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INITIAL BOUNDARY VALUE PROBLEM FOR A NONLOCAL IN
TIME PARABOLIC EQUATION

V.N. STAROVOITOV

Abstract. This paper deals with a quasi-linear parabolic partial diffe-
rential equation that includes a nonlocal in time term. This term contains
the integral of the solution over the entire time interval, where the
problem is considered. The weak solvability of the initial boundary value
problem for this equation is proven.
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1. Introduction

This paper deals with the following parabolic differential equation:

(1) ∂tu−∆u+ φ
(∫ T

0

u(s) ds
)
u = 0,

where u = u(x, t) is the unknown function, x = (x1, . . . , xn) the vector of the spacial
variables in Rn, n ∈ N, t ∈ (0, T ), T a positive number, φ a scalar nonnegative
increasing function such that φ(0) = 0. Further, we consider positive solutions of
this equation, therefore, we may assume that φ is defined on [0,+∞). This equation
is considered in a bounded domain Ω ⊂ Rn with a Lipschitz boundary ∂Ω. We
suppose that the following boundary and initial conditions are satisfied:

(2) u(x, t) = 0 for x ∈ ∂Ω,

(3) u(x, 0) = u0(x),

where u0 is a non-negative function.
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Equation (1) contains the non-local in time t term with the integral over the
whole interval (0, T ), where the problem is considered. In biological and medical
applications, aqueous solutions of polymers are often encountered. This raises the
problem of the dynamics of a single polymer molecule or, as it is also called,
a polymer chain. Under the action of the surrounding fluid, the polymer chain
commits a chaotic motion, therefore, in order to describe its dynamics, probabilistic
characteristics should be involved. In particular, the average distance between the
ends of the chain plays an important role. In the work [1], a biological nanosensor
based on the measurement of this quantity is proposed. However, what is more
important, there arose an interesting differential equation or even a new class of
equations. To describe the position of a chain segment, the density of probability
that the segment is in a certain region of the space is used. The density of probability
satisfies, with a high accuracy, a certain parabolic equation in which there is a term
responsible for the interaction of chain segments. The role of time in the equation
is played by the arc length parameter along the chain. The interaction is effected
through the surrounding fluid. Since each segment interacts with all other segments,
this term contains an integral of the density of probability over the entire chain,
i.e., over the time interval on which the problem is being considered. In fact, to
determine all the coefficients in the equation, it is necessary to know the “future”. It
should be noted that the obtained equation cannot be reduced to known problems
by any transformations.

Up to now, problems with memory have been studied for parabolic equations,
which included the integral of the solution from the initial to the current time. There
is an extensive literature on this subject and it is not difficult to find related works.
It is also possible to find papers that study problems, where the “future” stands in
the data (see, e.g., [2], [3], [4], [5]). In the works [3] and [4], parabolic equations with
a combination of initial and final or intermediate data were considered. This type
of problem is very different from ours. The paper [5] is devoted to the investigation
of a system of equations with an integral over the entire time interval, but this
nonlocality is easily eliminated, and the equation is reduced to an ordinary parabolic
equation with nonlocal data as in [3, 4]. Really, suppose that the initial condition
(3) is replaced by the following one:

u(x, T )− u(x, 0) = f(x)

with a prescribed function f : Ω → R. The integration of (1) with respect to t from
0 to T gives the following standard elliptic boundary value problem:

∆v − φ(v) v = f, v|∂Ω = 0,

where v(x) =
∫ T

0
u(x, s) ds. After solving this problem, we can find u as a solution

of the following linear problem:

∂tu−∆u+ φ(v)u = 0, u|∂Ω = 0, u|t=T − u|t=0 = f,

studied in [3, 4].
In this paper, we prove the weak solvability of problem (1)–(3). Equation (1) is

similar to that obtained in [1]. It is simpler, however, the coefficient at the solution
contains the integral of the solution over the entire time interval. That is, the main
novelty of the problem remains.



INITIAL BOUNDARY VALUE PROBLEM FOR A NONLOCAL 1313

2. Solvability of the problem

In this section, we investigate problem (1) – (3). The problem relates to the
chaotic dynamics of a polymer molecule with one end fixed and the function u, its
solution, is the spatial probability density of the other segments. For this reason,
we will look for nonnegative solutions. The function φ is the interaction energy
potential. We will consider the most interesting case, where φ tends to infinity as
its argument approaches a positive number γ. Suppose that φ : [0, γ) → [0,+∞)
satisfies the following conditions: φ(0) = 0, φ is differentiable and convex, φ(s) →
+∞ as s → γ. Such a choice of the function φ assumes that u is bounded. In [1],
the Flory – Huggins potential is used which looks as follows:

φ∗(s) = − log(1− s)− s.

