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ON THE UNIQUE DETERMINATION OF DOMAINS BY THE
CONDITION OF THE LOCAL ISOMETRY OF THE
BOUNDARIES IN THE RELATIVE METRICS. II

A.P. KOPYLOV

Abstract. We prove the theorem on the unique determination of
a strictly convex domain in Rn, where n ≥ 2, in the class of all n-
dimensional domains by the condition of the local isometry of the Haus-
dorff boundaries in the relative metrics, which is a generalization of
A. D. Aleksandrov’s theorem on the unique determination of a strictly
convex domain by the condition of the (global) isometry of the boundaries
in the relative metrics.

We also prove that, in the cases of a plane domain U with nonsmooth
boundary and of a three-dimensional domain A with smooth boundary,
the convexity of the domain is no longer necessary for its unique deter-
mination by the condition of the local isometry of the boundaries in the
relative metrics.

Keywords: intrinsic metric, relative metric of the boundary, local isomet-
ry of the boundaries, strict convexity.

1. Introduction

Let U be a class of domains (i.e., open connected sets) in the real Euclidean n-
dimensional space Rn, where n ≥ 2. We say (see, e.g., [1]) that a domain U ∈ U is
uniquely determined in the class U by the relative metric of its (Hausdorff) boundary
if each domain V ∈ U whose Hausdorff boundary is isometric to the Hausdorff
boundary of U in the relative metrics is itself isometric to U (in the Euclidean
metric).
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Remark 1.1. Let U be a domain in Rn (n ≥ 2) and let ρU be its intrinsic
metric. Consider the Hausdorff completion of the metric space (U, ρU ), i.e., the
completion of this space in the intrinsic metric ρU . Identifying the points of this
completion that correspond to the points of U with these points themselves and
removing them from the completion, we obtain a metric space (frH U, ρfrH U,U );
the set frH U of its elements is called the Hausdorff boundary of the domain U ,
and ρfrH U,U is the relative metric on this Hausdorff boundary. The isometry of the
Hausdorff boundaries of domains U and V with respect to their relative metrics
means the existence of a surjective isometry f : (frH U, ρfrH U,U ) → (frH V, ρfrH V,V )
between these boundaries.

The results of [2], [3], [4] imply in particular that any bounded domain in Rn

is uniquely determined by the condition of the isometry of the boundaries in the
relative metrics. At the same time, in accoirdance with the results of [5], a bounded
polygonal plane domain U is uniquely determined by the condition of the local
isometry of the boundaries in the relative metrics in the class of all such domains
if and only if U is convex.

Remark 1.2. Let M be a class of domains in Rn with n ≥ 2. Following [1], we say
that a domain U ∈ M is uniquely determined in the class M by the condition of the
local isometry of the (Hausdorff) boundaries of domains in the relative metrics if, for
any domain V in M, the local isometry of its Hausdorff boundary to the Hausdorff
boundary of U in the relative metrics implies the isometry of U and V (in the
Euclidean metric). The local isometry in the relative metrics between the Hausdorff
boundaries frH U and frH V of domains U and V means the existence of a bijective
mapping f : frH U → frH V of these boundaries that is a local isometry in their
relative metrics, i.e., a mapping such that, for every y ∈ frH U , there exists ε > 0
satisfying the following condition: The equality ρfrH U,U (a, b) = ρfrH V,V (f(a), f(b))
holds for any two elements a and b in the ε-neighborhood Z(y) = {z ∈ frH U :
ρfrH U,U (z, y) < ε} of y. It is clear that f−1 is also a local isometry in the relative
metrics of the boundaries.

Remark 1.3. Let U be a domain in Rn. As in [1], we say that U has smooth
boundary (respectively, Lipschitz boundary) if the Euclidean boundary frU of this
domain is an (n − 1)-submanifold of class C1 (a Lipschitz submanifold) without
boundary in Rn. In the case of a domain U with Lipschitz boundary, its Hausdorff
boundary frH U is naturally identified with the Euclidean boundary and the metric
ρfrU,U corresponding to the Hausdorff metric can be defined as follows:

ρfrU,U (x, y) = lim inf
x′→x,y′→y;x′,y′∈U

{inf[l(γx′,y′,U )]},

where x, y ∈ frU and inf[l(γx′,y′,U )] is the infimum of the lengths l(γx′,y′,U ) of
smooth paths γx′,y′,U : [0, 1] → U joining x′ and y′ in U . Recall also that a domain U
is said to be strictly convex if it is convex and the interior of the interval joining
any two points in its closure clU is contained in U .

