
S e©MR ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ
МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

Том 15, стр. 1271–1283 (2018) УДК 517.93
DOI 10.17377/semi.2018.15.103 MSC 37N25

MATHEMATICAL AND NUMERICAL MODELS
OF TWO ASYMMETRIC GENE NETWORKS

V.P.GOLUBYATNIKOV, M.V.KAZANTSEV, N.E.KIRILLOVA, T.A.BUKHARINA,
D.P.FURMAN

Abstract. We construct and study mathematical models of two gene
networks: a circular gene network of molecular repressilator, and a natural
gene network which does not have circular structure. For the first model,
we consider discretization of phase portrait of corresponding nonlinear
dynamical system and find conditions of existence of an oscillating trajec-
tory (cycle) in this phase portrait. The second model describes the central
regulatory circuit of one gene network which acts on early stage of the
fruit fly Drosophila melanogaster mechanoreceptors morphogenesis. For
both models we give biological interpretations of our numerical simula-
tions and give a short description of software elaborated specially for
these experiments.

Keywords: nonlinear dynamical systems, cycles, phase portraits, gene
networks models, hyperbolic equilibrium points, Grobman-Hartman theo-
rem, Brouwer fixed point theorem, numerical analysis.

1. Introduction

Development and functioning of living organisms are controlled by gene networks,
i.e., by complexes of structural components of genome (genes) related by processes
of auto- and transregulation not only by corresponding primary products of these
genes (mRNAs and proteins) but also by different signal molecules, metabolites,
energetic components etc. Nowadays, considerable Big Data are collected from
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experiments based on various methods of modern molecular and cell biology, as well
as on bioinformatic analysis of experimental results (in genomics, transcriptomics,
proteomics, metabolomics etc). Formalized description, sistematization, and analysis
of gene networks with the help of mathematical and numerical modeling allow
to understand mechanisms of functioning of these systems and to predict their
behavior in different conditions. On the other hand, this mathematical approach
gives possibility to construct artificial analogues of these natural systems in order to
use them in various applications: in bioengineering and biotechnologies, in particular,
in construction of highly effective producers biosensors, etc. [1]–[8].

So, the main aim of our work is elaboration of mathematical tools which allow
to give full description of phase portraits of nonlinear dynamical systems of kinetic
type and, on the other hand, can be used in planning of numerical experiments with
analogous dynamical systems which appear in modeling of natural gene networks.

In the section 2, we consider a hypothetical model of one asymmetric molecular
repressilator, and we obtain there sufficient conditions of existence of a cycle in the
phase portrait of corresponding asymmetric dynamical system. Some simplified,
dimensionless and symmetric versions of such dynamical systems were studied in
[11, 13].

In the section 3, we construct a nonlinear dynamical system which describes
functioning of the Central Regulatory Circuit (CRC) of the gene network supporting
the early stages of drosophila mechanoreceptors development. As in the section 2,
we study here the equilibrium points of this system, and

1. we show that there are no oscillations in this model;
2. we find conditions of uniqueness of its equilibrium point;
3. we have realized numerical experiments with this model.

2. Molecular repressilator

In this section we study phase portraits of nonlinear dynamical systems which
model functioning of gene networks described by circular schemes of the following
type:

. . .→ pn,sn−−J m1 → p1,1 → . . .→ p1,s1−−J m2 → p2,1 → . . .

(1) . . .→ p2,s2−−J m3 → p3,1 → . . .→ p3,s3−−J . . .

