Abstract. We define and study semilattices and lattices for \(E\)-closed families of theories. Properties of these semilattices and lattices are investigated. It is shown that lattices for families of theories with the least generating sets are distributive.

Keywords: \(E\)-operator, combination of theories, family of theories, least generating set, semilattice, lattice.

We continue to study structural properties of combinations of structures and their theories [3, 4, 5, 6] defining semilattices and lattices for families of theories. Properties of these semilattices and lattices are investigated. It is shown that lattices for families of theories with the least generating sets are distributive.

1. Preliminaries

Throughout the paper we use the following terminology in [3, 4, 6].

Let \(P = (P_i)_{i \in I}\), be a family of nonempty unary predicates, \(\langle A_i \rangle_{i \in I}\) be a family of structures such that \(P_i\) is the universe of \(A_i\), \(i \in I\), and the symbols \(P_i\) are disjoint with languages for the structures \(A_j\), \(j \in I\). The structure \(A_P = \bigcup_{i \in I} A_i\) expanded by the predicates \(P_i\) is the \(P\)-union of the structures \(A_i\), and the operator mapping \(\langle A_i \rangle_{i \in I}\) to \(A_P\) is the \(P\)-operator. The structure \(A_P\) is called the \(P\)-combination of the structures \(A_i\) and denoted by \(\text{Comb}_P(\langle A_i \rangle_{i \in I})\) if \(A_i = (A_P \upharpoonright A_i) \upharpoonright \Sigma(A_i)\).
$i \in I$. Structures A', which are elementary equivalent to $\text{Comb}_P(A_i)_{i \in I}$, will be also considered as P-combinations.

Clearly, all structures $A' \equiv \text{Comb}_P(A_i)_{i \in I}$ are represented as unions of their restrictions $A'_i = (A' \upharpoonright P_i) \upharpoonright \Sigma(A_i)$ if and only if the set $p_\infty(x) = \{ \neg P_i(x) \mid i \in I \}$ is inconsistent. If $A' \not\equiv \text{Comb}_P(A'_i)_{i \in I}$, we write $A' = \text{Comb}_P(A'_i)_{i \in I \cup \{\infty\}}$, where $A'_\infty = A' \upharpoonright \bigcap_{i \in I} P_i$, maybe applying Morleyzation.

Moreover, we write $\text{Comb}_P(A_i)_{i \in I \cup \{\infty\}}$ for $\text{Comb}_P(A_i)_{i \in I}$ with the empty structure A_∞.

Note that if all predicates P_i are disjoint, a structure A_P is a P-combination and a disjoint union of structures A_i. In this case the P-combination A_P is called disjoint. Clearly, for any disjoint P-combination A_P, $\text{Th}(A_P) = \text{Th}(A'_P)$, where A'_P is obtained from A_P replacing A_i by pairwise disjoint $A'_i \equiv A_i$, $i \in I$. Thus, in this case, similar to structures the P-operator works for the theories $T_i = \text{Th}(A_i)$ producing the theory $T_P = \text{Th}(A_P)$, being P-combination of T_i, which is denoted by $\text{Comb}_P(T_i)_{i \in I}$.

For an equivalence relation E replacing disjoint predicates P_i by E-classes we get the structure A_E being the E-union of the structures A_i. In this case the operator mapping $(A_i)_{i \in I}$ to A_E is the E-operator. The structure A_E is also called the E-combination of the structures A_i and denoted by $\text{Comb}_E(A_i)_{i \in I}$; here $A_i = (A_E \upharpoonright A_i) \upharpoonright \Sigma(A_i)$, $i \in I$. Similar above, structures A', which are elementary equivalent to A_E, are denoted by $\text{Comb}_E(A'_i)_{i \in I}$, where A'_i are restrictions of A' to its E-classes. The E-operator works for the theories $T_i = \text{Th}(A_i)$ producing the theory $T_E = \text{Th}(A_E)$, being E-combination of T_i, which is denoted by $\text{Comb}_E(T_i)_{i \in I}$ or by $\text{Comb}_E(T)$, where $T = \{ T_i \mid i \in I \}$.

Clearly, $A' = A_P$ realizing $p_\infty(x)$ is not elementary embeddable into A_P and cannot be represented as a disjoint P-combination of $A'_i \equiv A_i$, $i \in I$. At the same time, there are E-combinations such that all $A' \equiv A_E$ can be represented as E-combinations of some $A'_j \equiv A_i$. We call this representability of A' to be the E-representability.

