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LIGHT 3-STARS IN SPARSE PLANE GRAPHS

O.V.BORODIN, A.O. IVANOVA

Abstract. A k-star Sk(v) in a plane graph G consists of a central
vertex v and k its neighbor vertices. The height h(Sk(v)) and weight
w(Sk(v)) of Sk(v) is the maximum degree and degree-sum of its vertices,
respectively. The height hk(G) and weight wk(G) of G is the maximum
height and weight of its k-stars.

Lebesgue (1940) proved that every 3-polytope of girth g at least 5 has
a 2-star (a path of three vertices) with h2 = 3 and w2 = 9. Madaras
(2004) refined this by showing that there is a 3-star with h3 = 4 and
w3 = 13, which is tight. In 2015, we gave another tight description of
3-stars for girth g = 5 in terms of degree of their vertices and showed
that there are only these two tight descriptions of 3-stars.

In 2013, we gave a tight description of 3−-stars in arbitrary plane
graphs with minimum degree δ at least 3 and g ≥ 3, which extends
or strengthens several previously known results by Balogh, Jendrol’,
Harant, Kochol, Madaras, Van den Heuvel, Yu and others and disproves
a conjecture by Harant and Jendrol’ posed in 2007.

There exist many tight results on the height, weight and structure of
2−-stars when δ = 2. In 2016, Hudák, Maceková, Madaras, and Široczki
considered the class of plane graphs with δ = 2 in which no two vertices
of degree 2 are adjacent. They proved that h3 = w3 =∞ if g ≤ 6, h3 = 5
if g = 7, h3 = 3 if g ≥ 8, w3 = 10 if g = 8 and w3 = 3 if g ≥ 9. For g = 7,
Hudák et al. proved 11 ≤ w3 ≤ 20.

The purpose of our paper is to prove that every plane graph with
δ = 2, g = 7 and no adjacent vertices of degree 2 has w3 = 12.
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1. Introduction

The degree of a vertex v or a face f in a plane graph G, that is the number of
edges incident with v or f , is denoted by d(v) or d(f), respectively. A k-vertex is
a vertex v with d(v) = k. By k+ or k− we denote any integer not smaller or not
greater than k, respectively. Hence, a k+-vertex v satisfies d(v) ≥ k, etc.

Let δ(G) be the minimum vertex degree and g(G) be the girth (the length of
a shortest cycle) in G. A k-star Sk(v) in G consists of a central vertex v and
k its neighbor vertices. The height h(Sk(v)) and weight w(Sk(v)) of Sk(v) is the
maximum degree and degree-sum of its vertices, respectively. The height hk(G) and
weight wk(G) of G is the maximum height and weight of its k-stars. We will often
drop the argument when the graph is clear from context.

An edge uv, that is an S1(u) or S1(v), is an (i, j)-edge if d(u) ≤ i and d(v) ≤ j.
More generally, a path v1v2v3 (which is an S2(v2)), is a path of type (i1, i2, i3), or
a (i1, i2, i3)-path if d(vj) ≤ ij whenever 1 ≤ j ≤ 3. The types of higher stars are
defined similarly.

Already in 1904, Wernicke [48] proved that every G with δ = 5 satisfies w2 ≤
11, and Franklin [33] strengthened this to the existence of a (6, 5, 6)-path, which
description is tight. In [15], we proved that there is another tight description, ”a
(5, 6, 6)-path“ and that no other tight descriptions exists.

In [10], we gave a tight description of 3−-stars in arbitrary plane graphs with
δ ≥ 3 and g ≥ 3 by proving that there is either a (3, 10)-edge, or a (5, 4, 9)-path,
or a (6, 4, 8)-path, or a (7, 4, 7)-path, or a (5; 4, 5, 5)-star, or a (5; 5, b, c)-star with
5 ≤ b ≤ 6 and 5 ≤ c ≤ 7, or else a (5; 6, 6, 6)-star. This extends or strengthens
several previously known results by Balogh, Jendrol’, Harant, Kochol, Madaras,
Van den Heuvel, Yu and others [4, 34, 42, 46, 47] and disproves a conjecture in
Harant, Jendrol’ [34].

