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ALL TIGHT DESCRIPTIONS OF 3-PATHS IN PLANE GRAPHS
WITH GIRTH AT LEAST 9

V.A.AKSENOV, O.V. BORODIN, A.O. IVANOVA

Abstract. Lebesgue (1940) proved that every plane graph with mini-
mum degree δ at least 3 and girth g at least 5 has a path on three vertices
(3-path) of degree 3 each. A description is tight if no its parameter can
be strengthened, and no triplet dropped.

Borodin et al. (2013) gave a tight description of 3-paths in plane
graphs with δ ≥ 3 and g ≥ 3, and another tight description was given by
Borodin, Ivanova and Kostochka in 2017.

Borodin and Ivanova (2015) gave seven tight descriptions of 3-paths
when δ ≥ 3 and g ≥ 4. Furthermore, they proved that this set of
tight descriptions is complete, which was a result of a new type in the
structural theory of plane graphs. Also, they characterized (2018) all one-
term tight descriptions if δ ≥ 3 and g ≥ 3. The problem of producing all
tight descriptions for g ≥ 3 remains widely open even for δ ≥ 3.

Recently, several tight descriptions of 3-paths were obtained for plane
graphs with δ = 2 and g ≥ 4 by Jendrol’, Maceková, Montassier, and
Soták, four of which descriptions are for g ≥ 9.

In this paper, we prove ten new tight descriptions of 3-paths for δ = 2
and g ≥ 9 and show that no other tight descriptions exist.
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1. Introduction

Throughout the paper, G is a plane graph. Let δ(G) be the minimum vertex
degree and let wk(G) be the minimum degree-sum of a path on k vertices in G. We
will drop the argument when G is clear from context. The degree of a vertex v or
a face f , that is the number of edges incident with v or f , is denoted by d(v) or
d(f), respectively. A k-vertex is a vertex v with d(v) = k. By k+ or k− we denote
any integer not smaller or not greater than k, respectively. Hence, a k+-vertex v
satisfies d(v) ≥ k, etc. An edge uv is an (i, j)-edge if d(u) ≤ i and d(v) ≤ j. A path
uvw is a path of type (i, j, k) or (i, j, k)-path if d(u) ≤ i, d(v) ≤ j, and d(w) ≤ k.

Already in 1904, Wernicke [23] proved that every G with δ = 5 has a (5, 6)-edge,
and Franklin [12] strengthened this to the existence of at least two 6−-neighbors of
a 5−-vertex; this implies that w3 ≤ 17, which bound is sharp.

It follows from Lebesgue’s [22] results in 1940 that each G with δ ≥ 3 satisfies
w2 ≤ 14. For 3-connected plane graphs, Kotzig [21] proved a precise result: w2 ≤ 13.

In 1972, Erdős (see [13]) conjectured that Kotzig’s bound w2 ≤ 13 holds for
all plane graphs with δ ≥ 3. Barnette (see [13]) announced to have proved this
conjecture, but the proof has never appeared in print. The first published proof of
Erdős’ conjecture is due to Borodin [3]. More generally, Borodin [4, 5] proved that
every G with δ ≥ 3 contains a (3, 10)-, or (4, 7)-, or (5, 6)-edge, which description
is tight.

In 1993, Ando, Iwasaki, Kaneko [2] proved that every 3-connected G satisfies
w3 ≤ 21, which is sharp due to the Jendrol’ construction in [14]. This was refined
by Borodin [6] in 1997 as follows: every 3-connected G has: (i) either w3 ≤ 18 or a
vertex of degree ≤ 15 adjacent to two 3-vertices, and (ii) either w3 ≤ 17 or w2 ≤ 7.
Here, the bounds w3 ≤ 21 and w3 ≤ 17 were known to be tight long ago, and the
sharpness of w3 ≤ 18 was recently confirmed by Borodin et al. [10].

Back in 1997, Jendrol’ [15] gave an approximate description of 3-paths: every G
with δ ≥ 3 and g ≥ 3 has a 3-path of one of the following types: (10, 3, 10), (7, 4, 7),
(6, 5, 6), (3, 4, 15), (3, 6, 11), (3, 8, 5), (3, 10, 3), (4, 4, 11), (4, 5, 7), or (4, 7, 5).