If there is $A' \equiv A_E$ which is not E-representable, we have the E'-representability replacing E by E' such that E' is obtained from E adding equivalence classes with models for all theories T, where T is a theory of a restriction B of a structure $A' \equiv A_E$ to some E-class and B is not elementary equivalent to the structures A_i. The resulting structure $A_{E'}$ (with the E'-representability) is a e-completion, or a e-satisfaction, of A_E. The structure $A_{E'}$ itself is called e-complete, or e-saturated, or e-universal, or e-largest.

For a structure A_E the number of new structures with respect to the structures A_i, i. e., of the structures B which are pairwise elementary non-equivalent and elementary non-equivalent to the structures A_i, is called the e-spectrum of A_E and denoted by $\text{e-\text{Sp}}(A_E)$. The value $\sup\{ \text{e-\text{Sp}}(A') \mid A' \equiv A_E \}$ is called the e-spectrum of the theory $\text{Th}(A_E)$ and denoted by $\text{e-\text{Sp}}(\text{Th}(A_E))$.

If A_E does not have E-classes A_i, which can be removed, with all E-classes $A_j \equiv A_i$, preserving the theory $\text{Th}(A_E)$, then A_E is called e-prime, or e-minimal.

For a structure $A' \equiv A_E$ we denote by $\text{TH}(A')$ the set of all theories $\text{Th}(A_i)$ of E-classes A_i in A'.

By the definition, an e-minimal structure A' consists of E-classes with a minimal set $\text{TH}(A')$. If $\text{TH}(A')$ is the least for models of $\text{Th}(A')$ then A' is called e-least.
Definition [4]. Let \mathcal{T} be the class of all complete elementary theories of relational languages. For a set $\mathcal{T} \subset \mathcal{T}$ we denote by $\text{Cl}_E(\mathcal{T})$ the set of all theories $\text{Th}(\mathcal{A})$, where \mathcal{A} is a structure of some E-class in $\mathcal{A'} \equiv \mathcal{A}_E$, $\mathcal{A}_E = \text{Comb}_E(\mathcal{A}_i)_{i \in I}$, $\text{Th}(\mathcal{A}_i) \in \mathcal{T}$. As usual, if $\mathcal{T} = \text{Cl}_E(\mathcal{T})$ then \mathcal{T} is said to be E-closed.

The operator Cl_E of E-closure can be naturally extended to the classes $\mathcal{T} \subset \mathcal{T}$ as follows: $\text{Cl}_E(\mathcal{T})$ is the union of all $\text{Cl}_E(\mathcal{T}_0)$ for subsets $\mathcal{T}_0 \subset \mathcal{T}$.

For a set $\mathcal{T} \subset \mathcal{T}$ of theories in a language Σ and for a sentence φ with $\Sigma(\varphi) \subseteq \Sigma$ we denote by \mathcal{T}_φ the set \{ $T \in \mathcal{T}$ | $\varphi \in T$ \}.

Proposition 1.1 [4]. If $\mathcal{T} \subset \mathcal{T}$ is an infinite set and $T \in \mathcal{T} \setminus \mathcal{T}$ then $T \in \text{Cl}_E(\mathcal{T})$ (i.e., T is an accumulation point for \mathcal{T} with respect to E-closure Cl_E) if and only if for any formula $\varphi \in T$ the set \mathcal{T}_φ is infinite.

Theorem 1.2 [4]. For any sets \mathcal{T}_0, $\mathcal{T}_1 \subset \mathcal{E}$, $\text{Cl}_E(\mathcal{T}_0 \cup \mathcal{T}_1) = \text{Cl}_E(\mathcal{T}_0) \cup \text{Cl}_E(\mathcal{T}_1)$.

Definition [4]. Let \mathcal{T}_0 be a closed set in a topological space $(\mathcal{T}, \text{Cl}_E(\mathcal{T}))$, where $\text{Cl}_E(\mathcal{T}) = \{ \mathcal{T} \setminus \text{Cl}_E(\mathcal{T}') \ | \ \mathcal{T}' \subseteq \mathcal{T} \}$. A subset $\mathcal{T}_0 \subset \mathcal{T}$ is said to be generating if $\mathcal{T}_0 = \text{Cl}_E(\mathcal{T}_0)$. The generating set \mathcal{T}_0 (for \mathcal{T}_0) is minimal if \mathcal{T}_0 does not contain proper generating subsets. A minimal generating set \mathcal{T}_0 is least if \mathcal{T}_0 is contained in each generating set for \mathcal{T}_0.