Lemma 1.1. Let U and V be two plane domains with smooth boundaries and let f :
frU → frV be a bijective mapping that is a local isometry of the boundaries of these
domains in the relative metrics. Then f is a (global) isometry of the boundaries frU
and frV in their intrinsic metrics.

Lemma 1.2. Suppose that domains U and V and a mapping f : frU → frV
satisfy to the hypothesis of Lemma 1.1 and, moreover, frU is bounded. Then frV
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is also bounded and f has the following property: There exists ε > 0 such that
ρfrU,U (a, b) = ρfrV,V (f(a), f(b)) if a, b ∈ frU and ρfrU,U (a, b) < ε.

Lemma 1.3. Under the hypothesis of Lemma 1.1 and the additional assumption
that frU is connected, the frV is also connected.

In this paper, we continue the study of the unique determination of domains by
the condition of the local isometry of their boundaries in the relative metrics.

In the paper, we obtain some new assertions on the unique determination of space
domains with smooth boundaries by the condition considered in the article. All
these results emphasize the specific nature of our approach to the rigidity problems
of domains in Rn.

Note that below [a, b] = {bt+ (1− t)a ∈ Rn : 0 ≤ t ≤ 1}, [a, b[= {bt+ (1− t)a ∈
Rn : 0 ≤ t < 1} (]a, b] = {bt+(1− t)a ∈ Rn : 0 < t ≤ 1}) and ]a, b[= {bt+(1− t)a ∈
Rn : 0 < t < 1} are the segment (closed interval), the half-open interval, and the
interval in Rn with endpoints a, b ∈ Rn, a ̸= b; Int I is the interior of the segment
(of the half-open interval) I, Int]a, b[=]a, b[; B(x0, r) = {x ∈ Rn : |x − x0| < r} is
the open ball in Rn of radius r (0 < r < ∞) centered at x0 ∈ Rn; IdE is the identity
mapping of a set E: IdE(x) = x for x ∈ E.

In what follows, paths γ : [α, β] → Rn, where α, β ∈ R, are assumed continuous.

2. Unique Determination of Space Domains

Consider the case of space domains. But first recall some notions and facts
from [1] which we will use below.

Definition 2.1. The support of an element a of the Hausdorff boundary frH U
of a domain U ⊂ Rn (n ≥ 2) is a point a′ = a′a of the Euclidean boundary frU to
which a Cauchy sequence {xj}j∈N of points xj ∈ U representing a converges in the
intrinsic metric ρU of U .

Lemma 2.1. Every element a ∈ frH U has a unique support a′a.

Lemma 2.2. The set of the supports a′a of elements a ∈ frH U is everywhere dense
(in the Euclidean metric) on the Euclidean boundary frU of U .

The mapping pU : frH U → frU denotes the transformation of points of the Haus-
dorff boundary frH U assigning to each element a ∈ frH U its support a′ = a′a.

Below we will use the following assertion, which is a generalization of Lemma 3.1
in [3] to the case of local isometries of the boundaries of domains.

Lemma 2.3. Let U, V be domains in Rn (n ≥ 2) such that there exists a bijective
mapping f : frH U → frH V that is a local isometry in the relative metrics of
the Hausdorff boundaries of U and V . Then for every w ∈ frH U, there exists
a number ε = εw > 0 satisfying the following condition: If a′, b′ are any two
elements in frU with ]a′, b′[⊂ U and the elements a, b ∈ frH U generated by the
path γ(t) = tb′ + (1 − t)a′, t ∈ [0, 1] (i.e., generated respectively by the Cauchy
sequences {γ(1/n)}n=3,4,... and {γ(1−1/n)}n=3,4,... in the intrinsic metric ρU of U)
belong to the ε-neighborhood Z(w) = {z ∈ frH U : ρfrH U,U (z, w) < ε} of w then
]pV f(a), pV f(b)[⊂ V .