Here, the symbol −−J denotes negative feedbacks in the gene network, and the
symbol → corresponds to positive feedbacks, see [9, 10]. The letters mj denote the
mRNAs contained in this gene network, and the symbols pj,s denote proteins which
appear on intermediate stages of the circular gene network functioning. Some very
particular cases of this scheme for

(2) n = 3, s1 = s2 = s3 = 1;

were studied in [11]–[15]. In contrast with these publications, we consider here
much more asymmetric circular gene network model represented by the following
nonlinear dynamical system with n = 3, s1 = 3, s2 = 2, s3 = 1.

dx1
dt

= −k1x1 + f1(x9);
dx2
dt

= µ2x1 − k2x2;
dx3
dt

= µ3x2 − k3x3;

(3)
dx4
dt

= µ4x3 − k4x4;
dx5
dt

= −k5x5 + f5(x4);
dx6
dt

= µ6x5 − k6x6;
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dx7
dt

= µ7x6 − k7x7;
dx8
dt

= −k8x8 + f8(x7);
dx9
dt

= µ9x8 − k9x9.

Here, the variables x1, x5, x8 denote, respectively, concentrations of the mRNAs
m1, m5, m8, the other variables x` denote concentrations of the proteins pj,s in the
scheme (1); smooth monotonically decreasing function f1, f5, f8 describe negative
feedbacks; equations 2, 3, 4, 6, 7 and 9, which do not contain the functions f1, f5,
f8, correspond to positive feedbacks in the gene network; positive coefficients µj ,
k` characterize kinetics of its processes, ` = 1, . . . , 9, j 6= 1, 5, 8.

If the condition (2) is satisfied, i.e., in the case of just one intermediate stage (the
protein pj) between any two consecutive mRNAs mj and mj+1 in the circular gene
network, corresponding dynamical system has dimension 6. In a very particular case
µ1 = µ2 = µ3, k1 = k2 = k3, f1(w) = f2(w) = f3(w) = α·(1+wm)−1+α0; which is
symmetric with respect to cyclic permutations of pair of the components (mj , pj):
(m1, p1)→ (m2, p2)→ (m3, p3)→ (m1, p1), such dynamical system was introduced
in [11] for description of oscillations in simplest molecular repressilator of the type
(1) composed by 3 proteins and corresponding 3 mRNAs in the cell Escherichia
coli. Later, this symmetric dynamical system was studied in numerous publications,
see, for example [13]. Analogous asymmetric dynamical systems corresponding to
more complicated circular gene networks, including higher-dimensional cases, were
studied in [15, 17, 16].

LetAj :=
fj(0)
kj

, if j = 1, 5, 8;Aj :=
µj

kj
Aj−1, if j 6= 1, 5, 8; andQ9 :=

∏j=9
j=1[0, Aj ] ⊂

R9
+.
Denote by X nine-dimensional vector-function with coordinates x1(t), . . . , x9(t).

The next lemma follows from analysis of signs of coordinates of the vector dX/dt
at the points of faces of the parallelepiped Q9, as it was done in [15, 17], for some
other dynamical systems of the type (1).

Lemma 1. Q9 is positively invariant domain of the system (3).

This means that trajectories of the points of Q9 do not leave it when t grows.

Lemma 2. The system (3) has exactly one equilibrium point S0 ∈ Q9.

The proof follows from solution of system of 9 equations dX/dt = 0 which have
the form kjxj = fj(xj−1), or ksxs = µsxs−1, where j = 1, 2, 3, and s = 2, 3, 4, 6, 7, 9.
This system reduces to just one equation:

k1x1 = f1

(
µ9

k9k8
f8

(
µ7µ6

k7k6k5
f5

(
µ4µ3µ2

k4k3k2
x1

)))
.

The left-hand side of this equation grows monotonically with the variable x1, and
the right-hand side is composition of three monotonically decreasing functions of
x1 and decreases monotonicaly as well. Thus, this equation has a unique solution
x01. The other coordinates of the equilibrium point are defined by k2x02 = µ2x

0
1 etc.

The lemma is proved.
Let (x01;x02;x03;x04;x05;x06;x07;x08;x09) be coordinates of the point S0. Consider

decomposition of the domain Q9 by hyperplanes xj = x0j , j = 1, 2, . . . 9. We obtain
512 smaller parallelepipeds (blocks) which we shall denote by binary multi-indices
{ε1, . . . ε9} as follows: εj = 0, if xj ≤ x0j for all points of this block, and εj = 1, if
xj ≥ x0j for all its points.
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Lemma 3. For any pair E1, E2 of adjacent blocks of this decomposition, trajectories
of all points of their common 8-dimensional face F = E1 ∩E2 either pass from E1

to E2 (E1 ⇒ E2), or pass from E2 to E1 (E2 ⇒ E1).