Theorem 1.3 [4]. If \mathcal{T}_0 is a generating set for an E-closed set \mathcal{T}_0 then the following conditions are equivalent:

1. \mathcal{T}_0 is the least generating set for \mathcal{T}_0;
2. \mathcal{T}_0 is a minimal generating set for \mathcal{T}_0;
3. any theory in \mathcal{T}_0 is isolated by some set $(\mathcal{T}_0)_{\varphi}$, i.e., for any $T \in \mathcal{T}_0$ there is $\varphi \in T$ such that $(\mathcal{T}_0)_{\varphi} = \{ T \}$;
4. any theory in \mathcal{T}_0 is isolated by some set $(\mathcal{T}_0)_{\varphi}$, i.e., for any $T \in \mathcal{T}_0$ there is $\varphi \in T$ such that $(\mathcal{T}_0)_{\varphi} = \{ T \}$.

Definition [6]. Two theories T_1 and T_2 of a language Σ are disjoint modulo Σ_0, where $\Sigma_0 \subseteq \Sigma$, or Σ_0-disjoint if T_1 and T_2 do not have common nonempty predicates for $\Sigma \setminus \Sigma_0$. If T_1 and T_2 are \varnothing-disjoint, these theories are called simply disjoint.

2. Semilattices and lattices for families of theories

Definition. Let X be a nonempty set of E-closed families $\mathcal{T} \subset \mathcal{T}$. Operations $\mathcal{T}_1 \land \mathcal{T}_2 = \mathcal{T}_1 \cap \mathcal{T}_2$ and $\mathcal{T}_1 \lor \mathcal{T}_2 = \text{Cl}_E(\mathcal{T}_1 \cup \mathcal{T}_2)$, for E-closed \mathcal{T}_1, $\mathcal{T}_2 \subset \mathcal{T}$, generate a set Y and form the structure $(Y; \land, \lor)$ denoted by $L(X)$.

It is well known [1] that any $L(X)$ is a lattice extensible to a complete lattice $\text{Cl}_E(X)$ with

$$\bigwedge_{j \in J} \text{Cl}_E(\mathcal{T}_j) = \bigcap_{j \in J} \text{Cl}_E(\mathcal{T}_j)$$

and

$$\bigvee_{j \in J} \text{Cl}_E(\mathcal{T}_j) = \text{Cl}_E \left(\bigcup_{j \in J} \mathcal{T}_j \right).$$

By Theorem 1.2, for E-closed \mathcal{T}_1, \mathcal{T}_2, $\text{Cl}_E(\mathcal{T}_0 \cup \mathcal{T}_1) = \mathcal{T}_0 \cup \mathcal{T}_1$, i.e., the operation \lor is the set-theoretic union. At the same time, in general case, for E-closed \mathcal{T}_j, $\bigvee_{j \in J} \mathcal{T}_j \neq \bigcup_{j \in J} \mathcal{T}_j$, since, for instance, the union of infinite set of singletons can...
generate new theories. Thus, \(L(X)\) is just a standard algebra with usual set-theoretic unions and intersections (but can be without even relative complements since these complements can be not \(E\)-closed), whereas \(\text{CL}(X)\) is its natural extension.

Now we consider restrictions of \(L(X)\) in the following way.

For a nonempty set \(X\) of \(E\)-closed families with the least generating sets, the operation \(\lor\) generates a set \(Z \subseteq Y\) and forms a upper semilattice \(\text{SLLGS}(X) = \langle Z; \lor \rangle\) restricting the universe and the language of \(L(X)\).

Below we will show that \(\text{SLLGS}(X)\) always consists of families with the least generating sets whereas the operation \(\land\) can generate a family without the least generating sets.

Proposition 2.1. If \(E\)-closed sets \(T_1\) and \(T_2\), in a language \(\Sigma\), have the least generating sets, then \(T_1 \cup T_2\), being \(E\)-closed, has the least generating set.

Proof. Let \(T'_1\) and \(T'_2\) be the least generating sets for \(T_1\) and \(T_2\) respectively, and \(T'_0\) a subset of \(T'_1 \cup T'_2\) consisting of all isolated points with respect to \(T'_1 \cup T'_2\), i.e., of elements \(T \in T'_1 \cup T'_2\) with formulas \(\varphi \in T\) such that \((T'_1 \cup T'_2)_\varphi\) is a singleton.

