

Lemma 23. For any vertex A of P and for any x ∈ K \ {A},
diam γAx
d(x,A)

≤ diamP

ρ

Proof. There are such i1, . . . , ik+1 that A ∈ Si1...ik+1
(P ) and

x ∈ Si1...ik(P ) \ Si1...ik+1
(P ). Let x′ = S−1i1...ik(x) and A′ = S−1i1...ik(A). Then x′ ∈

P \ Pik+1
and A′ ∈ Pik+1

, so d(x′, A′) ≥ ρ, and
diam γx′A′

d(x′, A′)
≤ diamP

ρ
. Since

Si1...ik(γx′A′) = γxA, we get
diam γxA
d(x,A)

≤ diamP

ρ
. �

Lemma 24. If x ∈ Sk(K), y ∈ Sl(K), Pk ∩ Pl = A and x 6= y, then

diam γxy
d(x, y)

≤ diamP

ρ sin (α/2)
.

Proof.
d(x, y)

d(x,A) + d(A, y)
≥

√
d(x,A)

2
+ d(A, y)

2 − 2d(x,A)d(A, y) cosα

d(x,A) + d(A, y)
.
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The minimum value for the right side of equation over all d(x,A), d(y,A) is
sinα/2, while, by Lemma 23,

d(x,A) + d(A, y)

diam γxy
≥ ρ

diamP
(2)

Therefore we have
diam γxy
d(x, y)

≤ diamP

ρ sin (α/2)
. �

Lemma 25. For any x, y ∈ K,
diam γxy
d(x, y)

≤ diamP

ρ sin (α/2)
.

Proof. There are such i1, . . . , ik, ik+1 that x ∈ Si1...ik+1
(P ) and y ∈ Si1...ik(P \ Pik+1

).
Let x′ = S−1i1...ik(x), y

′ = S−1i1...ik(y). Suppose y
′ ∈ Pl.

If Pl
⋂
Pik+1

= ∅, then
diam γx′y′

d(x′, y′)
≤ diamP

ρ
.

If Pl and Pik+1
have a common vertex, then

diam γx′y′

d(x′, y′)
≤ diamP

ρ sinα/2
.

Thus we have,
diam γxy
d(x, y)

≤ diamP

ρ sinα/2
.

�

From previous three Lemmas we immediately get the following

Theorem 26. The attractor K of a polygonal tree system S is a continuum with
bounded turning. �

2.3. Morphisms of polygonal dendrites. In the following Theorem we admit
that the enumeration of the vertices of the polygons P and P ′ needs not follow any
order, and all permutations of indices are allowed.

Theorem 27. Let dendrites K,K ′ be the attractors of polygonal tree systems
S = {S1, S2, . . . Sm} and S′ = {S′1, S′2, . . . S′m} associated with polygons P, P ′ whose
vertices A1, ..., An and A′1, ..., A′n satisfy the conditions

(i) For any i, j = 1, ..., n, Sk(Ai) = Aj iff S′k(A
′
i) = A′j;

(ii) For any i, j = 1, ..., n Sk1(Ai) = Sk2(Aj) iff S′k1(A
′
i) = S′k2(A

′
j).

Then there is a bi-Hölder homeomorphism ψ : K → K ′ such that for any i =
1, ...,m, ψ ◦ Si = S′i ◦ ψ.

Proof. 1. The condition (i) implies that for any multiindex k = k1k2...kl ∈ I∗ the
equality Sk(Ai) = Aj holds iff S′k(A

′
i) = A′j .

Indeed, it’s true for l = 1; proceeding by induction, let the condition (i) be true
for any k1k2...kl ∈ I l and i, j ∈ {1, . . . , n}, i.e.

Sk1...kl(Ai) = Aj ⇐⇒ S′k1...kl(A
′
i) = A′j
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Suppose for some k1k2...kl+1 ∈ I l+1 and some vertices Ai, Aj we have
Sk1k2...kl+1

(Ai) = Aj .

Consider the point Sk2...klkl+1
(Ai) = S−1k1 (Aj). This point is some vertex Ai1 of P .

Since the multiindex k2, . . . , kl, kl+1 is of length l, S′k2...klkl+1
(A′i) = A′i1 by induction

hypothesis. At the same time, S′k1(A
′
i1
) = A′j . Therefore S′k1k2...klkl+1

(A′i) = A′j .

A1 A3

A4

A2

1

2

3

4

1

2 3
4

1

2
34

S1 S5 S3

S2

S4

1 3
24

1 3
24

1 3
24

1

32

4

1

3

2

4

S1

S2

S3

S4

S5

A1 A3

A2A4

Permutation of the vertices defining an isomorphism of two polygonal tree systems. The
respective attractors are shown below.

2. The condition (ii) implies that for any multiindices p1...pk and q1...ql the
equality Sp1...pk(Ai) = Sq1...ql(Aj) holds iff S′p1...pk(A

′
i) = S′q1...ql(A

′
j).