In 1940, Lebesgue [44] gave an approximate description of 5-stars centered at 5-
vertices for the case δ = 5 and g ≥ 3. Recently, we obtained several tight results on
the height, weight and structure of such 5-stars assuming the absence of 6+-vertices
from certain degree-sets, see [12,16,19,21,23,24,26,27,29–31].

Also, Lebesgue [44] proved that every G with δ ≥ 3 and g = 5 satisfies h2 = 3
and w2 = 9. In 2004, Madaras [45] refined this by showing that there is a 3-star with
h3 = 4 and w3 = 13, which is tight. Recently, we gave [22] another tight description
of 3-stars for g = 5 in terms of degree of their vertices and showed that there are
only these two tight descriptions of 3-stars.

There exist many results on the height, weight and structure of 2−-stars when
δ = 2, see, for example, [1–8, 11, 14, 17, 25, 28, 35–40] and also surveys by Jendrol,
Voss [43] and Borodin, Ivanova [20].

In 2016, Hudák, Maceková, Madaras and Široczki [35] considered the class of
plane graphs with δ = 2 in which no two vertices of degree 2 are adjacent. They
proved that h3 = w3 = ∞ if g ≤ 6, h3 = 5 if g = 7, h3 = 3 if g ≥ 8, w3 = 10 if
g = 8 and w3 = 9 if g ≥ 9. For g = 7, Hudák et al. [35] proved 11 ≤ w3 ≤ 20.

The purpose of our paper is to settle the case g = 7, as follows.
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Theorem 1. Every plane graph with δ = 2 and g = 7 in which no two vertices
of degree 2 are adjacent has a 3-star of weight at most 12 centered at a 5−-vertex,
where 12 is best possible.

2. Proof of Theorem 1

In Fig. 1, we see a bit more than a half of a plane graph with the desired properties
δ = 2, g = 7, and no (2, 2)-path that confirms the lower bound w3 ≥ 12. The
invisible “equator” passes through the middles of ten edges joining 3-vertices with
5-vertices in the outside layer. To obtain the whole graph, it suffices to superpose
vertices of outer cycle of one half with the vertices of the cycle nearest to it of the
other half. Namely, the path of vertices of degrees 5, 3, 2, and 3 of the shaded face
are superposed on the path of vertices of degrees 5, 3, 2, and 3 of the white face.

Рис. 1. All 3-stars are of weight at least12.

2.1. Discharging and its consequences. Let G be a counterexample to the
upper bound 12 in Theorems 1. Without loss of generality, we can assume that
G is connected. Let V , E, and F be the sets of vertices, edges and faces of G,
respectively. Euler’s formula |V | − |E|+ |F | = 2 for G may be rewritten as

(1)
∑
v∈V

(d(v)− 6) +
∑
f∈F

(2d(f)− 6) = −12.
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Every vertex v contributes the charge µ(v) = d(v)− 6 to (1), so only the charges
of 5−-vertices are negative. Every face f contributes the non-negative charge µ(f) =
2d(f)− 6 to (1). Using the properties of G as a counterexample, we define a local
redistribution of µ’s, preserving their sum, such that the new charge µ′(x) is non-
negative for all x ∈ V ∪ F . This will contradict the fact that the sum of the new
charges is, by (1), equal to −12.

Throughout the paper, we denote the vertices adjacent to a vertex or incident
with face x in a cyclic order by v1, . . . , vd(x). Let ∂(f) be the boundary of a face f .

We apply the following rules of discharging (see Fig. 2).

R1. Every face gives 2 to each incident 2-vertex.

R2. Every face gives 1
3 to each incident vertex v2 such that 3 ≤ d(v2) ≤ 5 and

d(v1) = d(v3) = 2.

R2. Every face gives the following charge to each incident 3-vertex v2:
(a) 4

3 if d(v1) = 2 and d(v3) ≥ 6,
(b) 7

6 if d(v1) ≤ 3 and d(v3) = 5,
(c) 1 if d(v3) = 4,
(d) 2

3 if d(v1) = 2 and d(v3) = 3,
(e) 1 if d(v1) = 3 while d(v3) = 3 or d(v3) ≥ 6, and
(f) 1 if d(v1) ≥ 5 and d(v3) ≥ 5.