A description of 3-paths is tight if no its parameter can be strengthened and
no term dropped. Borodin et al. [10] gave the first tight description of 3-paths:
every G with δ ≥ 3 and g ≥ 3 has a 3-path of one of the following types: (3, 4, 11),
(3, 7, 5), (3, 10, 4), (3, 15, 3), (4, 4, 9), (6, 4, 8), (7, 4, 7), (6, 5, 6). Another similar tight
description for δ ≥ 3 and g ≥ 3 was given by Borodin, Ivanova and Kostochka [11]
in 2017.

In 2015, Borodin and Ivanova [7] gave seven tight descriptions of 3-paths when
δ ≥ 3 and g ≥ 4. Furthermore, they proved that this set of descriptions is complete,
which was a result of a new type in the structural theory of plane graphs. Also, they
characterized [9] all one-term tight descriptions if δ ≥ 3 and g ≥ 3. The problem
of producing all tight descriptions for g ≥ 3 remains widely open even for δ ≥ 3.
Other results on k-paths with k ≥ 3 and δ ≥ 3 can be found in surveys Borodin,
Ivanova [8] and Jendrol’, Voss [20].

Recently, several tight descriptions of 3-paths were obtained for δ = 2 and g ≥ 4
by Jendrol’, Maceková, Montassier, and Soták [16–19], four of which descriptions
are for g ≥ 9 (for details, see Theorem 1 below). In [1], we proved precise upper
bounds for w3 in several natural classes of plane graphs with δ = 2 and 5 ≤ g ≤ 7
and disproved a conjecture by Jendrol’ and Maceková [16] concerning the case g = 5.
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The purpose of our paper is to list all tight descriptions of 3-paths for δ = 2 and
g ≥ 9.

Theorem 1. There exist precisely these tight descriptions of 3-paths in plane graphs
with minimum degree 2 and girth g at least 9:

(A) g ≥ 16: {(2, 2, 2)} (folklore);

(B) 11 ≤ g ≤ 15: {(2, 2, 3)} (Jendrol’ et al. [17]) and {(2, 3, 2)};
(C) g = 10: {(2, 2, 3), (2, 3, 2)} (Jendrol’ and Maceková [16], the tightness shown

in Jendrol’ et al. [17]), {(2, 4, 2)} (Jendrol’ et al. [17]), {(2, 3, 3)}, {(2, 2, 4), (3, 2, 3)},
and {(3, 2, 4)};

(D) g = 9: {(2, 2, 5), (2, 3, 2)} (Jendrol’ et al. [18]), {(2, 5, 2), (2, 2, 3)}, {(2, 2, 5),
(3, 2, 3)}, {(2, 5, 3)}, {(2, 3, 5)}, and {(3, 2, 5)}.

2. Proving Theorem 1(B)

We first prove that {(2, 3, 2)} is a description, then that {(2, 3, 2)} is tight, and
finally that there are no tight descriptions other than {(2, 2, 3)} and {(2, 3, 2)}.

2.1. Proving that (2, 3, 2) is a description. Let G avoid (2, 3, 2)-paths. Without
loss of generality, we can assume that G is connected. Let V , E, and F be the sets
of vertices, edges and faces of G, respectively. Euler’s formula |V | − |E| + |F | = 2
for G may be rewritten as

(1)
∑

x∈V ∪F

(d(x)− 4) = −8.

Every vertex and face x ∈ V ∪ F contributes the charge µ(x) = d(x)− 4 to (1),
so only the charges of 3−-vertices are negative. We define a local redistribution of
µ’s, preserving their sum, such that the new charge µ′(x) is non-negative for all
x ∈ V ∪F . This will contradict the fact that the sum of the new charges is, by (1),
equal to −8.

We apply the following rules of discharging.

R1. Every face f gives v:
(a) 3

4 to each incident 2-vertex having a 2-neighbor, and
(b) 1

2 to each other incident vertex.

R2. Every 3+-vertex gives 1
2 to each 2-neighbor.

We now check µ′(x) ≥ 0 whenever x ∈ V ∪ F .

Case 1. v ∈ V .
Subcase 1.1. d(v) = 2. If v belongs to a (2, 2)-path, then v receives 2× 3

4 from the
incident faces by R1 and 1

2 from the 3+-neighbor by R2 due to the absence of (2,3,2)-
path, so µ′(v) = 2−4+2× 3

4 +
1
2 = 0. Otherwise, we have µ′(v) = −2+4×+1

2 = 0.
Subcase 1.2. d(v) ≥ 3. If d(v) = 3 then v gives away 1

2 by R2 at most once due
to the absence of (2, 3, 2)-paths in G, so µ′(v) ≥ 3 − 4 − 1

2 + 3 × 3
4 = 0 in view of

R1. If d(v) ≥ 4 then µ′(v) ≥ d(v)− 4− d(v)× 1
2 + d(v)× 3

4 ≥ 0 by R1, R2.

