$\mathbf{S}\mathbf{e}\mathbf{M}\mathbf{R}$ ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 15, стр. 1216–1226 (2018) DOI 10.17377/semi.2018.15.098 УДК 517.958, 533 MSC 35Q99, 76N15

ПОДМОДЕЛИ ОДНОАТОМНОГО ГАЗА НАИМЕНЬШЕГО РАНГА, ПОСТРОЕННЫЕ НА ОСНОВЕ ТРЕХМЕРНЫХ ПОДАЛГЕБР СИММЕТРИИ

Р.Ф. НИКОНОРОВА

ABSTRACT. We consider the gas dynamics equations with the state equation of the monatomic gas. The equations admits a group of transformations with a 14-dimensional Lie algebra. We consider three-dimensional subalgebras containing the projective operator from the optimal system of subalgebras. Invariant and partially invariant submodels of lowest-rank are constructed for each of subalgebras.

Keywords: gas dynamics equations, submodel, projective operator.

1. Введение

Уравнения газовой динамики с уравнением состояния одноатомного газа имеют вид [1]:

(1)
$$\rho D\vec{u} + \nabla p = 0, D\rho + \rho \operatorname{div} \vec{u} = 0, DS = 0, S = p\rho^{-\frac{5}{3}},$$

где $D=\partial_t+\vec{u}\cdot\nabla,\,\nabla=(\partial_x,\partial_y,\partial_z)$ — оператор градиента в декартовой системе координат, $\vec{u}=(u,v,w)$ — вектор скорости, ρ — плотность, p — давление, S — функция энтропии. Газодинамические функции \vec{u},ρ,p,S зависят от времени t и декартовых координат x,y,z.

Система (1) допускает группу преобразований с 14-мерной алгеброй Ли операторов. В качестве базисных операторов алгебры L_{14} в декартовой системе координат берутся $X_1=\partial_x,\,X_2=\partial_y,\,X_3=\partial_z$ (переносы по пространству); $X_4=t\partial_x+\partial_u,\,X_5=t\partial_y+\partial_v,X_6=t\partial_z+\partial_w$ (галилеевы переносы); $X_7=y\partial_z-$

Nikonorova, R.F., The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras.

^{© 2018} Никонорова Р.Ф.

Работа поддержана грантом РФФИ (N 18-29-10071) и средствами государственного бюджета по госзаданию (N 0246-2018-0005).

Поступила 31 декабря 2017 г., опубликована 19 октября 2018 г.

$$\begin{split} z\partial_y + v\partial_w - w\partial_v, X_8 &= z\partial_x - x\partial_z + w\partial_u - u\partial_w, X_9 &= x\partial_y - y\partial_x + u\partial_v - v\partial_u \text{(вращения)}; \\ X_{10} &= \partial_t \text{(перенос по времени)}; \ X_{11} &= t\partial_t + x\partial_x + y\partial_y + z\partial_z \text{(равномерное растяжение)}; \\ X_{12} &= t^2\partial_t + tx\partial_x + ty\partial_y + tz\partial_z + (x-tu)\partial_u + (y-tv)\partial_v + (z-tw)\partial_w - 3t\rho\partial_\rho - 5tp\partial_p \text{(проективный оператор)}; \\ X_{13} &= t\partial_t - u\partial_u - v\partial_v - w\partial_w - 3\rho\partial_\rho - 5p\partial_p, \\ X_{14} &= \rho\partial_\rho + p\partial_p - \frac{2}{3}S\partial_S \text{(растяжения)}. \end{split}$$

Оптимальная система неподобных подалгебр включает 1817 представителей [2]. Особенность этой алгебры заключается в том, что она содержит проективный оператор X_{12} . Подалгебр, содержащих проективный оператор, значительно меньше. Все они представлены в компактном виде (73 представителя) в работе [3]. В работе [4] рассмотрены одномерные и двумерные подалгебры работы [3], для которых построены инвариантные подмодели ранга 3 и ранга 2 соотвественно.

В данной работе рассматриваются трехмерные подалгебры работы [3]. Вазисные операторы подалгебр работы [3] не содержат оператора X_{14} . Подалгебры, содержащие оператор X_{14} восстанавливаются по подалгебрам из работы [3] двумя способами, описанными там же. Подмодели для таких подалгебр имеют те же номера, что и подалгебры работы [3]. Если подмодель построена для подалгебры, полученной вторым способом, она отмечается символами * или ** после номера подалгебры. Как правило, представления решения для подалгебр с символами и без них отличаются только представлением функций ρ , p и S.