The proof of Lemma 2.3 differs from the proof of Lemma 3.1 in [3] by negligible
modifications and is therefore omitted.
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Suppose now that the domain under consideration is strictly convex. Then we
have

Theorem 2.1. Let n ≥ 2. If a domain U ⊂ Rn is strictly convex then it is uniquely
determined in the class of all domains in Rn by the condition of the local isometry
of the boundaries in the relative metrics.

Proof. Let V be a domain such that there exists a bijective mapping f : frH U →
frH V that is a local isometry in the relative metrics of the Hausdorff boundaries frH U
and frH V of U and V . Assume that x and y are points of the Euclidean boundary frU
of U (by the strict convexity of U and Remark 1.3, we may assume that x and y both
belong to frH U). By Lemma 2.3, each element w ∈ frH U has an εw-neighborhood
Z(w) = {z ∈ frH U : ρfrH U,U (z, w) < ε} with the property: If a, b ∈ Z(w) are
arbitrary points then ]pV f(a), pV f(b)[⊂ V (see Lemma 2.3 concerning Z(w)). This
implies that the mapping f̄ : frU → frV such that f̄(x) = pV f(x) for x ∈ frU is
a locally isometry in the Euclidean metric (i.e., if w ∈ frU then for every z ∈ Z(w)
there exist a ball Bx = B(x, rx) ⊂ Rn and an isometry Fx : Rn → Rn in the
Euclidean metric such that Fx|(frU)∪Bx

= f̄ |(frU)∪Bx
.

Let f̄(frU) = T ⊂ frV . We assert that the closure clT of the set T coincides with
the Euclidean boundary frV of V . Assuming that M = ((frV )\clT ) ̸= ∅, consider
a point z ∈ M . Since clT is closed, dist{z, T} = dist{z, clT} > 0. Taking also into
account that, by Lemma 2.2, the set of the supports of the Hausdorff boundary of
a domain is dense on its Euclidean boundary, we assert that there exists a ∈ frH V
whose support a′ = pV a satisfies the condition dist{a′, T} = dist{a′, clT} > 0. Put
ã = f−1(a). We have f̄(ã) = pV f(ã) = pV (f(f

−1(a) = pV a = a′ ∈ T . Therefore,
clT = frV .

Further, show that f̄ can be extended to a Euclidean isometry F : Rn → Rn

of the whole space Rn. Indeed, let a and b be any two points on the Euclidean
boundary frU of U . We will demonstrate that

(2.1) |f̄(a)− f̄(b)| = |a− b|.
To this end, consider a path γ : [0, 1] → frU with endpoints γ(0) = a and γ(1) = b.
Since f̄ is a local isometry in the Euclidean metric, for every t ∈ [0, 1] there is a ball
Bt = B(f̄(γ(t)), rt) ⊂ Rn such that there exists a Euclidean isometry Ft : Rn → Rn

with Ft|(frU)∩Bt
= f̄ |(frU)∩Bt

. Since γ is continuous, the sets γ−1((frU)∩Bt), where
t ∈ [0, 1], form an open covering of [0, 1]. But then we can extract a finite subcovering
{Es = γ−1((frU) ∩ Bts), s = 1, . . . , k}. If Es1 ∩ Es2 ̸= ∅, where 1 ≤ s1, s2 ≤ k,
then (frU) ∩ Bts1

∩ Bts2
̸= ∅. Since U is strictly convex, we easily conclude that

Fts1
= Fts2

. Hence we can assert that there exists a unique Euclidean isometry F :

Rn → Rn such that Fs = F for all s = 1, . . . , k and, consequently, f̄ |Im γ = F |Im γ .
This implies the desired equality (2.1). And from it, by its turn (with regard for
the above-stated), the assertion of the theorem follows.

Remark 2.1. Theorem 2.1 is a generalization of a theorem by A. D. Aleksandrov
about the unique determination of the boundary frU of a strictly convex domain
U ⊂ Rn (n ≥ 2) by the relative metric ρfrU,U (A. D. Aleksandrov’s theorem was first
published (with his consent) by V. A. Aleksandrov in [6]). An important particular
case of this theorem is given by the following

Theorem 2.2. Let U1 be a strictly convex domain in Rn. Suppose that U2 ⊂ Rn is
a domain whose closure is a Lipschitz manifold (such that fr(clU2) = frU2 ̸= ∅);
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moreover, frU1 and frU2 are (globally) isomteric in their relative metrics ρfrU1,U1

and ρfrU2,U2 . Then frU1 and frU2 are isometric in the Euclidean metric of Rn.