Case 2. f ∈ F . Note that f is incident with at most ⌊d(f)
3 ⌋ (2, 2)-paths since

there are no (2, 2, 2)-paths.
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If d(f) = 11 then there are at most three (2, 2)-paths in the boundary of f , which
implies µ′(f) ≥ 11− 4− 6× 3

4 − (11− 6)× 1
2 = 0 by R1, R2.

If d(f) ≥ 12 then we similarly have µ′(f) ≥ d(f)− 4−⌊d(f)
3 ⌋× (2× 3

4 )− (d(f)−
2× ⌊d(f)

3 ⌋)× 1
2 ≥ d(f)

2 − 4− 1
2 × ⌊d(f)

3 ⌋ ≥ d(f)−12
3 ≥ 0, as desired.

2.2. Proving the tightness of {(2, 3, 2)}. We now construct a graph G10+k with
g = 10 + k whenever 1 ≤ k ≤ 5 that avoids all “smaller” 3-paths, which are only
(2, 2, 2)-paths, as follows.

In particular, to obtain a G15, it suffices to put two 2-vertices on each edge of
the dodecahedron. In the general case, we first split the edges of the dodecahedron
into matchings M1, . . . ,M5 so that each face in incident with representatives of all
matchings, which is easy. Then, we put two 2-vertices on all edges from M1, . . . ,Mk

and one 2-vertex on each of the other edges, which yields a desired G10+k.

2.3. Proving that there are no tight descriptions other than {(2, 2, 3)}
and {(2, 3, 2)}. Suppose D = {(x1, y1, z1), . . . , (xk, yk, zk)} is a tight description of
3-paths in plane graphs with δ = 2 and 11 ≤ g ≤ 15. This means that

(1) every such graph has a (xi, yi, zi)-path for at least one i with 1 ≤ i ≤ k, and
(2) if we delete any term (xi, yi, zi) from D or decrease any parameter in D by

one without changing the other 3k− 1 parameters, then the new description is not
satisfied by at least one graph of the given class.

Note that, due to its tightness, the description D cannot have triplets (X,Y, Z)
and (X ′, Y ′, Z ′) such that X ≤ X ′, Y ≤ Y ′, and Z ≤ Z ′, for D′ = D \ {(X,Y, Z)}
is equivalent to D but shorter. In particular, D has no term (2, 2, 2) due to the
graph G15 above, so suppose x1y1z1 has an element 3+.

If (x1, y1, z1) = (2+, 3+, 2+), then D = {(2, 3, 2)} since {(2, 3, 2)} is known to be
a tight description. If (x1, y1, z1) = (2+, 2+, 3+), then D = {(2, 2, 3)} by the same
reason.

3. Proving Theorem 1(C)

First note that {(2, 3, 3)} was not declared to be a tight description in Jendrol’
and Maceková [16] and Jendrol’ et al. [17], although this fact follows easily from
the tight description {(2, 2, 3), (2, 3, 2)} obtained in [16] and whose tightness was
proved in [17].

Indeed, {(2, 3, 3)} is a description as {(2, 2, 3), (2, 3, 2)} is a stronger description.
On the other hand, each weakest strengthening of {(2, 3, 3)}, that is {(2, 2, 3)} and
{(2, 3, 2)}, is not anymore a description since {(2, 2, 3), (2, 3, 2)} is known to be
tight; this means that {(2, 3, 3)} is tight.

We next prove that {(2, 2, 4), (3, 2, 3)} is a description and then that it is tight.
The former fact implies that {(3, 2, 4)} is also a tight description, as explained in
the last two paragraphs. Finally, we will show that there are no tight descriptions
for g = 10 other than those five listed in Theorem 1(C).

3.1. Proving that {(2, 2, 4), (3, 2, 3)} is a description. Suppose on the contrary
that G has neither (2, 2, 4)- nor (3, 2, 3)-paths and contract all 2-vertices in G to
obtain a graph G∗ with δ(G∗) ≥ 3. As follows from Lebesgue’s Theorem [22], G∗

has a face f∗ that is either a 3-face incident with a 5−-vertex, or a 4-face of one of
the types (3, 3, 5,∞), (3, 4, 4, 5), or else a (3, 3, 3, 3, 5)-face.
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The pre-image f of f∗ under contraction is a 10+-face in G by assumption; in
particular, f must be incident with at least five 2-vertices.