Для каждой подалгебры вычисляются инварианты базисных операторов. Там, где их оказывается достаточно, чтобы выразить через них все искомые функции, строятся инвариантные подмодели ранга 1 (с одной независимой переменной). В том случае, когда инвариантов подалгебры оказывается недостаточно, строятся частично инвариантные подмодели (ЧИП) [5]. При этом часть искомых функций будет иметь инвариантное представление, а оставшиеся функции назначаются зависимыми от всех независимых переменных (так называемые функции общего вида). Частично инвариантные подмодели характеризуются парой чисел: ранг решения (число независимых инвариантных переменных) и дефект (число функций общего вида). Для рассмотренных подалгебр получены регулярные частично инвариантные подмодели (РЧИП), в которых инвариантные независимые переменные зависят только от t, \vec{x} и не зависят от функций общего вида. Таким образом, строятся подмодели наименьшего ранга. Все подмодели стационарного типа. Для некоторых подмоделей найдены интегралы.

Подмодели для подалгебр 3.1, 3.2, 3.2**, 3.2**, 3.6 строятся в цилиндрической системе координат: $x=x,y=r\cos\theta,z=r\sin\theta,u=U,v=V\cos\theta-W\sin\theta,w=V\sin\theta+W\cos\theta$, а для остальных подалгебр — в декартовых координатах.

2. Инвариантные подмодели

Результаты вычислений, описанные в п.1, приводятся в табличном виде. Подмодель 3.2

Базисные операторы подалгебры берутся в виде $X_7, X_{10} + X_{12} + aX_{14}, X_{11} - X_{13}$.

Представление инвариантного решения записывается через инварианты:

$$U = (U_1 + t)x(1 + t^2)^{-1},$$

$$V = (V_1 + tr_1)x(1 + t^2)^{-1},$$

$$W = W_1x(1 + t^2)^{-1},$$

$$\rho = \rho_1 x^3 (1 + t^2)^{-3} e^{a\tau},$$

$$p = p_1 x^5 (1 + t^2)^{-5} e^{a\tau},$$

$$S = S_1 e^{-\frac{2}{3}a\tau},$$

$$r_1 = \frac{r}{r}, \tau = \operatorname{arctg} t,$$

где $U_1, V_1, W_1, \rho_1, p_1, S_1$ есть функции r_1 .

Инвариантая подмодель имеет вид:

$$\begin{split} D_1U_1 - r_1\rho_1^{-1}p_{1r_1} &= -1 - U_1^2 - 5\rho_1^{-1}p_1, \\ D_1V_1 + \rho_1^{-1}p_{1r_1} &= r_1^{-1}W_1^2 - r_1 - U_1V_1, \\ D_1W_1 &= -r_1^{-1}V_1W_1 - U_1W_1, \\ D_1\rho_1 + \rho_1(-r_1U_{1r_1} + V_{1r_1} + r_1^{-1}V_1) &= -\rho_1(4U_1 + a), \\ D_1S_1 &= \frac{2}{3}aS_1, S_1 = p_1\rho_1^{-\frac{5}{3}}, \end{split}$$

где $D_1 = (V_1 - r_1 U_1) \partial_{r_1}$.

Подмодель 3.2*

Базисные операторы подалгебры: $X_7+aX_{14},bX_7+c(X_{10}+X_{12}),X_{11}-X_{13},a\neq 0,c\neq 0.$

Представление инвариантного решения:

$$\begin{split} U &= (U_1 + t)x(1 + t^2)^{-1}, \\ V &= (V_1 + tr_1)x(1 + t^2)^{-1}, \\ W &= W_1x(1 + t^2)^{-1}, \\ \rho &= \rho_2 x^3 (1 + t^2)^{-3} e^{a(\theta - g\tau)}, \\ p &= p_2 x^5 (1 + t^2)^{-5} e^{a(\theta - g\tau)}, \\ S &= S_2 e^{\frac{2}{3}a(g\tau - \theta)}, \\ r_1 &= \frac{r}{x}, \tau = \operatorname{arctg} t, g = \frac{b}{c}, \end{split}$$

где $U_1, V_1, W_1, \rho_2, p_2, S_2$ есть функции r_1 .

Инвариантая подмодель:

$$\begin{split} D_1U_1-r_1\rho_2^{-1}p_{2r_1}&=-1-U_1^2-5\rho_2^{-1}p_2,\\ D_1V_1+\rho_2^{-1}p_{2r_1}&=r_1^{-1}W_1^2-r_1-U_1V_1,\\ D_1W_1&=-ar_1^{-1}\rho_2^{-1}p_2-r_1^{-1}V_1W_1-U_1W_1,\\ D_1\rho_2+\rho_2(-r_1U_{1r_1}+V_{1r_1}+r_1^{-1}V_1)&=-\rho_2(4U_1-ag+ar_1^{-1}W_1),\\ D_1S_2&=\frac{2}{3}aS_2(-g+r_1^{-1}W_1),S_2&=p_2\rho_2^{-\frac{5}{3}},\\ \text{где }D_1&=(V_1-r_1U_1)\partial_{r_1}. \end{split}$$