Let the face F be contained if the hyperplane xj = x0j . The proof follows from
analysis of signs of dxj/dt at the points of this face, as in the previous two Lemmas.

We say that the valency of the block E = {ε1, . . . ε9} equals r, if it has exactly r
adjacent blocks Ea such that E ⇒ Ea.

(4)

{000011101} −−−−→ {000011100} −−−−→ {100011100}x y
{000011111} {110011100}x y
{000011011} {111011100}x y
{000010011} {111111100}x y
{000000011} {111101100}x y
{000100011} {111100100}x y
{001100011} {111100000}x y
{011100011} ←−−−− {111100011} ←−−−− {111100010}

The cyclic diagram (4) contains all the blocks with valency 1, and its arrows
show all possible transitions of trajectories of the system (3) from one block to
another. Let W be the union of the blocks contained in this diagram. Its interior is
homeomorthic to the torus S1 ×B8. As it was done in the Lemmas 1 and 3 above,
one can verify that W is positively invariant domain of the system (3). At the same
time, the points which do not belong to W can enter W when t → +∞, see the
Fig. 1.
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Consider the linearization matrix of the system (3) at the point S0:

M0 =



−k1 0 0 0 0 0 0 0 −q1
µ2 −k2 0 0 0 0 0 0 0
0 µ3 −k3 0 0 0 0 0 0
0 0 µ4 −k4 0 0 0 0 0
0 0 0 −q5 −k5 0 0 0 0
0 0 0 0 µ6 −k6 0 0 0
0 0 0 0 0 µ7 −k7 0 0
0 0 0 0 0 0 −q8 −k8 0
0 0 0 0 0 0 0 µ9 −k9


Here −qj =

dfj
dpj−1

for j = 1, 5, 8. The characteristic polynomial of the matrix M0

has the form:

P (λ) =
∏j=9

j=1
(kj + λ) + b9, where b9 :=

∏
j=1,5,8

qj ·
∏

j 6=1,5,8
µj .

Recall that equilibrium point of a dynamical system is called hyperbolic if the
eigenvalues of corresponding linearization matrix do have positive and negative
real parts and do not have zero real parts.

Lemma 4. For sufficiently large values of the parameter b, the equilibrium point
S0 is hyperbolic, and the polynomial P (λ) has four complex roots with positive real
part, one negative root and four roots with negative real parts.

Proof. Let z :=
λ

b
. For fixed values of the parameters kj and sufficiently large

values of b, the roots of the polynomial

Pb(z) =
1

b9
P (λ) =

∏j=9

j=1

(
kj

b
+ z

)
+ 1,

can be done arbitrary close to the corresponding roots of the polynomial P0(z) =
z9 + 1 which obviously has four roots with positive real parts. �

In terms of [18], similar configurations of eigenvalues of linearization matrices is
called dichotomy of the spectrum with respect to the imaginary axis.

Theorem 1. If S0 is hyperbolic point of the dynamical system (3), then the invariant
domain W contains at least one cycle of this system, and this cycle travels from
block to block according to the diagram (4).

Proof. It follows from the Grobman-Hartman theorem (see [19]) that after some
smooth change of variables, the nonlinear dynamical system (3) is linearized in a
small neighborhood U of the equilibrium point S0. Hence, the behavior of trajectories
of the system (3) near this point is completely determined by signs of real parts of
its linearization matrix at the point S0.

Now, the proof of our theorem follows from the Brouwer’s fixed point theorem
(see, for example [20]) which was used in proofs of existence of cycles in various
cases of dynamical systems analogous to (3) as in [15, 17, 21], see also references
therein.