If d(f∗) = 3, then f must actually be incident with at least seven 2-vertices, so
we should have a (2, 2, 2)-path in G; a contradiction.

Suppose d(f∗) = 4. Note that at most one 2-vertex can be put on each of at
least three edges incident in the boundary of f with 4−-vertices (whose number is
at least two due to Lebesgue’s Theorem [22]) when going back from G∗ to G due
to the absence of (2, 2, 4)-paths in G. Since the forth edge of f may receive at most
two 2-vertices, we have d(f) ≤ 4 + 3 + 2 < 10, a contradiction.

Finally, suppose d(f∗) = 5, where f∗ = v1 . . . v5 with d(v1) = . . . = d(v4) = 3.
Now at most one 2-vertex may be put on each of the edges v1v2 and v1v5 and no
2-vertex may appear on the other three edges incident with f due to the absence
of (3, 2, 3)- and (2, 2, 4)-paths in G, respectively. Hence d(f) ≤ 7, a contradiction.

3.2. Proving the tightness of {(2, 2, 4), (3, 2, 3)}. We must show that neither
{(2, 2, 4)} nor {(3, 2, 3)} is a description (of plane graphs with g = 10).

The former triplet fails to describe a graph H1 obtained from the dodecahedron
by putting a 2-vertex on every edge.

For rejecting the latter, we take the (3, 4, 4, 4) Archimedean solid, which is a
plane quadrangulation such that every face is incident with a 3-vertex and three
4-vertices, and put one 2-vertex on every edge incident with a 3-vertex and two
2-vertices on all other edges to obtain a graph H2 avoiding (3, 2, 3)-paths.

3.3. Proving the non-existence of tight descriptions other than {(2, 2, 3),
(2, 3, 2)}, {(2, 4, 2)}, {(2, 3, 3)}, {(2, 2, 4), (3, 2, 3)}, and {(3, 2, 4)}.

Suppose D = {(x1, y1, z1), . . . , (xk, yk, zk)} is a tight description of 3-paths in
plane graphs with δ = 2 and g = 10. By symmetry, we can assume that xi ≤ zi
whenever 1 ≤ i ≤ k.

Case 1. max{y1, z1, . . . , y5, z5} ≥ 4.
If, say, y1 ≥ 4 then D = {(2, 4, 2)} since {(2, 4, 2)} is tight.
Suppose z1 ≥ 4. Now y1 = 2 since otherwise there is a stronger tight description

{(2, 3, 3)}, a contradiction. If x1 ≥ 3 then D = {(3, 2, 4)} since {(3, 2, 4)} is tight.
Thus we have (x1, y1, z1) = (2, 2, 4+). Note that this term fails to describe the

graph H1 mentioned above, which has no (2, 2)-paths. It further follows from H1

that D must have a term, say (x2, y2, z2), which is either (3+, 2+, 3+) or (2+, 3+, 2+).
However, if (x2, y2, z2) = (2+, 3+, 2+) then we have a stronger tight description

{(2, 2, 3), (2, 3, 2)} than D, a contradiction. It remains to assume that (x2, y2, z2) =
(3+, 2+, 3+), in which case D = {(2, 2, 4), (3, 2, 3)}, as desired.

Case 2. Each entry of D is 2 or 3.
To be able to describe the graph H1, our D must have a term, say (x1, y1, z1),

which is either (3, 2+, 3) or (2+, 3, 2+). Not to majorize the description {(2, 3, 3)},
this term should in fact be either (3, 2, 3) or (2, 3, 2).

However, if (x1, y1, z1) = (2, 3, 2) then it follows from the tight description
{(2, 2, 3), (2, 3, 2)} that there should exist a term (x2, y2, z2) = (2+, 2+, 3) in D,
and so D = {(2, 2, 3), (2, 3, 2)}.

Hence we can further assume that y1 = . . . = yk = 2 and (x1, y1, z1) = (3, 2, 3).
It follows that in fact D = {(2, 2, 3), (3, 2, 3)}, but then D fails to describe 3-paths
in the graph H2 mentioned in Section 3.2, a contradiction.
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4. Proving Theorem 1(D)

Note that the existence and tightness of the three one-term descriptions {(2, 5, 3)},
{(2, 3, 5)}, and {(3, 2, 5)} follow easily from the same properties of corresponding
two-term descriptions, in the same fashion as in Section 3. For example, {(2, 5, 3)}
follows from {(2, 5, 2), (2, 2, 3)}.