Подмодель 3.2**

Базисные операторы подалгебры: $X_7 + a(X_{11} - X_{13}), X_{10} + X_{12} + b(X_{11} - X_{13}), X_{11} - X_{13} + cX_{14}, c \neq 0.$

Представление инвариантного решения:

$$\begin{split} &U = (U_1 + t)x(1 + t^2)^{-1}, \\ &V = (V_1 + tr_1)x(1 + t^2)^{-1}, \\ &W = W_1x(1 + t^2)^{-1}, \\ &\rho = \rho_3 x^{3+c} (1 + t^2)^{-3 - \frac{c}{2}} e^{-c(b\tau + a\theta)}, \\ &p = p_3 x^{5+c} (1 + t^2)^{-5 - \frac{c}{2}} e^{-c(b\tau + a\theta)}, \\ &S = S_3 x^{-\frac{2}{3}c} (1 + t^2)^{\frac{c}{3}} e^{\frac{2}{3}c(b\tau + a\theta)}, \\ &r_1 = \frac{r}{x}, \tau = \operatorname{arctg} t, \end{split}$$

где функции $U_1, V_1, W_1, \rho_3, p_3, S_3$ зависят от $r_1.$

Инвариантая подмодель:

$$D_1 U_1 - r_1 \rho_3^{-1} p_{3r_1} = -1 - U_1^2 - (5+c) \rho_3^{-1} p_3,$$

$$D_1 V_1 + \rho_3^{-1} p_{3r_1} = r_1^{-1} W_1^2 - r_1 - U_1 V_1,$$

$$D_1 W_1 = -r_1^{-1} V_1 W_1 - U_1 W_1 + a c r_1^{-1} \rho_3^{-1} p_3,$$

$$D_1 \rho_3 + \rho_3 (-r_1 U_{1r_1} + V_{1r_1} + r_1^{-1} V_1) = -\rho_3 ((4+c) U_1 - b c - a c r_1^{-1} W_1),$$

$$D_1 S_3 = -\frac{2}{3} c S_3 (b - U_1 + a r_1^{-1} W_1), S_3 = p_3 \rho_3^{-\frac{5}{3}},$$

где $D_1 = (V_1 - r_1 U_1) \partial_{r_1}$.

Подмодель 3.3

Базисные операторы подалгебры берутся в следующем виде $-X_3+X_5, X_7+X_{10}+X_{12}+aX_{14}, X_{11}-X_{13}.$

Представление инвариантного решения:

$$u = (u_1 + t)x(1 + t^2)^{-1},$$

$$v = (v_1 - w_1t)x(1 + t^2)^{-\frac{3}{2}} + (yt - z)(1 + t^2)^{-1},$$

$$w = (w_1 + v_1t)x(1 + t^2)^{-\frac{3}{2}} + (y + zt)(1 + t^2)^{-1},$$

$$\rho = \rho_1 x^3 e^{a\tau} (1 + t^2)^{-3}, p = p_1 x^5 e^{a\tau} (1 + t^2)^{-5},$$

$$S = S_1 e^{-\frac{2}{3}a\tau}, y_1 = (y + tz)x^{-1}(1 + t^2)^{-\frac{1}{2}}, \tau = \operatorname{arctg} t,$$

где $u_1, v_1, w_1, \rho_1, p_1, S_1$ есть функции y_1 .

Инвариантая подмодель:

$$D_1 u_1 - y_1 \rho_1^{-1} p_{1y_1} = -1 - u_1^2 - 5\rho_1^{-1} p_1,$$

$$D_1 v_1 + \rho_1^{-1} p_{1y_1} = 2w_1 - u_1 v_1,$$

$$D_1 w_1 = -2v_1 - u_1 w_1,$$

$$D_1 \rho_1 + \rho_1 (-y_1 u_{1y_1} + v_{1y_1}) = -a\rho_1 - 4\rho_1 u_1,$$

$$D_1 S_1 = \frac{2}{3} a S_1, S_1 = p_1 \rho^{-\frac{5}{3}},$$

где $D_1 = (v_1 - y_1 u_1) \partial_{y_1}$.