Denote by F = E1 ∩ E2 common face of two adjacent blocks in the diagram (4),
and let U ≈ D4 × D5 be sufficiently small open neighborhood of the equilibrium
point S0. Here D5 is 5-dimensional open disk parallel to plane corresponding to
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eigenvalues of the matrix M0 with negative real parts, see Lemma 4; similarly,
we denote by D4 the 4-dimensional ball parallel to the plane constructed by the
eigenvalues of M0 with positive real parts.

Consider compact set F̂ = F \ (F ∩U) which is homeomorphic to 8-dimensional
cube. Trajectories of all its points returns to this compact after 18 steps along the
arrows of the diagram (4). The Brouwer’s fixed point theorem implies that the
compact set F̂ contains at least one point X1 such that its trajectory returns to X1

after these 18 steps. Thus, the trajectory of this point X1 is a cycle. �
Remark 1. Similarly, all statements of this section can be extended to the cases

of arbitrary odd n and any nonnegative integers s1, . . . , sn.

Рис. 1. Projections of a trajectory of 9-dimensional system (3)
onto coordinates planes x2, x4, x9 (left), and x1, x5, x8 (right).

Using the software STEP created under the guidance of S.I.Fadeev in Sobolev
institute of mathematics, we have accomplished several series of numerical experiments.
Some of their results are shown on the Fig. 1 and Fig. 2. The Fig. 1 shows projections
of a trajectory and that of corresponding limit cycle of the system (3) onto coordi-
nate plane x2, x4, x9 (left) and x1, x5, x8 (right) for the following values of parameters:
k1 = 1.1, k2 = 1.2, k3 = 1.3, k4 = 1.4, k5 = 1.5, k6 = 1.6,

k7 = 1.7, k8 = 1.8, k9 = 1.9;
µ2 = 1.15, µ3 = 1.25, µ4 = 1.35, µ6 = 1.55, µ7 = 1.65, µ9 = 1.85;
f1(x9) = 30 · exp(−3x9), f5(x4) = 40 · (1 + x24)−1, f8(x7) = 30 · exp(−4x7).
The Fig. 2 corresponds to the values k1 = k2 = k3 = k4 = µ2 = µ3 = µ4 = 0.8;

the other parameters ki and µi, i ≥ 5, equal 0.6. The functions f1, f2, f3 are same as
for the Fig. 1. The initial points of these trajectories are chosen near the origin, this
corresponds to the usual assumption on initial stages of the circular gene networks
functioning. The colors of the graphs xj(t), corner of the Fig. 2.

Numerical experiments with the system (3) for other initial data xj(0) and for
other values of parameters of this system have shown similar behavior of trajectories
of the system and similar shapes of its cycle. These numerical results generate a
conjecture on uniqueness and stability of the cycle mentioned in the Theorem 1. In
one particular case, this conjecture was proved, see [14].

One can see here that after some t > 0 the graphs of the functions x1(t), x2(t),
x3(t), x4(t) are “congruent with good precision” with respect to shifts along the
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Рис. 2. Graphs of the functions xj(t).

axis t. Similarly look the graphs of the functions x5(t), x6(t), x7(t). Two graphs
x8(t) and x9(t) “repeat” each other as well. Similar phenomena appear in modeling
of multistage biochemical precesses, cf. [26].

Analogous results concerning sequences of almost congruent graphs were obtained
for other values of parameters and other functions in the dynamical system (3).
Recall that in our considerations x1(t) is concentration of the mRNA m1, and
x2(t), x3(t), x4(t) are concentrations of the “intermediate” proteins p1,1, p1,2, p1,3,
respectively; x5(t) is concentration of the mRNAm2, and x6(t), x7(t) are concentrations
of the proteins p2,1, p2,2; x8(t), x9(t) are concentrations of the mRNA m3 and,
respectively, that of the protein p3,1, between m3 and m1, see (1).