Now we assume on contrary that \(T_1 \cup T_2\) does not have the least generating set. Then there is a theory \(T_1 \in T'_1 \cup T'_2\) such that \(T_1 \notin \text{CL}(T'_0)\). Without loss of generality we assume that \(T_1 \notin T'_1\). Since \(T_1\) is isolated with respect to \(T'_1\) and not isolated with respect to \(T'_1 \cup T'_2\) there is a formula \(\varphi \in T_1\) such that for any \(\psi \in T_1\) forcing \(\varphi\), \((T'_1)_\varphi = \{T_1\}\) and \((T'_1 \cup T'_2)_\psi\) is infinite. Since \(T_1 \notin \text{CL}(T'_0)\), there are infinitely many theories \(T \in (T'_2)_\psi\) which are not isolated with respect to \(T'_1 \cup T'_2\). It implies that for any formula \(\chi \in T\) forcing \(\psi\) there are infinitely many theories in \((T'_1)_\chi\). But since \(\chi \vdash \psi\), \((T'_1)_\psi\) is infinite contradicting \(|(T'_1)_\psi| = 1\). \(\square\)

Remark 2.2. Arguments for [6, Proposition 3.9] show that the converse for Proposition 2.1 is not true, since there is \(T_1 \cup T_2\) with the least generating set such that \(T_1\) has the least generating set (for \(\mathcal{F}_q\) in terms of [5]) and \(T_2\) does not have the least generating set (for \(\{J_q \mid q \in \mathbb{Q}\}\) in terms of [5]).

If we denote by \(\Sigma_0\) the set of nonempty predicates for \(\{J_q \mid q \in \mathbb{Q}\}\) and take a \(\Sigma_0\)-disjoint copy \(\mathcal{F}_q\) for \(\mathcal{F}_q\), which also generates \(\{J_q \mid q \in \mathbb{Q}\}\) with \(J_q = \lim \mathcal{F}_q\), we get families \(\mathcal{T}\) and \(\mathcal{T}'\) for \(\{J_q \mid q \in \mathbb{Q}\}\) \(\cup \mathcal{F}_q\) and \(\{J_q \mid q \in \mathbb{Q}\}\) \(\cup \mathcal{F}_q\) respectively such that \(\mathcal{T} \cap \mathcal{T}'\) is a family of theories for \(\{J_q \mid q \in \mathbb{Q}\}\), which does not have the least generating set.

Remark 2.3. The infinite semilattices \(\text{SLLGS}(X)\) can be both complete and incomplete, and in the incomplete case \(\text{SLLGS}(X)\) cannot be extended to a complete semilattice consisting of families with the least generating sets.

Indeed, taking infinitely many \(\Sigma_0\)-disjoint copies \(\mathcal{F}_q^\mu\) of \(\mathcal{F}_q\) [5], \(\mu < \lambda\), and forming the set \(X\) by \(E\)-closed families of theories for \(\{J_q \mid q \in \mathbb{Q}\}\) \(\cup \mathcal{F}_q^\mu\) [5] we can freely unite elements of \(X\) obtaining \(E\)-closed families with the least generating sets corresponding to unions of \(\mathcal{F}_q^\mu\).

At the same time, each singleton \(\{T\}\), for \(T \in \mathcal{T}\) is \(E\)-closed and with the least generating set. Then taking a set \(X\) of singletons we generate the semilattice \(\text{SLLGS}(X)\) (which is in fact a distributive lattice with related complements) consisting of all finite subsets of \(\cup X\). As there are \(E\)-closed families \(\mathcal{T}\) without the least generating sets, taking a (infinite) union of singletons \(\{T\}\) for \(T \in \mathcal{T}\) we form the family \(\mathcal{T}\). Thus, infinite unions of families with the least generating sets can be
without the least generating sets, and in this case SLLGS(X) can not be extended
to a complete semilattice consisting of families with the least generating sets.

Summarizing Proposition 2.1 and Remarks 2.2, 2.3 we have

Theorem 2.3. 1. For any nonempty set X of E-closed families with the least generating sets the structure SLLGS(X) is a upper semilattice.
2. There is a upper semilattice SLLGS(X) with elements \(x_1, x_2 \in X\) having the least generating sets and such that \(x_1 \cap x_2\) does not have the least generating set.
3. There is a upper semilattice SLLGS(X) which can not be extended to a complete semilattice consisting of families with the least generating sets.