Если $v_1 = y_1 u_1$, то a = 0. Для этого случая получены 2 частных решения:

1)
$$u_1 = v_1 = 0, w_1 = By_1^4, \rho_1 = \rho_0, p_1 = \frac{1}{5}\rho_0(2By_1^5 - 1), S_1 = \frac{1}{5}\rho_0^{-\frac{2}{3}}(2By_1^5 - 1).$$

Решение задает движение с мировыми линиями частиц (мировые линии не пересекаются):

$$x = x_0(1+t^2)^{\frac{1}{2}}, y = y_0 - t\left(z_0 + B\frac{y_0^4}{x_0^3}\tau\right), z = ty_0 + \left(z_0 + B\frac{y_0^4}{x_0^3}\tau\right).$$

$$2)u_1 = 0, v_1 = 0, w_1 = Dy_1, \rho_1 = \left(\frac{1}{5S_0}(2Dy_1^2 - 1)\right)^{\frac{3}{2}}, p_1 = S_0\left(\frac{1}{5S_0}(2Dy_1^2 - 1)\right)^{\frac{5}{2}}, S_1 = S_0.$$

Решение задает движение с мировыми линиями частиц (мировые линии не пересекаются):

$$x = x_0(1+t^2)^{\frac{1}{2}}, y = y_0 - t(z_0 + y_0D\tau), z = ty_0 + (z_0 + y_0D\tau).$$

Полмолель 3 3*

Базисные операторы подалгебры берутся в виде $-X_3+X_5, X_7+X_{10}+X_{12}+a(X_{11}-X_{13}), X_{11}-X_{13}+bX_{14}.$

Представление инвариантного решения:

$$u = (u_1 + t)x(1 + t^2)^{-1},$$

$$v = (v_1 - w_1 t)x(1 + t^2)^{-\frac{3}{2}} + (yt - z)(1 + t^2)^{-1},$$

$$w = (w_1 + v_1 t)x(1 + t^2)^{-\frac{3}{2}} + (y + zt)(1 + t^2)^{-1},$$

$$\rho = \rho_2 x^{3+b} (1 + t^2)^{-3 - \frac{b}{2}} e^{-ab\tau}, p = p_2 x^{5+b} (1 + t^2)^{-5 - \frac{b}{2}} e^{-ab\tau},$$

$$S = S_2 x^{-\frac{2}{3}b} (1 + t^2)^{\frac{b}{3}} e^{\frac{2}{3}ab\tau}, y_1 = (y + tz)x^{-1} (1 + t^2)^{-\frac{1}{2}}, \tau = \operatorname{arctg} t,$$

где $u_1, v_1, w_1, \rho_2, p_2, S_2$ есть функции y_1 .

Инвариантая подмодель имеет вид:

$$D_1 u_1 - y_1 \rho_2^{-1} p_{2y_1} = -1 - u_1^2 - (5+b)\rho_2^{-1} p_2,$$

$$D_1 v_1 + \rho_2^{-1} p_{2y_1} = 2w_1 - u_1 v_1,$$

$$D_1 w_1 = -2v_1 - u_1 w_1,$$

$$D_1 \rho_2 + \rho_2 (-y_1 u_{1y_1} + v_{1y_1}) = ab\rho_2 - (4+b)\rho_2 u_1,$$

$$D_1 S_2 = \frac{2}{3} b S_2 (u_1 - a), S_2 = p_2 \rho_2^{-\frac{5}{3}},$$

где $D_1 = (v_1 - y_1 u_1) \partial_{y_1}$.

Подмодель 3.4

Базисные операторы подалгебры берутся в виде $X_2 + X_6, -X_3 + X_5, X_7 + a(X_{10} + X_{12}) + b(X_{11} - X_{13}) + cX_{14}, a \neq 0.$

Представление инвариантного решения:

$$u = u_1(1+t^2)^{-\frac{1}{2}}e^{a^{-1}b\tau} + tx(1+t^2)^{-1},$$

$$v = (v_1\cos(a^{-1}\tau) + w_1\sin(a^{-1}\tau))(1+t^2)^{-\frac{1}{2}}e^{a^{-1}b\tau} + (yt-z)(1+t^2)^{-1},$$

$$w = (v_1\sin(a^{-1}\tau) - w_1\cos(a^{-1}\tau))(1+t^2)^{-\frac{1}{2}}e^{a^{-1}b\tau} + (y+zt)(1+t^2)^{-1},$$

$$\rho = \rho_1(1+t^2)^{-\frac{3}{2}}e^{a^{-1}(3b+c)\tau}, p = p_1(1+t^2)^{-\frac{5}{2}}e^{a^{-1}(5b+c)\tau},$$

$$S = S_1e^{-\frac{2c}{3a}\tau}, x_1 = x(1+t^2)^{-\frac{1}{2}}e^{-a^{-1}b\tau}, \tau = \operatorname{arctg} t,$$

где $u_1, v_1, w_1, \rho_1, p_1, S_1$ есть функции x_1 .