Similar numerical experiments were realized for other dynamical systems constructed
by this scheme (see [15, 17, 24] where we used the package STEP and software
elaborated on the basis of the language R specially for studies of these gene networks
models, see also the next sections. This software is described in https://maxim-
kazantsev.shinyapps.io/ElowitzLeibler/ some results of numerical experiments are
presented there as well.

3. Central regulatory circuit of gene network controlling
morphogenesis of Drosophila melanogaster mechanoreceptors

Alongside with gene networks regulating cyclic processes, there are networks
supporting acyclic processes which ensure reaching a stable finite state by a system
under control. Morphogenesis of drosophila mechanoreceptors is an example of
such an acyclic process. Corresponding gene network constructed on the basis of
experimental data contains about 400 objects [25]. The key component of this
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network is the Central Regulatory Circuit (CRC) which controls the amount of
proteins Achaete-Scute (AS-C) in the mechanoreceptor precursol cell (Fig. 3).

Рис. 3. Central regulatory circuit of the gene network of
D.melanogaster sensor organs morphogenesis

The proteins containing in CRC and their concentrations are denoted here and
below as follows: Acaete-Scute (AS-C), x(t); Hairy, y(t); Senseless (SENS),
z(t); Scratch (SCRT), u(t); Charlatan (CHN), w(t); Phyllopod (PHYL), p(t);
Daughterless (DA), D; Extramacrochaete (EMC), E; Groucho (GRO), G; Seven
in one (SINA), S; and Ubiquitin (UB), U . As in the previous section, the arrows→
denote here the positive feedbacks, and the symbols −−J correspond to the negative
feedbacks.

It is well-known that the protein PHYL appears in the cell in 10-12 hours after
the proteins AS-C, thus the CRC functioning can be described by a system of delay
differential equations which is composed on the basis of the scheme depicted on the
Fig. 3 following general methodology of construction of such models described in
[9, 26, 27].

Since concentrations of 5 proteins DA, EMC, GRO, SINA and UB are almost
constant in the processes under consideration, we assume that the parameters D, E,
G, S, U do not depend on time. For the remaining 6 proteins, dependence of their
concentrations on t is represented by the following system of differential equations
where the first and the last equations which describe concentrations of AS-C and
PHYL contain functions with delayed arguments:

dx

dt
=
σ1(D · x) + σ3(z) + σ5(w)

(1 +G · y)(1 + E · x)
− k1(1 + p(t−∆t)US)x;

(5)
dy

dt
=

C

d1 + u
− k2y;

dz

dt
= s3(D · x)− k3z;

du

dt
= s4(D · x)− k4u;

dw

dt
= s5(D · x)− k5w;

dp

dt
=
s6(D · x)h(t−∆t)(t−∆t)2

1 + (t−∆t)2
− k6p.
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Here h(t) is the Heaviside function which describes decomposition of the process
to two stages with the delay ∆t = 12 mentioned above, the positive coefficients
k1, k2, k3, k4, k5, k6 characterize degradations of the corresponding proteins. The
positive summand in the second equation of the system (5) describes the negative
feedback SCRT −−J Hairy, Fig. 3. The sigmoid functions σj > 0, j = 1, 3, 5 and
si > 0, i = 3, 4, 5, 6 describe positive feedbacks on the Fig. 3 and have the form

σj(q) =
djq

2

1 + q2
; si(q) =

ai exp( q−bici
)

1 + exp( q−bici
)
,

(see [9, 10]), here ai, bi, ci, dj are positive constants. Some more simple versions of
this model, without delay differential equations were considered in [10, 28], where
detailed analysis of phase portraits of corresponding dynamical systems was given.

It is worthy to note that as in [21], we use step-functions h(t−∆t) in the following
sense: for t < 12 we have h(t−∆t) ≡ 0; then for t = 12, we take the values x(12),
y(12), . . . p(12) as the initial data for the Cauchy problem of the system (5) for
t ≥ 12. Actually, the function h(t−∆t) · (t−∆t)2 is continuous at the point t = ∆t.