For φ∗, the number γ is equal to 1.
If we consider not only positive solutions, the function φ must be somehow

extended to the negative part of the real axis. It is also possible to deal with the
function φ that is defined on [0,+∞) and has a prescribed rate of growth at infinity.
This case is, generally speaking, more simple and is not considered in the present
paper.

For definiteness, we will assume that φ(s) = +∞ for s ≥ γ and φ(s) = 0 for
s ≤ 0.

Not all of the standard methods can be employed to prove the solvability of
the problem. For example, the semi-discretization method cannot be used since
the equation contains the term with the integral over the whole interval [0, T ],
where the solution is to be defined. The Galerkin method does not preserve the
positiveness for the approximations of the solution. One can apply the semi-group
theory, however, this approach leads to a quite complicated integral equation. We
will make use of the Schauder fixed point theorem which states that, for a Banach
space X and a closed convex bounded set E ⊂ X, if a mapping Ψ : E → E is
completely continuous, then Ψ has at least one fixed point in E.

Further, we will use the standard Lebesgue and Sobolev spaces Lp(Ω), p ∈ [1,∞],
and H1

0 (Ω). As usual, H−1(Ω) is the dual space of H1
0 (Ω) with respect to the pivot

space L2(Ω). The norm in L2(Ω) will be denoted by ∥ · ∥.

Theorem 1. If u0 ∈ L∞(Ω), u0 ≥ 0, and T is an arbitrary positive number, then
problem (1) – (3) has a weak solution u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) such
that

u ≥ 0, 0 ≤ v ≤ γ, where v =

∫ T

0

u dt,

φ(v) ∈ L2(Ω),
√
φ(v)u ∈ L2(ΩT ), where ΩT = Ω × [0, T ],

∂tu ∈ L2(0, T ;H−1(Ω)), and u ∈ C(0, T ;L2(Ω)).

Proof. As already mentioned above, we employ the Schauder fixed point theorem.
As the Banach space X, we take the space L2(Ω) with the standard norm. Let us
describe the construction of the mapping Ψ . For every function w = w(x), define
the function v = v(x) as a solution of the following problem:

(4) −∆v + φ(v) v + w − u0 = 0, v|∂Ω = 0.

This problem is a result of the integration of equation (1) with respect to t from 0 to
T . The functions v and w correspond to

∫ T

0
u(·, t) dt and u(·, T ), respectively. After
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that, we define the function u = u(x, t) as the solution of the following problem:

(5) ∂tu−∆u+ φ(v)u = 0, u|t=0 = u0, u|∂Ω = 0.

Finally, define uT (x) = u(x, T ). Thus, we have constructed the mapping Ψ such
that uT = Ψ(w). Whenever w is a fixed point of Ψ , the function u defined in (5) is
the solution of the original problem (1) – (3). Our goal is to find a set E ⊂ L2(Ω)
such that Ψ(E) ⊂ E and to verify the complete continuity of Ψ on E.

At first, we consider problem (4) with an arbitrary w ∈ L2(Ω). It is not difficult
to see that the equation in (4) is the Euler equation for the functional

Φ(v) =

∫
Ω

(1
2
|∇v|2 + F (v) + (w − u0) v

)
dx,

where F (v) =
∫ v

0
φ(s) s ds for v < γ and F (v) = +∞ for v ≥ γ. The functional

Φ is Gâteaux-differentiable at all points of its effective domain in H1
0 (Ω) and its

minimizer in this space gives the solution of problem (4) (see [6]).

Lemma 1. For every w ∈ L2(Ω), there exists a unique function v ∈ H1
0 (Ω) such

that

(6) Φ(v) ≤ Φ(ṽ) for all ṽ ∈ H1
0 (Ω).

This function has the following properties:
(i) ∥∇v∥ ≤ d(Ω) ∥w − u0∥, where d(Ω) is the diameter of the domain Ω;
(ii) v(x) ≤ γ for almost all x ∈ Ω;
(iii) ∥φ(v) v∥ ≤ ∥w − u0∥;
(iv) ∥∆v∥ ≤ 2 ∥w − u0∥;
(v) ∥φ(v)∥ ≤ C, where the constant C depends on ∥w − u0∥ and Ω.