Now we take a nonempty set X of E-closed families with the least generating sets and \(\mathcal{T}_1, \mathcal{T}_2 \in X\) with the least generating sets \(\mathcal{T}_1'\) and \(\mathcal{T}_2'\) respectively. We denote by \(\mathcal{T}_1 \wedge \mathcal{T}_2\) the family \(\mathcal{T}_0 \subseteq \mathcal{T}_1 \cap \mathcal{T}_2\) with the greatest generating set \(\mathcal{T}_0'\) consisting of all isolated points for \(\mathcal{T}_1 \cap \mathcal{T}_2\).

Remark 2.4. By the definition, \(\mathcal{T}_0' \supseteq (\mathcal{T}_1' \cap \mathcal{T}_2') \cup (\mathcal{T}_1 \cap \mathcal{T}_2')\). In particular, \(\mathcal{T}_0' \supseteq \mathcal{T}_1' \cap \mathcal{T}_2'\). These inclusions can be strict.

Indeed, take \(\Sigma_0\)-disjoint families \(\mathcal{T}_1\) and \(\mathcal{T}_2\) of theories for \(F_q \cup \{J_q\}\) and \(F'_q \cup \{J_q\}\) [5], where \(J_q = \lim F_q = \lim F'_q\) and \(\Sigma_0\) is the set of predicate symbols interpreted by nonempty relations for \(J_q\). For the theory \(\mathcal{T}_0\) corresponding to \(J_q\), we have \(\mathcal{T}_0 = \mathcal{T}_1 \wedge \mathcal{T}_2\), whereas \(\mathcal{T}_1' \cap \mathcal{T}_2' = \emptyset\).

For a set X the operations \(\wedge'\) and \(\vee\) generate the set \(U \supseteq X\) with a structure LLGS(X) := \((U; \wedge', \vee)\).

Directly checking we have

Proposition 2.5. Any structure LLGS(X) is a lattice.

By the definition for every \(\mathcal{T}_1, \mathcal{T}_2 \in U\) with the least generating sets \(\mathcal{T}_1'\) and \(\mathcal{T}_2'\) respectively, we have, in LLGS(X), that \(\mathcal{T}_1 \leq \mathcal{T}_2\) if and only if \(\mathcal{T}_2'\) consists of three disjoint parts \(\mathcal{T}_{2,1}', \mathcal{T}_{2,2}', \mathcal{T}_{2,3}'\) such that:

1) \(\mathcal{T}_{2,1}' \subseteq \mathcal{T}_1'\);
2) \((\mathcal{T}_{2,2}' \cup \mathcal{T}_{2,3}') \cap \mathcal{T}_1' = \emptyset\);
3) \(\mathcal{T}_{2,2}'\) is used for generations of elements in \(\mathcal{T}_1' \setminus \mathcal{T}_2'\);
4) \(\mathcal{T}_{2,3}'\) is not used for generations of elements in \(\mathcal{T}_1' \setminus \mathcal{T}_2'\).

The following proposition is obvious.

Proposition 2.6. If \(\mathcal{T}_2' \setminus \mathcal{T}_1'\) is finite then \(\mathcal{T}_2' = \mathcal{T}_1' \cup \mathcal{T}_{2,3}'\) and, moreover, \(\mathcal{T}_2 = \mathcal{T}_1 \cup \mathcal{T}_{2,3}'.\)

Remark 2.7. The set \(\mathcal{T}_{2,3}'\) can have an arbitrary cardinality whereas for each element in \(\mathcal{T}_1' \setminus \mathcal{T}_2'\) being isolated by some \(\mathcal{T}_1'\), the neighbourhood \((\mathcal{T}_{2,3})\) should contain infinitely many elements and the cardinality of \(\mathcal{T}_{2,3}'\) is at least \(\lambda \cdot \omega\), where \(\lambda\) is the number of disjoint \(\mathcal{T}_{2,3}'\)-neighbourhoods for the elements in \(\mathcal{T}_1' \setminus \mathcal{T}_2'.\)

Theorem 2.8. Any lattice LLGS(X) is distributive.