The Fig. 4 shows one of our numerical results of CRC modeling with the following
values of parameters and initial data which were chosen according to the experimental
data ([22, 23]) on character of dynamics of the proteins considered in our model:
G = 1.41; E = 1.48; D = 2.05; U = 1.99; S = 5.6.
C = 1; n = 2; k1 = 1; k2 = 1; k3 = 0.32; k4 = 1; k5 = 1; k6 = 0.17.
a3 = 3.61; b3 = 4.96; c3 = 1.35; a4 = 4.43; b4 = 6.09; c4 = 1.66; a5 = 8.09;

b5 = 11.13; c5 = 3.03; a6 = 2.67; b6 = 3.67; c6 = 1; d1 = 7.46; d3 = 2.77; d5 = 1.24.
x(0) = 0.25; y(0) = 1.08; z(0) = 0.5; u(0) = 0; w(0) = 0.07; p(0) = 0.

Рис. 4. Graphs of the functions x(t), y(t), z(t), u(t), w(t), p(t)

The dashed vertical line shows the moment of the cell division, the colors of the
graphs are indicated in the right part of the Fig. 4.
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4. Software

We have elaborated a special software for numerical analysis of dynamical systems
which simulate the processes described in the previous sections. The soft is based
on the language R, see [29] and https://www.r-project.org/ which was used earlier
in numerical modeling of some other biological systems with the help of delay
differential equations, [24, 30]. This INTERNET source contains various tools of
visualization of results of the numerical experiments. The elaborated software is
realized as a Shiny-application of the language R (http://shiny.rstudio.com/), the
numerical results are available at

https://maxim-kazantsev.shinyapps.io/AS-C/
https://maxim-kazantsev.shinyapps.io/as-c_with_delays/.
This application is based on “client-server” approach. Here, the client part is

represented by the web-page were one can fill in the values of parameters of the
dynamical system in order to obtain the numerical results and corresponding graphs.
The server part of this software is the script on the language R which produces all
required calculations. In our numerical experiments with the dynamical systems,
considered as gene networks models of the CRC functioning, we used the numerical
method dede of the package deSolve of the language R. This high-productive method
uses Hermitian cubic interpolation for calculations of functions with delayed arguments,
see [31].

5. Conclusions

In the first section (see Theorem 1 and Remark 1), we have considered one
generalization of molecular repressilator model described in pioneering work by
Elowitz and Leibler [11], where the repressilator composed by just 3 mRNAs and
3 proteins of the E. coli was presented. It should be emphasized that this was
the origin of new perspective direction of synthetic biology, intensively developing
now [2].

This model was verified experimentally and numerically and confirmed possibility
of construction of artificial oscillating systems. There are many analogous oscillating
gene networks which control cellular cycles, and important physiological parameters
(such as cardiac activity, respiration, insulin secretion, circadian rhythms etc) in
living organisms, The mechanisms of their functioning is studied on their artificial
analogues, see [4, 32, 33].

In our previous publications [28] we have considered a dynamical system analogous
to (5) as a model of the same CRC functioning (Fig. 3) neglecting the delay
arguments phenomena: in the first and in the last equations it was written t instead
of (t−∆t). In that more simple case, we have described parameters of the system
compatible with experimental data that guarantee uniqueness and stability of the
equilibrium point of that system. These conditions imply uniqueness and stability of
the equilibrium point of the system (5) as well. In numerical experiments described
in this paper the parameters satisfied these conditions.

The main conclusion from the analysis of our model of CRC functioning and
corresponding numerical experiments is the following: for all values of parameters
of this model the trajectories of corresponding dynamical system are bounded and
do not have oscillations. This also corresponds to the biological data,
(http://www.sdbonline.org/sites/fly/aimain/1aahome.htm).
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The authors are indebted to N.B.Ayupova, G.V.Demidenko, I.I.Matveeva, S.I.Fade-
ev, and A.V.Zhubr for useful discussions and advises.
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