◃ The functional Φ is coercive and strictly convex on H1
0 (Ω). The strict convexity

gives us the uniqueness of the solution of the minimization problem. In order to
prove the existence, we have to verify the weak lower semi-continuity of Φ in H1

0 (Ω)
(see, e.g., [6]). This will be true if the level set

Ea = {v ∈ H1
0 (Ω) |

∫
Ω

F (v) dx ≤ a}

is weakly closed in H1
0 (Ω) for every a ∈ R. Let us fix an arbitrary a ∈ R and take

a sequence {vk}k∈N such that vk ∈ Ea for all k ∈ N and vk → v weakly in H1
0 (Ω)

as k → ∞. There exists a subsequence vk′ that converges to v almost everywhere
in Ω. Since F is a continuous function on [0, γ), F (vk′(x)) → F (v(x)) for almost
all x ∈ Ω. Due to the nonnegativity of F and the Fatou lemma, we have that∫

Ω

F (v) dx ≤ lim inf
k′→∞

∫
Ω

F (vk′) dx ≤ a

which means that v ∈ Ea.
Let us establish the properties of the solution of the variational problem (6).

(i) If we take ṽ ≡ 0 in (6), then we obtain that∫
Ω

(1
2
|∇v|2 + F (v) + (w − u0) v

)
dx ≤ 0.

This estimate and the Poincaré inequality imply that

(7)
1

2
∥∇v∥2 +

∫
Ω

F (v) dx ≤ ∥w − u0∥ ∥v∥ ≤ d(Ω)

2
∥w − u0∥ ∥∇v∥.
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The nonnegativity of F implies the first property of v.

(ii) As it follows from estimate (7),
∫
Ω
F (v) dx < ∞. Since F (s) = +∞ for s ≥ γ,

we conclude that v(x) ≤ γ for almost all x ∈ Ω. Notice that, generally speaking, v
can take negative values.

(iii) For brevity, denote the function s 7→ φ(s)s by η. The multiplication of (4) by
η(v) and the integration by parts lead to the following equality:∫

Ω

(
η′(v) |∇v|2 + η2(v) + (w − u0) η(v)

)
dx = 0.

Since η′ ≥ 0, this equality together with the Hölder inequality yields the third
property of v.

(iv) This property is a direct consequence of the previous property and (4).

(v) If A = {x ∈ Ω | v(x) ≥ γ/2}, then∫
A

φ2(v) dx ≤
( 2

γ

)2
∫
Ω

φ2(v) v2 dx.

Since the function φ is increasing, we have∫
Ω\A

φ2(v) dx ≤ φ2(γ/2)µ(Ω),

where µ(Ω) is the Lebesgue measure of Ω. These inequalities together with the third
property imply the required estimate with C2 = (2/γ)2 ∥w− u0∥2 + φ2(γ/2)µ(Ω).

The lemma is proven. ▹
Denote by V the mapping from L2(Ω) into H1

0 (Ω) such that v = V (w) is the
solution of problem (6).

Lemma 2. Let {wk} be a sequence in L2(Ω) that converges weakly in this space to
w. If vk = V (wk) and v = V (w), then

(i) vk → v in H1
0 (Ω) as k → ∞;

(ii) ∆vk → ∆v weakly in L2(Ω) as k → ∞;
(iii) φ(vk) → φ(v) weakly in L2(Ω) as k → ∞;

◃ Since vk and v are solutions of problem (4),

(8) −∆(vk − v) + φ(vk) vk − φ(v) v + wk − w = 0, (vk − v)|∂Ω = 0.

Due to the monotonicity of the function s 7→ φ(s)s, we obtain that∫
Ω

|∇(vk − v)|2 dx ≤
∣∣∣ ∫

Ω

(wk − w)(vk − v) dx
∣∣∣ ≤ ∥wk − w∥H−1(Ω)∥vk − v∥H1

0 (Ω).

The first assertion of the lemma follows from the fact that ∥wk −w∥H−1(Ω) → 0 as
k → ∞.

The fact just proven and the integration by parts immediately imply that∫
Ω

(
φ(vk) vk − φ(v) v

)
ψ dx→ 0 as k → ∞

for an arbitrary ψ ∈ H1
0 (Ω). Since H1

0 (Ω) is dense in L2(Ω) and the sequence
{φ(vk) vk} is bounded in L2(Ω), we obtain that

(9) φ(vk) vk → φ(v) v weakly in L2(Ω) as k → ∞.

This relation together with (8) yields the second assertion of the lemma.
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Since vk → v in L2(Ω) and the sequence {φ(vk)} is bounded in L2(Ω) , we have
that

(10) φ(vk) v → φ(v) v weakly in L2(Ω) as k → ∞.