Let us now pass to the proof of [7, Theorem 2.2], which was announced in [7].
Assume that U is a bounded nonconvex domain in R2 with Lipschitz boundary frU

and there exists a point P ∈ frU such that U is locally strictly convex on frU \{P}
towards the complement cU of U . We assert that U is uniquely determined by the
condition of the local isometry of the boundaries in the relative metrics. The proof
of this assertion is carried out by the same scheme and with the use of the same
tools as the proof of Theorem 2.1 with certain insignificant modifications. Let us
briefly dwell on them.

Suppose that V is another domain in R2 whose Hausdorff boundary is locally
isometric to the Hausdorff boundary of U , f : frH U → frH V is a bijection that is
a local isometry in the relative metrics of the Hausdorff boundaries frH U and frH V
of U and V , and T = f̄((frU) \ {P}) (since frU is Lipschitz, we, taking into
account Remark 1.3, identify frH U with frU). We assert that, in this case, just
as in the proof of Theorem 2.1, clT = frV . One can prove this basing on the
arguments from the proof of Theorem 2.1. Nevertheless, by Lemma 2.2 and the
infinity of the part of the set of supports of the Hausdorff boundary frH V contained
in the set M = (frV ) \ clT , the point a′ mentioned there can be chosen so that
α = f̄−1(a) ( ̸= ∅) ⊂ (frU) \ {P}.

We omit the rest of the proof since it repeats the arguments used in the proof of
Theorem 2.1 almost verbatim. Thus, Theorem 2.2 in [7] is proved.

As opposed to what happens in the case of domains in R2 (see Theorem 2.1
in [7]), for space domains, as in Theorem 2.2 of [7], convexity is no longer necessary
in solving the problems on the unique determination of domains by the condition
of the local isometry of the boundaries in the relative metrics. In fact, the following
holds:

Theorem 2.3. There exists a nonconvex domain U ⊂ R3 with smooth boundary
that is uniquely determined in the class of all three-dimensional domains with
smooth boundary by the condition of the local isometry of the boundaries in the
relative metrics.

Proof. Construct a desired domain U as follows:
Consider the cardioid arc

θ = {(x, y, z) ∈ R3 : x2 + z2 −
√

x2 + z2 + z = 0, x2 + z2 > 0, x ≥ 0, y = 0}.
Leaving it fixed except for the part θ1, which is cut out from it by the disk
{(x, y, z) ∈ R3 : x2 + z2 ≤ 1

9 , y = 0}, replace the cardioid arc θ1 by the circular

arc {(x, y, z) ∈ R3 : z = 1 −
√

2
3 − x2, 0 ≤ x ≤

√
5
9 , y = 0}. It is not hard

to verify that, after the rotation of the curve obtained in this way around the
axis Oz (up to a complete rotation), we obtain a closed smooth surface that is the
boundary of a three-dimensional nonconvex Jordan domain, which we will take as
a desired domain U , proving below that it is uniquely determined in the class of all
domains in R3 with smooth boundaries by the condition of the local isometry of
the boundaries in the relative metrics.

So, let V ⊂ R3 be another domain with smooth boundary and let f : frU → frV
be a bijective mapping of frU onto frV that is a local isometry of the boundaries frU



ON THE UNIQUE DETERMINATION OF DOMAINS 991

and frV in their relative metrics. Consider the curve θ0 = θ \ {(x, y, z) ∈ R3 : x2 +
z2 ≤ 1/4, y = 0}. After the rotation around the axis Oz, this part of the cardioid
forms a region S of frU locally strictly convex towards the complement cU of U .
Applying the same technique as in the proof of Theorem 2.1 and basing on Lemma 2.3
in addition, we first see that there exists an isometry F : R3 → R3 in the Euclidean
metric such that f |S = F |S .