Инвариантая подмодель имеет вид:

$$D_1 u_1 + \rho_1^{-1} p_{1x_1} = -x_1 - a^{-1} b u_1,$$

$$D_1 v_1 = -a^{-1} b v_1 - a^{-1} (a+1) w_1,$$

$$D_1 w_1 = a^{-1} (a+1) v_1 - a^{-1} b w_1,$$

$$D_1 \rho_1 + \rho_1 u_{1x_1} = -a^{-1} (3b+c) \rho_1,$$

$$D_1 S_1 = \frac{2c}{3a} S_1, S_1 = p_1 \rho_1^{-\frac{5}{3}},$$

где $D_1 = (u_1 - a^{-1}bx_1)\partial_{x_1}$.

Второе и третье уравнения системы отщепляются.

Подмодель 3.4*

Базисные операторы подалгебры берутся виде $-X_3+X_5, a(X_2+X_6)+X_7+X_{10}+X_{12}, X_2+X_6+bX_{14}.$

Представление инвариантного решения:

$$\begin{split} u &= u_2(1+t^2)^{-\frac{1}{2}} + tx(1+t^2)^{-1}, \\ v &= (v_2 - w_2t + yt - z)(1+t^2)^{-1}, \\ w &= (w_2 + v_2t + y + zt)(1+t^2)^{-1}, \\ \rho &= \rho_2(1+t^2)^{-\frac{3}{2}} exp\left(b(-a\tau + (y+tz)(1+t^2)^{-1})\right), \\ p &= p_2(1+t^2)^{-\frac{5}{2}} exp\left(b(-a\tau + (y+tz)(1+t^2)^{-1})\right), \\ S &= S_2 exp\left(-\frac{2}{3}b(-a\tau + (y+tz)(1+t^2)^{-1})\right), \\ x_2 &= x(1+t^2)^{-\frac{1}{2}}, \tau = \operatorname{arctg} t, \end{split}$$

где $u_2, v_2, w_2, \rho_2, p_2, S_2$ есть функции x_2 .

Инвариантая подмодель имеет канонический вид:

$$D_2 u_2 + \rho_2^{-1} p_{2x_2} = -x_2,$$

$$D_2 v_2 = 2w_2 - b\rho_2^{-1} p_2,$$

$$D_2 w_2 = -2v_2,$$

$$D_2 \rho_2 + \rho_2 u_{2x_2} = b\rho_2 (a - v_2),$$

$$D_2 S_2 = -\frac{2}{3} b S_2 (a - v_2), S_2 = p_2 \rho_2^{-\frac{5}{3}},$$

где $D_2 = u_2 \partial_{x_2}$.

После введения новой независимой переменной s по формуле $u_2=x_{2s}$ получены следующие интегралы:

$$S_2 = K_1 exp\left(-\frac{2}{3}abs - \frac{1}{3}bw_2\right), \rho_2 u_2 = K_2 exp\left(abs + \frac{1}{2}bw_2\right).$$

Подмодель 3.5

Базисные операторы берутся в следующем виде $aX_4 + X_2 + X_6$, $aX_1 - X_3 + X_5$, $2X_7 + X_{10} + X_{12} + b(X_{11} - X_{13}) + cX_{14}$, $a \neq 0$.

Представление инвариантного решения:

$$u = (u_1 + tx_1)(1 + t^2)^{-\frac{1}{2}}e^{b\tau} + a(y + zt)(1 + t^2)^{-1},$$

$$v = ((1 - t^2)v_1 + 2tw_1)(1 + t^2)^{-\frac{3}{2}}e^{b\tau} + (yt - z)(1 + t^2)^{-1},$$

$$w = (2tv_1 - (1 - t^2)w_1)(1 + t^2)^{-\frac{3}{2}}e^{b\tau} + (y + zt)(1 + t^2)^{-1},$$

$$\rho = \rho_1(1 + t^2)^{-\frac{3}{2}}e^{(3b+c)\tau}, p = p_1(1 + t^2)^{-\frac{5}{2}}e^{(5b+c)\tau},$$

$$S = S_1e^{-\frac{2}{3}c\tau}, \tau = \operatorname{arctg} t,$$

$$x_1 = (x(1 + t^2) + a(1 - t^2)z - 2aty)(1 + t^2)^{-\frac{3}{2}}e^{-b\tau},$$

где $u_1, v_1, w_1, \rho_1, p_1, S_1$ есть функции x_1 .

Инвариантая подмодель:

$$D_1 u_1 + \rho_1^{-1} p_{1x_1} = -x_1 - bu_1 - av_1,$$

$$D_1 v_1 = -bv_1 - 3w_1,$$

$$D_1 w_1 - a\rho_1^{-1} p_{1x_1} = 3v_1 - bw_1,$$

$$D_1 \rho_1 + \rho_1 (u_{1x_1} - aw_{1x_1}) = -(3b + c)\rho_1,$$

$$D_1 S_1 = \frac{2}{3} cS_1, S_1 = p_1 \rho_1^{-\frac{5}{3}},$$

где $D_1 = (u_1 - aw_1 - bx_1)\partial_{x_1}$.