R4. Every face gives the following charge to each incident 4-vertex v2:
(a) 1

3 if d(v1) = 2 and d(v3) = 3,
(b) 2

3 if d(v1) = 2 and d(v3) ≥ 4, and
(c) 2

3 if d(v1) ≥ 3 and d(v3) ≥ 3.

R5. Every face gives the following charge to each incident 5-vertex v2:
(a) 1

6 if d(v1) = 2 and d(v3) = 3,
(b) 1

3 if d(v1) = 2 and d(v3) ≥ 4, and
(c) 1

3 if d(v1) ≥ 3 and d(v3) ≥ 3.

2.2. Proving µ′(v) ≥ 0 whenever v ∈ V .

Case 1. d(v) = 2. Here, µ′(v) = d(v)− 6 + 2× 2 = 0 by R1.

Case 2. d(v) = 3.

Subcase 2.1. d(v1) = d(v2) = 2. Now d(v3) ≥ 13 − 3 − 2 × 2 = 6, so µ′(v) =
−3 + 2× 4

3 + 1
3 = 0 by R2 and R3a.

Subcase 2.2. d(v1) = 2 and d(v2) = 3. Now d(v3) ≥ 5, so µ′(v) = 3 − 6 + 2 ×
7
6 + 2

3 = 0 by R3b, R3d.

Subcase 2.3. d(v1) = 2, d(v2) ≥ 4, and d(v3) ≥ 4. Now v receives at least 1
from each incident face by R3a–R3c, so µ′(v) ≥ 0.

Subcase 2.4. d(v1) ≥ 3, d(v2) ≥ 3, and d(v3) ≥ 4. Now again v receives at
least 1 from each incident face, but this time by R3b, R3c, R3e, and R3f, and we
have µ′(v) ≥ 0.

Case 3. d(v) = 4. Note that each incident face gives v either 1
3 by R2 and R4a

or 2
3 by R4b and R4c. We have µ′(v) ≥ −2+2× 1

3 +2× 2
3 = 0, unless v receives 1

3 at
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Рис. 2. Rules of discharging

least thrice, in which case v has three 3−-neighbors including a 2-neighbor. However,
this implies a 3-star at v of weight at most 4 + 2× 3 + 2 < 13, a contradiction.

Case 4. d(v) = 5. Now each incident face gives v either 1
3 by R2 and R5b, R5c

or 1
6 by R5a. It suffices to exclude the possibility that v receives 1

6 five times, since
otherwise we have µ′(v) ≥ −1 + 1

3 + 4 × 1
6 = 0. This follows easily from the fact

that 2-neighbors cannot alternate with 3-neighbors around v.

Case 5. d(v) ≥ 6. Since v does not participate in discharging, we have µ′(v) =
d(v)− 6 ≥ 0.

2.3. Proving µ′(f) ≥ 0 whenever f ∈ F .

Lemma 1. Every face f gives the following total charge to strings of incident
3+-vertices by R2–R5:

(a) at most 1
3 to v2 if d(v1) = d(v3) = 2,

(b) at most 4
3 to v2v3 if d(v1) = d(v4) = 2,

(c) at most 8
3 to v2v3v4 if d(v1) = d(v5) = 2, and

(d) at most 11
6 to v2v3 if d(v1) = 2 while d(v4) ≥ 3,
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Proof. (a) This is precisely the rule R2.

(b) If d(v2) ≥ 6, then v2 receives nothing while v3 receives at most 4
3 by R3–R5.

Suppose d(v2) = 5. If d(v3) = 3 then v2 receives 1
6 by R5a while v3 receives 7

6 by
R3b, as desired. If 4 ≤ d(v3) ≤ 5 then v2 receives 1

3 by R5b while v3 at most 1 by
R5b or R3c.

Next suppose d(v2) = 4. If d(v3) = 3 then v2 receives 1
3 by R4a while v3 receives 1

by R3c. If d(v3) = 4 then each of v2, v3 receives 2
3 by R4b.