Suppose for some multiindices p1...pk and q1...ql and vertices Ai, Aj ,
Sp1...pk(Ai) = Sq1...ql(Aj).
Rewrite it as Sp1(Sp2...pk(Ai)) = Sq1(Sq2...ql(Aj)).
Since Sp2...pk(Ai) = S−1p1 (Aj), this point must be some vertex Ai1 of P . Similarly,
we also have Sq2...ql(Aj) = Aj1 .

From (i) it follows that S′p2...pl(A
′
i) = A′i1 and S′q2...ql(A

′
j) = A′j1 and from

Sp1(Ai1) = Sq1(Aj1) by (ii) it follows that S′p1(A
′
i1
) = S′q1(A

′
j1
).

Therefore, we have S′p1...pk(A
′
i) = S′q1...ql(A

′
j).

3. There is a bijection ϕ : K → K ′, such that for any i ∈ I, ϕ · Si = S′i · ϕ.

Consider the index maps π : I∞ → K and π′ : I∞ → K ′.
Suppose for some p = p1p2p3.... ∈ I∞ and q = q1q2q3.... ∈ I∞, π(p) = π(q) =

{x}, x ∈ K.
Then for any k, l ∈ N, Pp1...pk ∩Pq1...ql = {x}, so there are such vertices Aik , Ajl

that Sp1...pk(Aik) = Sq1...ql(Ajl) = x. Then, for any k, l, S′p1...pk(A
′
ik
) = S′q1...ql(A

′
jl
).

These equations imply the points S′p1...pk(A
′
ik
) and S′q1...ql(A

′
jl
) coincide for all k, l
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and therefore
∞⋂
k=1

P ′p1...pk =
∞⋂
l=1

P ′q1...ql . Applying this to all possible sequences p ∈

π−1(x), we obtain that π′(π−1(x)) is a unique point, which we denote as x′.
Denote the map π′ · π−1 : K → K ′ by ϕ. Since the same argument shows that

π · π′−1 : K ′ → K is the inverse map to ϕ, the map ϕ is a bijection.
Since π and π′ are compatible with the self-similar structure on I∞,K and K ′,

the same is true for ϕ = π′ · π−1.

4. The maps ϕ and ϕ−1 are Hölder continuous.

Denote ri = LipSi, r
′
i = LipS′i, β = min

i=1,...,m

log r′i
log ri

, β′ = min
i=1,...,m

log ri
log r′i

. Let also

|P |, |P ′| be the diameters of P and P ′ respectively. Let ρ and ρ′ denote the minimal
distances specified by Lemma 22 for the systems S and S′ respectively and let α,
α′ be respective minimal angles.

Observe that for any multiindex i = i1, . . . , ik, r
′
i ≤ r

β
i

Take some x, y ∈ K. There is a multiindex i1 . . . ik such that {x, y}⊂Pi1...ik and
for any ik+1, {x, y} 6⊂ Pi1...ikik+1

. Then there are two possibilities:

a) For some pair of multiindices, i1 . . . ikj and i1 . . . ikl,
Pi1...ikj ∩ Pi1...ikl = ∅, x ∈ Pi1...ikj and y ∈ Pi1...ikl.

Then d(x, y) ≤ ri1...ik |P |, while by Lemma 22, d(x, y) ≥ ri1...ikρ.
In this case, ri1...ikρ < d(x, y) ≤ ri1...ik |P |.
The same way, for the system S′ we have r′i1...ikρ

′
1 < d(x′, y′) ≤ r′i1...ik |P

′|.

But r′i1...ik ≤ r
β
i1...ik

, therefore d(x′, y′) ≤ rβi1...ik |P
′| ≤

(
d(x, y)

ρ

)β
|P ′|.

b) There are i1 . . . ikik+1 and j1 . . . jljl+1, such that x ∈ Pi1...ik \ Pi1...,ikik+1
,

y ∈ Pj1...,jl \ Pj1...jljl+1
and Pi1...ikik+1

⋂
Pj1...jljl+1

= Si1...ik(A), where A is some
vertex of P .

In this case d(x, y) ≤ {ri1...ik + rj1...jl} |P |.
By Lemma 23, d(x,A) ≥ ri1...ikρ and d(A, y) ≥ rj1...jlρ.
Therefore, by Lemma 24, d(x, y) ≥ ρ · sin (α/2)(ri1...ik + rj1...jl) , thus

(ri1...ik + rj1...jl)ρ · sin (α/2) ≤ d(x, y) ≤ (ri1...ik + rj1...jl)|P |.

Similarly, for the system S′ we have

(r′i1...ik + r′j1...jl)ρ
′ · sin (α′/2) ≤ d(x′, y′) ≤ (r′i1...ik + r′j1...jl)|P

′|.

Suppose ri1...ik ≥ rj1...jl . Then, (ri1...ik)ρ · sin (α/2) ≤ d(x, y) ≤ 2(ri1...ik)|P |.

So, d(x′, y′) ≤ 2(ri1...ik)
β |P ′| ≤ 2

(
d(x, y)

ρ · sin (α/2)

)β
|P ′|. �
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