Подмодель 3.7

Базисные операторы берутся в виде

$$aX_2 + X_6, -X_3 + aX_5, X_{10} + X_{12} + b(X_{11} - X_{13}) + cX_{14}, a > 0.$$

Представление инвариантного решения:

$$u = u_1(1+t^2)^{-\frac{1}{2}}e^{b\tau} + tx(1+t^2)^{-1},$$

$$v = v_1(1+t^2)^{-\frac{1}{2}}e^{b\tau} + (ty-az)(1+t^2)^{-1},$$

$$w = -w_1(1+t^2)^{-\frac{1}{2}}e^{b\tau} + (tz+a^{-1}y)(1+t^2)^{-1},$$

$$\rho = \rho_1(1+t^2)^{-\frac{3}{2}}e^{(3b+c)\tau}, p = p_1(1+t^2)^{-\frac{5}{2}}e^{(5b+c)\tau},$$

$$S = S_1e^{-\frac{2}{3}c\tau}, x_1 = x(1+t^2)^{-\frac{1}{2}}e^{-b\tau}, \tau = \operatorname{arctg} t.$$

где $u_1, v_1, w_1, \rho_1, p_1, S_1$ есть функции x_1 .

Инвариантная подмодель:

$$D_1 u_1 + \rho_1^{-1} p_{1x_1} = -bu_1 - x_1,$$

$$D_1 v_1 = -bv_1 - aw_1,$$

$$D_1 w_1 = a^{-1} v_1 - bw_1,$$

$$D_1 \rho_1 + \rho_1 u_{1x_1} = -(3b + c)\rho_1$$

$$D_1 S_1 = \frac{2}{3} cS_1, \ S_1 = p_1 \rho_1^{-\frac{5}{3}}$$

где
$$D_1 = (u_1 - bx_1)\partial_{x_1}$$
.

Второе и третье уравнения системы отщепляются. При c=0 и $u_1\neq bx_1$ эта подмодель сведена к одному уравнению 1-ого порядка. При c=0 и $u_1=bx_1$ получено частное решение $b=0, u_1=v_1=w_1=0, \rho_1=-p_{1x_1}x_1^{-1},$ где $p_1(x_1)$ — произвольная функция.

3. Регулярные частично-инвариантные подмодели

Результаты вычислений РЧИП приведены в табличном виде. Все полученные подмодели исследованы на совместность и сведены к замкнутой системе из 6 уравнений на инвариантные функции и одному дополнительному уравнению, которое решается после решения системы.

Для приведения инвариантной части подмоделей (а именно уравнений для второй и третьей компоненты инвариантной скорости) к каноническому виду были использованы замены, полученные по алгоритму, описанному в работе [6].

Подмодель 3.1

Базисные операторы берутся в следующем виде:

$$X_{10}, X_{12}, X_{11} + X_{13}$$
.

Получены инварианты: $\theta, r_1 = \frac{r}{x}, V_1 = xV - rU, W_1 = xW, \rho_1 = x^3\rho, p_1 = x^5p.$

Представление РЧИР ранга 2 дефекта 1:

$$U = U(t, x, r, \theta), V = r_1 U + \frac{V_1}{x}, W = \frac{W_1}{x}, \rho = \frac{\rho_1}{x^3}, p = \frac{p_1}{x^5}, S = S_1,$$

где $V_1, W_1, \rho_1, p_1, S_1$ есть функции θ, r_1 .

Получена регулярная частично-инвариантая подмодель:

$$x^{3}(U_{t} + UU_{x} + x^{-2}D_{1}U) = \rho_{1}^{-1}(5p_{1} + r_{1}p_{1r_{1}}) = \mu(r_{1}, \theta),$$

$$x(U - xU_{x}) = \rho_{1}^{-1}D_{1}\rho_{1} + V_{1r_{1}} + r_{1}^{-1}V_{1} + r_{1}^{-1}W_{1\theta} = \lambda(r_{1}, \theta),$$

$$D_{1}V_{1} + \rho_{1}^{-1}(1 + r_{1}^{2})p_{1r_{1}} = r_{1}^{-1}W_{1}^{2} - 5r_{1}\rho_{1}^{-1}p_{1},$$

$$D_{1}W_{1} + \rho_{1}^{-1}r_{1}^{-1}p_{1\theta} = -r_{1}^{-1}V_{1}W_{1},$$

$$D_{1}S_{1} = 0, S_{1} = p_{1}\rho_{1}^{-\frac{5}{3}},$$

где
$$D_1=V_1\partial_{r_1}+r_1^{-1}W_1\partial_{\theta}.$$

Из первых двух неинвариантных уравнений при изучении совместности получены:

-представление для U

$$U = \frac{\lambda}{2x} + \frac{x}{t + m(r_1, \theta)},$$

-два уравнения, записанные в инварианта

$$D_1 \lambda = 2\mu + \frac{1}{2}\lambda^2,$$
$$D_1 m = 0.$$

Последнее уравнение - дополнительное.