Without loss of generality, we may assume that F = IdR3 . Denote by S∗ the part
of frU obtained by the rotation of the arc θ∗ = cl(θ \ (θ1 ∪ θ0)), and consider the
intersection of S∗ with a closed half-plane bounded by the axis Oz. We may also
assume that this intersection is the curve θ∗. Now, we show that any two sufficiently
close points a and b of this curve (note that the degree of proximity of these points
is determined by Lemma 2.2 applied to f) cut out an arc ab from θ∗ whose image
under f is a plane curve. Indeed, considering a third point c of the arc ab, reckoning
with the local strict convexity of θ∗ (with respect to the plane domain Ux,z =
U ∩ {(x, y, z) ∈ R3 : y = 0}; moreover, its convexity in the plane τx,y = {(x, y, z) ∈
R3 : y = 0} is directed towards the complement τx,y \ Ux,z of Ux,z) and applying
Lemma 2.3 to each pair in the triple of points a, c, and b, we conclude that the
point f(c) is on the surface S̃ formed by the rotation of the points of the arc f(ab) =
f(a)f(b) around the straight line ζ passing through the points f(a) and f(b), and
the intersection of S̃ with each half-plane bounded by ζ has the same length as the
arc ab. If the arc f(ab) were not plane then its length would be greater than the
length of the arc ab. This would contradict Lemma 1.1. Hence, the arc f(ab) is plane.
Applying arguments close to those used in the proof of the first part of item (ii) of
Theorem 2.1 in [7], we further establish the existence of an isometry F : R3 → R3

in the Euclidean metric with F |ab = f |ab. Therefore, the arc f(ab) (together with
the arc ab) is strictly convex and hence if two planes contain the arc f(ab) then they
coincide. Applying our last considerations to the arc θ∗ ∪ θ0, taking into account
what was said above, and using induction, it is not difficult to prove that the curve
f(θ∗∪θ0) is contained in the plane τx,y, i.e., in the same plane that the curve θ∗∪θ0.
Once again using the arguments from the proof of Theorem 2.1 in [7], we infer that
f |θ∗∪θ0 = Idθ∗∪θ0 . Considering the remaining intersections of U with half-planes
bounded by the axis Oz and involving all that was stated above, we finally have

f |W = IdW

where W is the part of frU obtained by the rotation of the arc θ∗ ∪ θ0 around
the axis Oz.

Put M = f((frU) \W ) ∩ cV ∩ {(x, y, z) ∈ R3 : z ≥ 2/9} ̸= ∅. Let α > 2/9 be
such that

Mα = M ∩ {(x, y, z) ∈ R3 : z = α} ̸= ∅
and

M ∩ {(x, y, z) ∈ R3 : z > α} = ∅.

Suppose that Mα contains a point (x̄, ȳ, α) with x̄2 + ȳ2 > 0. Without loss of
generality, we may assume that x̄2 + ȳ2 = max

(x,y,z)∈Mα

(x2 + y2). Moreover, since

Mα ∩ f(W ) = ∅, we have (x̄, ȳ, α) ̸∈ f(W ). Next, let χ = {x̄(1 + λ/
√
x̄2 + ȳ2)e1 +

ȳ(1 + λ/
√

x̄2 + ȳ2)e2 + (α − λt)e3 : λ ≥ 0} be a ray going out from the point
P0 = (x̄, ȳ, α) and let the value of t (> 0) be so small that this ray intersects
f((frU)\W )\{P0} and the distance between P0 and the nearest point P of the set
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(f((frU)\W )\{P0})∩χ to it is less than the number ε = εP0 of Lemma 2.3 for the
mapping f−1 (in this connection, note that the plane τα = {(x, y, z) ∈ R3 : z = α}
is supporting to the surface f((frU) \ W ) and hence is the tangent plane to it
at all points R ∈ Mα). Consequently, by the lemma and the fact that the interval
]P, P0[ is contained in V , the interval ]f−1(P ), f−1(P0)[ must be contained in U .
But this is impossible. Therefore, it remains to consider the case of x̄ = ȳ = 0.
However, this case is also contradictory; to see that it suffices to consider the ray
{λe1 + (α− λt)e3 : λ ≥ 0} as a desired one and then repeat the arguments used in
the previous case.