Proof. We have to show two identities:

\[(1) \quad \mathcal{T}_1 \wedge (\mathcal{T}_2 \cup \mathcal{T}_3) = (\mathcal{T}_1 \wedge \mathcal{T}_2) \cup (\mathcal{T}_1 \wedge \mathcal{T}_3),\]
\[(2) \quad \mathcal{T}_1 \cup (\mathcal{T}_2 \wedge \mathcal{T}_3) = (\mathcal{T}_1 \cup \mathcal{T}_2) \wedge (\mathcal{T}_1 \cup \mathcal{T}_3)\]

for any \(\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3 \in U\) with the least generating sets \(\mathcal{T}_1', \mathcal{T}_2', \mathcal{T}_3'\) respectively.
For the proof of (1) we note that the least generating set for $T_1 \wedge (T_2 \cup T_3)$ consists of isolated points T belonging both to T_1 and to $T_2 \cup T_3$. But then T belongs to T_2 or to T_3. In the first case, T is an isolated point for $T_1 \wedge T_2$ and, in the second case, an isolated point for $T_1 \wedge T_3$. Therefore, $T \in (T_1 \wedge T_2) \cup (T_1 \wedge T_3)$ and thus $T \in (T_1 \wedge T_2) \cup (T_1 \wedge T_3)$.

Conversely, if an isolated point T belongs to $(T_1 \wedge T_2) \cup (T_1 \wedge T_3)$ then T belongs to $T_1 \wedge T_2$ or to $T_1 \wedge T_3$. If $T \in T_1 \wedge T_2$ then either T is an isolated point for $T_1 \wedge T_2$ or belong to the E-closure of isolated points in $T_1 \wedge T_2$. Anyway, $T \in T_1 \wedge (T_2 \cup T_3)$. Similarly we obtain $T \in T_1 \wedge (T_2 \cup T_3)$ for any isolated $T \in T_1 \wedge T_2$.

Thus, $(T_1 \wedge T_2) \cup (T_1 \wedge T_3) \subseteq T_1 \wedge (T_2 \cup T_3)$ and the identity (1) holds.

For the proof of (2) we note that the least generating set for $T_1 \cup (T_2 \wedge T_3)$ consists of isolated points T belonging to T_1 and being an isolated point for T_1, or belonging to $T_2 \wedge T_3$, being an isolated point for $T_2 \wedge T_3$, and then belonging to T_2 and to T_3. If $T \in T_1$ then $T \in T_1 \cup T_2$ and $T \in T_1 \cup T_3$, whence $T \in T_1 \cup T_3 \wedge (T_2 \cup T_3)$. If $T \in T_2 \wedge T_3$ then again $T \in T_1 \cup T_2$ and $T \in T_1 \cup T_3$ implying $T \in T_1 \cup T_2 \wedge (T_2 \cup T_3)$.

Conversely, if an isolated point T belongs to $(T_1 \cup T_2) \wedge (T_1 \cup T_3)$ then T belongs to $T_1 \cup T_2$ and to $T_1 \cup T_3$. So $T \in T_1 \cup T_2$, and $T \in T_1 \cup T_3$. If $T \in T_1 \cup T_2 \wedge (T_2 \cup T_3)$ then again $T \in T_1 \cup T_2$, and $T \in T_1 \cup T_3$. Otherwise, $T \in T_2 \wedge T_3$ and so again $T \in T_1 \cup (T_2 \wedge T_3)$.

Thus, the identity (2) holds.

Remark 2.9. For every E-closed family T with the least generating set T' there is a superatomic Boolean algebra $B(T)$ [2] consisting of all subsets of T generated by arbitrary subsets of T'. If $T_1 \leq T_2$ in $B(T)$ and T_1, T_2 have the least generating sets T_1' and T_2', respectively, then $T_1' \subseteq T_2'$ and vice versa. Thus, $B(T)$ is isomorphic to the Boolean algebra $B(T')$ with the natural relation \subseteq and consisting of all subsets of T'.

References

Sergey Vladimirovich Sudoplatov
Sobolev Institute of Mathematics, Academian Koptyug avenue, 4
630090, Novosibirsk, Russia.
Novosibirsk State Technical University,
K. Marx avenue, 20
630073, Novosibirsk, Russia.
Novosibirsk State University,
Pirogova street, 1
630090, Novosibirsk, Russia.
Institute of Mathematics and Mathematical Modeling,
Pushkina Street, 125
050010, Almaty, Kazakhstan.
E-mail address: sudopl@math.nsc.ru