Вдоль і-линии тока $L: \frac{dr_1}{V_1} = \frac{r_1 d\theta}{W_1}$ получены интегралы

$$m(L) = f(S_1), \quad V_1^2 + (1 + r_1^2)W_1^2 + 5(1 + r_1^2)\rho_1^{-1}p_1 = A(L).$$

Подмодель 3.6

Базисные операторы подалгебры берутся в виде:

$$X_1, X_4, X_7 + a(X_{10} + X_{12}) + b(X_{11} + X_{13}) + cX_{14}$$

Получены инварианты:

$$\theta_1 = \theta - a^{-1}\tau, r_1 = r(1+t^2)^{-\frac{1}{2}}e^{-a^{-1}b\tau}, V_1 = (V(1+t^2)^{\frac{1}{2}} - tr(1+t^2)^{-\frac{1}{2}})e^{-a^{-1}b\tau}, W_1 = W(1+t^2)^{\frac{1}{2}}e^{-a^{-1}b\tau}, \rho_1 = \rho(1+t^2)^{\frac{3}{2}}e^{-a^{-1}(3b+c)\tau}, p_1 = p(1+t^2)^{\frac{5}{2}}e^{-a^{-1}(5b+c)\tau}.$$

Представление РЧИР ранга 2 дефекта 1:

$$U = U(t, x, r, \theta), V = V_1(1 + t^2)^{-\frac{1}{2}} e^{a^{-1}b\tau} + tr(1 + t^2)^{-1}, W = W_1(1 + t^2)^{-\frac{1}{2}} e^{a^{-1}b\tau},$$

$$\rho = \rho_1(1 + t^2)^{-\frac{3}{2}} e^{a^{-1}(3b+c)\tau}, p = p_1(1 + t^2)^{-\frac{5}{2}} e^{a^{-1}(5b+c)\tau}, S = S_1 e^{-\frac{2c}{3a}\tau},$$

где $V_1, W_1, \rho_1, p_1, S_1$ есть функции θ_1, r_1 .

Частично-инвариантая подмодель имеет вид:

$$(1+t^2)(U_t + UU_x) + D_1U = 0,$$

$$t - U_x(1+t^2) = \rho_1^{-1}D_1\rho_1 + V_{1r_1} + r_1^{-1}V_1 + r_1^{-1}W_{1\theta_1} + a^{-1}(3b+c) = \mu(r_1, \theta_1),$$

$$D_1V_1 + \rho_1^{-1}p_{1r_1} = r_1^{-1}W_1^2 - r_1 - a^{-1}bV_1,$$

$$D_1W_1 + \rho_1^{-1}r_1^{-1}p_{1\theta_1} = -r_1^{-1}V_1W_1 - a^{-1}bW_1,$$

$$D_1S_1 = \frac{2c}{3a}S_1, S_1 = p_1\rho_1^{-\frac{5}{3}},$$

где
$$D_1 = (V_1 - a^{-1}br_1)\partial_{r_1} + (r_1^{-1}W_1 - a^{-1})\partial_{\theta_1}.$$

Из первых двух неинвариантных уравнений при изучении совместности получены:

-представление для U

$$U = \frac{t - \mu}{1 + t^2} x + \lambda(t, r_1, \theta_1),$$

-уравнение, записанное в инвариантах

$$D_1\mu = 1 + \mu^2,$$

-дополнительное уравнение

$$D_1\lambda + (1+t^2)\lambda_t + (t-\mu)\lambda = 0.$$

Вдоль і-линии тока $L: \frac{dr_1}{V_1-a^{-1}br_1}=\frac{d\theta_1}{r_1^{-1}W_1-a^{-1}}=ds$ получены интегралы

$$\operatorname{arctg} \mu = s + A(L), \quad S_1 = B(L)exp\left(\frac{2c}{3a}s\right).$$

Подмодель 3.8

Базисные операторы берутся в виде

$$(X_1, X_4, a(X_3 - X_5) + b(X_2 + X_6) + X_7 + X_{10} + X_{12} + cX_{14}, a^2 + b^2 \neq 0.$$

Получены инварианты:

$$y_1 = -b\tau + (y + tz)(1 + t^2)^{-1}, z_1 = -a\tau + (z - ty)(1 + t^2)^{-1}, v_1 = v + tw + (z(1 - t^2) - 2ty)(1 + t^2)^{-1}, w_1 = w - tv + (y(t^2 - 1) - 2tz)(1 + t^2)^{-1}, \rho_1 = \rho(1 + t^2)^{\frac{3}{2}}e^{-c\tau}, p_1 = \rho(1 + t^2)^{\frac{5}{2}}e^{-c\tau}.$$