We must yet discuss the case of α = 2/9. If dist(M ∩τ2/9,W ) > 0 then, using the
arguments from the previous two cases, we see that this situation is also impossible.
Now, let dist(M ∩ τ2/9,W ) = 0. The above-stated facts and the smoothness of
the boundaries frU and frV of U and V imply the following circumstance: For
every point z0 ∈ M2/9 (= M ∩ τ2/9), there exists a number κ0 > 0 such that
any ray starting from z0 and intersecting the cone K = {(x, y, z) ∈ R3 : z =
1
7 + 5

63

√
x2 + y2, 1

7 ≤ z ≤ 2
9} at a point lying between the planes τ2/9 and τ2/9−κ0

has common points with the surface (f((frU)\W ))\{z0} (here we take into account
that the generatrices of the cone K pass through the points of the boundary of the
manifold cl((frU)\W ) being tangent to frV at these points.) Choosing as z0 a point
that is so close to W that the closed interval [z0, z̃] (where z̃ ∈ K∩τ2/9−κ0/2) of the
ray χ starting from it and intersecting the circle K∩τ2/9−κ0/2 has the least possible
length of such segments, consider the nearest point P ∈ (f((frU) \W ) \ {z0}) ∩ χ
to z0. Assuming in addition that |P − z0| < εz0 (where εz0 is taken for f−1 as
in Lemma 2.3), we can apply the above arguments to make sure that this case is
also impossible. We finally arrive at the inequality

(2.2) f3(x, y, z) <
2

9

(where f = (f1, f2, f3) : frU → frV ), which holds for all points (x, y, z) ∈ (frU)\W .
Consider the bounded open set A ∈ R3 whose boundary is composed of the

sets f((frU) \ W ) and Ξ = {(x, y, z) ∈ R3 : x2 + y2 ≤ 5
81 , z = 2

9}. It is a three-
dimensional Jordan domain contained in the complement to V . Prove that A is
convex. Supposing the contrary and using the proof of the Leja–Wilkosz theorem
of [8] exposed in [9], we conclude that there are three points X ∈ IntA, Y ∈ IntA
and Z ∈ IntA such that [X,Y ] ⊂ IntA, [Y,Z] ⊂ IntA, [X,Z] ̸⊂ IntA. Fixing the
location of the plane τ containing these points, in this plane, we can construct, for
instance, a concave elliptical arc γ locally supporting A outwards. Then, changing
the location of Z in its small spherical neighborhood, we can obtain a continual
family of concave elliptical arcs locally supporting A outwards. The plane measure
of each part of frV situated in one of the indicated plane intersections cannot be
positive since frV is a smooth bounded surface and hence has finite area. Therefore,
there exist segments [a, b] of arbitrarily small linear sizes such that ]a, b[⊂ cA and
a, b ∈ frA. Moreover, we may also assume that a, b ̸∈ Ξ. Hence, we again get into
the situation described in proving (2.2), which implies that A is convex.

Thus, the surfaces cl((frU) \W ) and f(cl((frU) \W )) satisfy the conditions of
Theorem 2 in [10, Chapter 3, Section 7]. Using this theorem, we see that these
surfaces are equal. Granted this and the above, Theorem 2.3 is completely proved.
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In conclusion, note that the main results of our article were earlier announced
in [11].

References

[1] A.P. Kopylov, On the unique determination of domains in Euclidean spaces, J. Math.
Sciences, 153:6 (2008), 869–898. Zbl 1208.30025

[2] M.V. Korobkov, Necessary and sufficient conditions for the unique determination of plane
domains, Dokl. Math., 76 (2007), 722–723. MR2458875

[3] M.V. Korobkov, Necessary and sufficient conditions for unique determination of plane
domains, Siberian Math. J., 49:3 (2008), 436–451. MR2442538

[4] M.V. Korobkov, A criterion for the unique determination of domains in Euclidean spaces
by the metrics of their boundaries induced by the intrinsic metrics of the domains, Siberian
Adv. Math., 20:4 (2010), 256–284.

[5] M.K. Borovikova, On the isometry of polygonal domains with boundaries locally isometric in
relative metrics, Siberian Math. J., 33:4 (1992), 571–580. MR1185433

[6] V.A. Aleksandrov, Isometry of domains in Rn and relative isometry of their boundaries,
Siberian Math. J., 25:3 (1984), 339–347. MR0746937

[7] A.P. Kopylov, On the unique determination of domains by the condition of the local isometry
of the boundaries in the relative metrics, Sib. Èlektron. Mat. Izv., 14 (2017), 59–72.
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