Finally, if d(v2) = d(v3) = 3 then each of v2, v3 receives 2
3 by R3d.

(c) If d(v3) ≥ 6, d(v3) = 5, or d(v3) = 4, then v2v3v4 receives at most 4
3 + 0+ 4

3 ,
7
6 + 1

3 + 7
6 , or 1 +

2
3 + 1, respectively.

Finally, suppose d(v3) = 3. If d(v2) /∈ {3, 5}, then v2v3v4 receives at most 1
3+1+ 2

3 .
Now if d(v2) = 5, then v2v3v4 receives at most 1

6 + 7
6 + 2

3 by R3b, R3d, R4a, R5a.
By symmetry, it remains to assume that d(v2) = d(v4) = 3, in which case v2v3v4
receives at most 2

3 + 1 + 2
3 , as desired.

(d) If there is a 5+-vertex in v2v3, then v2v3 receives at most 1
3 + 4

3 < 11
6 , as

desired. Suppose the contrary. Now if v2 receives at most 2
3 , then v2v3 receives at

most 2
3 + 7

6 = 11
6 since v3 never receives as much as 4

3 . Otherwise, v2 receives 1 by
R3c, in which case d(v2) = 4 or d(v3) = 4 and v2v3 receives 1 + 2

3 in both cases in
view of R4c, and we are done again. �

A k-worm is a string v2 . . . vk+1 of 3+-vertices in the boundary ∂(f) of a face f
such that d(v1) = d(vk+2) = 2. In particular, we can have v1 = vd(v)+1, in which
case ∂(f) is split into a 2-vertex v1 and a (d(v)− 1)-worm. If f is incident with at
least one 2-vertex, then ∂(f) is split into k-worms with variable k.

To estimate the total donation of f by R1–R5, we use the following 5
12 -averaging:

every 2-vertex v2 transfers 5
12 to v1 and v3.

The 5
12 -averaged donation of f to a 2-neighbor is 2−2× 5

12 = 7
6 . Lemma 1 easily

implies the maximum donations to k-worms.

Corollary 1. The 5
12 -averaged total donations of f to k-worms are:

(a) at most 1
3 + 2× 5

12 = 7
6 if k = 1,

(b) at most 4
3 + 5

6 = 2× 7
6 − 1

6 if k = 2,
(c) at most 8

3 + 5
6 = 3× 7

6 if k = 3, and
(d) at most 5

6 + 2× 11
6 + (k − 4)× 7

6 = k × 7
6 − 1

6 if k ≥ 4.

Proof. The only remark possibly needed is that a 3+-vertex at distance at least 2
from the nearest 2-vertex in ∂(f) receives at most 7

6 from f both by R2–R5 and
after the 5

12 -averaging. �

We are now prepared to complete the proof of µ′(f) ≥ 0.

Case 1. d(f) = 7. Note that µ(f) = 2× 7− 6 = 7× 7
6 − 1

6 . This means that we
are done by Corollary 1 unless ∂(f) has neither 2-worms nor 4+-worms.

If f is incident with three 2-vertices, then ∂(f) consists of a 2-worm and two
1-worms, and we are done.

If f is incident with two 2-vertices, then the five incident vertices of f are split
into two worms, one of which must be a 2-worm or 4-worm. The presence of precisely
one 2-vertex in ∂(f) implies a 6-worm.



1350 O.V.BORODIN, A.O. IVANOVA

Finally, suppose f is not incident with 2-vertices. Now it suffices to observe that
there are no three consecutive vertices in ∂(f) each receiving 7

6 by R2–R5 to see
that µ′(f) ≥ 8− 6× 7

6 − 1 = 0.

Case 2. d(f) ≥ 8. Since the 5
12 -averaged donation of f to a 2-neighbor is 7

6 , each
k-worm receives at most k× 7

6 by Corollary 1, and each 3+-vertex not belonging to
a worm receives at most 7

6 , we have µ′(f) ≥ 2d(f)− 6− d(f)× 7
6 = 5d(f)−36

6 > 0.

This completes the proof of Theorem 1.
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