Представление РЧИР ранга 2 дефекта 1 таково:

$$u = u(t, x, y, z), v = (v_1 - w_1 t + t y - z)(1 + t^2)^{-1}, w = (v_1 t + w_1 + y + t z)(1 + t^2)^{-1},$$

$$\rho = \rho_1 (1 + t^2)^{-\frac{3}{2}} e^{c\tau}, p = p_1 (1 + t^2)^{-\frac{5}{2}} e^{c\tau}, S = S_1 e^{-\frac{2}{3}c\tau}, \tau = \operatorname{arctg} t,$$

где $v_1, w_1, \rho_1, p_1, S_1$ есть функции y_1, z_1 .

Частично-инвариантая подмодель имеет вид:

$$(1+t^2)(u_t+uu_x)+D_1u=0,$$

$$t-u_x(1+t^2)=\rho_1^{-1}D_1\rho_1+v_{1y_1}+w_{1z_1}+c=\mu(y_1,z_1),$$

$$D_1v_1+\rho_1^{-1}p_{1y_1}=2w_1,D_1w_1+\rho_1^{-1}p_{1z_1}=-2v_1,$$

$$D_1S_1=\frac{2c}{3}S_1,S_1=p_1\rho_1^{-\frac{5}{3}},$$

где
$$D_1 = (v_1 - b)\partial_{y_1} + (w_1 - a)\partial_{z_1}$$
.

Из первых двух неинвариантных уравнений при изучении совместности получены:

-представление для u

$$u = \frac{t - \mu}{1 + t^2}x + \lambda(t, y_1, z_1),$$

-уравнение, записанное в инвариантах

$$D_1\mu = -(1+\mu^2),$$

-дополнительное уравнение

$$D_1\lambda + (1+t^2)\lambda_t + (t+\mu)\lambda = 0.$$

Вдоль і-линии тока $L: \frac{dy_1}{v_1-b} = \frac{dz_1}{w_1-a} = ds$ получены интегралы

$$\operatorname{arctg} \mu = -s + A(L), \quad S_1 = B(L)exp\left(\frac{2c}{3}s\right).$$

4. Заключение

Таким образом, были рассмотрены все трехмерные подалгебры, содержащие проективный оператор. Для 9 из них были построены инвариантные подмодели ранга один, представляющие из себя систему обыкновенных дифференциальных уравнений. Для оставшихся 3 подалгебр были построены регулярные частично-инвариантные подмодели. После исследования совместности они сведены к системам, аналогичным инвариантным подмоделям ранга 2, и одному дополнительному уравнению, которое рассматривается после решения систем. Дальнейшая работа заключается в исследовании и нахождении решений построенных подмоделей методами группового анализа и теории дифференциальных уравнений. Предполагается использовать вложение подмоделей: решение любой подмодели надалгебры будет решением некоторой подмодели подалгебры [7].

References

- [1] L.V. Ovsyannikov, *Program 'Submodels'*. Gas Dynamics, Journal of applied mathematics and mechanics, **58**:4 (1994), 30–55. Zbl 0890.76070
- [2] A. A. Cherevko, The optimal system of subalgebras for lie algebra of operators admitted by system of equations of gas dynamics with the equation of state $p = f(S) \rho^{5/3}$, Preprint **4-96**, RAS, Siberian branch, Institute of hydrodynamics, Novosibirsk, 1996.
- [3] R.F. Shayakhmetova, Inserted invariant submodels for motion of monatomic gas, Siberian Electronic Mathematical Reports, 11 (2014), 605–625. MR3488446
- [4] R.F. Shayakhmetova, Invariant submodels of rank 3 and rank 2 monatomic gas with the projective operator, Proceedings of the Mavlyutov Institute of Mechanics, 11:1 (2016), 127– 135.

- [5] S.V. Khabirov, Lectures analytical methods in gas dynamics, Ufa: BSU, 2013.
- [6] S.V. Khabirov, Reduction of the invariant submodel of gas dynamics to the canonical form, Mathematical Notes, 66:3 (1999), 439–444. MR1737375
- [7] S.V. Khabirov, *The hierarchy of submodels of differential equations*, Siberian Mathematical Journal, **54**:6 (2013), 1396–1406. MR3184104

NIKONOROVA RENATA FUATOVNA MAVLYUTOV INSTITUTE OF MECHANICS UFRC RAS, PR. OKTYABRYA, 71, 450054, Ufa, Russia

 $E\text{-}mail\ address: \verb|shayakhmetova.renata@gmail.com||}$