Really, for every ψ ∈ L∞(Ω),∣∣∣ ∫
Ω

(
φ(vk)− φ(v)

)
v ψ dx

∣∣∣
≤

∣∣∣ ∫
Ω

(
φ(vk) vk − φ(v) v

)
ψ dx

∣∣∣+ ∣∣∣ ∫
Ω

φ(vk)(vk − v)ψ dx
∣∣∣

≤
∣∣∣ ∫

Ω

(
φ(vk) vk − φ(v) v

)
ψ dx

∣∣∣+ ∥φ(vk)∥ ∥vk − v∥ ∥ψ∥L∞(Ω).

The density of L∞(Ω) in L2(Ω) together with (9) implies (10).
Relation (10), generally speaking, does not yield the third assertion of the lemma.

The function v can be equal to zero on a set of positive measure. Let us fix an
arbitrary ε > 0 and introduce the set Aε = {x ∈ Ω | |v(x)| < ε}. As it follows from
(10), ∫

Ω\Aε

(
φ(vk)− φ(v)

)
ψ dx→ 0 as k → ∞

for every ψ ∈ L2(Ω). In order to prove the third assertion of the lemma, we have
to establish that ∫

Aε

(
φ(vk)− φ(v)

)
ψ dx→ 0 as k → ∞

for every ψ ∈ L2(Ω). As before, it is enough to prove this relation for ψ ∈ L∞(Ω).
Since vk → v in L2(Ω) as k → ∞, the sequence {vk} converges to v in measure
and, in particular,

lim
k→∞

µ(Ak
ε) = 0,

where µ is the Lebesgue measure and Ak
ε = {x ∈ Aε | |vk(x)−v(x)| ≥ ε}. For every

k ∈ N, we have∣∣∣ ∫
Ak

ε

(
φ(vk)− φ(v)

)
ψ dx

∣∣∣ ≤ ∥φ(vk)− φ(v)∥ ∥ψ∥L∞(Ω) µ(A
k
ε)

1/2.

Since ∥φ(vk)− φ(v)∥ are uniformly bounded, the right-hand side of this inequality
tends to zero as k → ∞. On the other hand, |vk| < 2ε almost everywhere on the
set Aε \Ak

ε . Therefore,∣∣∣ ∫
Aε\Ak

ε

(
φ(vk)− φ(v)

)
ψ dx

∣∣∣ ≤ (
φ(2ε) + φ(ε)

)
∥ψ∥L∞(Ω) µ(Aε).

Thus,

lim sup
k→∞

∣∣∣ ∫
Aε

(
φ(vk)− φ(v)

)
ψ dx

∣∣∣
≤ lim

k→∞

∣∣∣ ∫
Ak

ε

(
φ(vk)− φ(v)

)
ψ dx

∣∣∣+ lim sup
k→∞

∣∣∣ ∫
Aε\Ak

ε

(
φ(vk)− φ(v)

)
ψ dx

∣∣∣
≤

(
φ(2ε) + φ(ε)

)
∥ψ∥L∞(Ω) µ(Aε).
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Since ε is arbitrary small and φ(s) → 0 as s→ 0,

lim
k→∞

∣∣∣ ∫
Aε

(
φ(vk)− φ(v)

)
ψ dx

∣∣∣ = 0.

The lemma is proven. ▹
The advantage of the lemma just proven is that we have established the con-

vergence results not for a subsequence but for the entire sequence {V (wk)}. These
results will be used for the proof of the complete continuity of the mapping Ψ .

Lemma 3. If φ(v) and u0 are in L2(Ω), then problem (5) has a unique weak
solution u ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1

0 (Ω)) such that
√
φ(v)u ∈ L2(ΩT ), where

ΩT = Ω × [0, T ]. Moreover, if, in addition, u0 ∈ L∞(Ω) and u0 ≥ 0, then u ∈
L∞(ΩT ), u ≥ 0, ∂tu ∈ L2(0, T ;H−1(Ω)), and u ∈ C(0, T ;L2(Ω)).

◃ Since φ(v) is a nonnegative function, the linear problem (5) is standard and we
omit the proof of its unique weak solvability as well as various justifications (see,
e.g., [7]). We restrict ourselves to the derivation of the estimates for the function
u. The multiplication of (5) by u and the integration over Ω × [0, s] for almost all
s ∈ (0, T ], give

(11)
1

2
∥u(·, s)∥2 +

∫ s

0

∥∇u∥2 dxdt+
∫ s

0

∫
Ω

φ(v)u2 dxdt ≤ 1

2
∥u0∥2.

The inequality instead of the equality is obtained after the passage to the limit in
the corresponding equalities for the approximate solutions. This estimate ensures
that u is in the function classes encountered in the first part of the lemma.