We first prove that {(2, 5, 2), (2, 2, 3)} and {(2, 2, 5), (3, 2, 3)} are descriptions and
then show them to be tight. Finally, we show that there are no tight descriptions
for g = 9 other than those six listed in Theorem 1(D).

4.1. Proving that {(2, 5, 2), (2, 2, 3)} and {(2, 2, 5), (3, 2, 3)} are descriptions.
Suppose on the contrary that G does not obey one of these two descriptions. We
consider the contracted graph G∗ with δ(G∗) ≥ 3, as in Section 3, and its 5−-faces
f∗ implied by Lebesgue’s Theorem [22].

If d(f∗) = 3, then ∂(f) must have two 2-vertices between each two 3+-vertices.
In particular, this implies both (2, 5, 2)- and (2, 2, 5)-path in ∂(f), a contradiction.

Suppose d(f∗) = 4 and ∂(f) has three 5−-vertices v1, v2, v3. It is not hard to
see that to avoid (2, 2, 5)- or (2, 5, 2)-paths, our f can have at most two 2-vertices
on each of the pairs of edges v1v2, v1v4 and v2v3, v3v4. However, then d(f) ≤ 8, a
contradiction.

Finally, suppose d(f∗) = 5, where f∗ = v1 . . . v5 with d(v1) = . . . d(v4) = 3.
Now for G not to obey {(2, 5, 2), (2, 2, 3)} or {(2, 2, 5), (3, 2, 3)}, at most one 2-
vertex may be put on each of the pairs of edges v1v2, v1v5 and v3v4, v4v5 and at
most one 2-vertex on the edge v2v3 when going back from f∗ to f . This implies
d(f) ≤ 5 + 3× 1 < 9, a contradiction.

4.2. Proving the tightness of {(2, 5, 2), (2, 2, 3)} and {(2, 2, 5), (3, 2, 3)}. To see
that neither {(2, 4, 2), (2, 2, 3)} nor {(2, 2, 4), (3, 2, 3)} is a description, it suffices to
put two 2-vertices on every edge of the icosahedron and note that the graph H3

obtained has no (4, 4, 4)-paths.
To reject {(2, 5, 2), (2, 2, 2)}, we reproduce the graph H4 obtained in Jendrol’ et

al. [18]. Take concentric cycles W9 = w1 . . . w9, XY18 = x1y1 . . . x9y9, Z9 = z1 . . . z9,
and add a path with two internal 2-vertices between wi to xi and also between yi
and zi whenever 1 ≤ i ≤ 9. It remains to observe that g(H4) = 9 and H4 has no
(2, 5, 2)-paths.

Finally, {(2, 2, 5), (2, 2, 3)} fails to describe the graph H1 obtained from the dode-
cahedron by putting a 2-vertex on every edge.

4.3. Proving the non-existence of tight descriptions other than those
six in Theorem 1(D). Suppose D = {(x1, y1, z1), . . . , (xk, yk, zk)} is a tight
description of 3-paths in plane graphs with δ = 2 and g = 9. By symmetry, we
can assume that xi ≤ zi whenever 1 ≤ i ≤ k. It follows from the graph H3 above
that D must have an entry, say y1 or z1, not smaller than 5.

Case 1. y1 ≥ 5. Now (x1, y1, z1) = (2, 5+, 2) since {(2, 5, 3)} is a tight description.
It follows from H4 (which has no (2, 5, 2)-paths) that, say, (x2, y2, z2) = (2+, 2+, 3+).
Since {(2, 5, 2), (2, 2, 3)} is known to be a tight description, we have D = {(2, 5, 2),
(2, 2, 3)}.

Case 2. z1 ≥ 5. Now (x1, y1, z1) = (2, 2, 5+) since {(3, 2, 5)} and {(2, 3, 5)}
are tight descriptions. As we remember, H1 has only (3, 2, 3)- and (2, 3, 2)-paths.
This implies that either (x2, y2, z2) = (3+, 2+, 3+) or (x2, y2, z2) = (3+, 2+, 3+).
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In the first case, we have D = {(2, 2, 5), (3, 2, 3)} since {(2, 2, 5), (3, 2, 3)} is a tight
description. In the second case, we similarly have D = {(2, 2, 5), (2, 3, 2)}, as desired.
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