Let us consider the second part of the assertion of the lemma, where it is assumed
that u0 is a bounded nonnegative function. Denote by γ0 a positive number such
that u0 ≤ γ0 almost everywhere in Ω. Let f : R → [0,∞) be a smooth convex
function such that f(s) = 0 for s ∈ [0, γ0] and f(s) > 0 for all other s. The
multiplication of (5) by f ′(u), where f ′ is the derivative of f , leads to the following
estimate: ∫

Ω

f
(
u(x, s)

)
dx ≤

∫
Ω

f
(
u0(x)

)
dx = 0

for almost all s ∈ [0, T ]. We have used that f ′′(u) and uf ′(u) are nonnegative. Since
f(u0) = 0 almost everywhere in Ω, this estimate implies that f(u) = 0 and, as a
consequence, that 0 ≤ u ≤ γ0 almost everywhere in ΩT .

Finally, in order to prove the continuity of u in L2(Ω), we multiply (5) by a
smooth function ψ = ψ(x, t) which is equal to zero on ∂Ω, for t = 0, and for t = T .
As a result, we find that ∂tu is bounded in L2(0, T ;H−1(Ω)), which is a direct
consequence of the following estimate:∣∣∣ ∫ T

0

∫
Ω

φ
(
v(x)

)
u(x, t)ψ(x, t) dxdt

∣∣∣ ≤ ∥φ(v)∥ ∥u∥L2(0,T ;L∞(Ω)) ∥ψ∥L2(ΩT ).

Since u ∈ L2(0, T ;H1
0 (Ω)), we conclude that u ∈ C(0, T ;L2(Ω)) (see, e.g., [7]). ▹

Due to the continuity of u in L2(Ω), the function uT = u(·, T ) is well defined as
an element of L2(Ω). This fact enables us to construct the mapping Ψ : L2(Ω) →
L2(Ω) as it was described in the beginning of the proof of the theorem. We have
to find a closed convex bounded set E ⊂ L2(Ω) such that Ψ(E) ⊂ E and to prove
the complete continuity of Ψ on E.

We take E = {w ∈ L2(Ω) | ∥w∥ ≤ ∥u0∥}. Due to (11), ∥uT ∥ ≤ ∥u0∥ indepen-
dently of v, therefore, Ψ(w) ∈ E for all w ∈ L2(Ω). In particular, Ψ(E) ⊂ E.
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Let us investigate the complete continuity of Ψ on E. Suppose that {wk} is an
arbitrary sequence in E that converges weakly in L2(Ω) to w ∈ E. Our goal is
to prove that Ψ(wk) → Ψ(w) strongly in L2(Ω) as k → ∞. Due to Lemma 2,
φ(vk) → φ(v) weakly in L2(Ω) as k → ∞, where vk = V (wk) and v = V (w).
Denote by uk and u the corresponding solutions of problem (5). It remains to prove
that ukT → uT in L2(Ω) as k → ∞.

At first, we note that, due to Lemma 3,

∂t(uk − u)−∆(uk − u) + φ(vk)uk − φ(v)u = 0

in L2(0, T ;H−1(Ω)). The multiplication of this equation by uk−u and the integra-
tion over Ω yield:

1

2

d

dt
∥uk − u∥2 + ∥∇(uk − u)∥2 +

∫
Ω

φ(vk) (uk − u)2 dx

+

∫
Ω

u
(
φ(vk)− φ(v)

)
(uk − u) dx = 0,

where the time derivative is understood in the distributional sense. Since the second
and the third terms on the left-hand side of this equality are nonnegative and
uk − u = 0 for t = 0, we have the following estimate:

1

2
∥ukT − uT ∥2 ≤ ∥φ(vk)− φ(v)∥H−1(Ω)

∫ T

0

∥u (uk − u)∥H1
0 (Ω)dt.

Since u and uk are uniformly bounded in L∞(ΩT )∩L2(0, T ;H1
0 (Ω)), the sequence

{u(uk − u)} is bounded in L2(0, T ;H1
0 (Ω)). Therefore, there exists an independent

of k constant C such that

∥ukT − uT ∥2 ≤ C ∥φ(vk)− φ(v)∥H−1(Ω).

As the embedding L2(Ω) into H−1(Ω) is compact, the right-hand side of this
inequality tends to 0 as k → ∞. Thus, ukT → uT and, as a consequence, Ψ(wk) →
Ψ(w) in L2(Ω) as k → ∞. The solvability of problem (1)–(3) is proven. �
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[7] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordif-
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