S@MR

ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 15, стр. 1378–1382 (2018) DOI 10.17377/semi.2018.15.113 УДК 512.54 MSC 20D60, 05C25

FINITE ALMOST SIMPLE GROUPS WHOSE GRUENBERG-KEGEL GRAPHS AS ABSTRACT GRAPHS ARE ISOMORPHIC TO SUBGRAPHS OF THE GRUENBERG-KEGEL GRAPH OF THE ALTERNATING GROUP A_{10}

A.S. KONDRAT'EV, N.A. MINIGULOV

ABSTRACT. We consider the problem of describing finite groups whose the Gruenberg-Kegel graphs as abstract graphs are isomorphic to the Gruenberg-Kegel graph of the alternating group A_{10} . In the given paper, we prove that if such group is non-solvable then its quotient group by solvable radical is almost simple and classify all finite almost simple groups whose the Gruenberg-Kegel graphs as abstract graphs are isomorphic to subgraphs of the Gruenberg-Kegel graph of A_{10} .

Keywords: finite group, almost simple group, 4-primary group, Gruenberg-Kegel graph.

1. INTRODUCTION

Let G be a finite group. Denote by $\pi(G)$ the set of prime divisors of the order of G. The Gruenberg-Kegel graph (prime graph) $\Gamma(G)$ of G is a graph with the vertex set $\pi(G)$, in which two different vertices p and q are adjacent if and only if there exists an element of order pq in G. If $|\pi(G)| = n$ then the group G is called *n*-primary.

In 2012–2013, the first author described finite groups with the Gruenberg-Kegel graphs as for groups $Aut(J_2)$ (see [7]) and A_{10} (see [8]), respectively. The Gruenberg-Kegel graphs of these groups as abstract graphs are isomorphic to the graph Γ of the form

Kondrat'ev, A.S., Minigulov, N.A., Finite almost simple groups whose Gruenberg-Kegel graphs as abstract graphs are isomorphic to subgraphs of the Gruenberg-Kegel graph of the alternating group A_{10} .

^{© 2018} Kondrat'ev A.S., Minigulov N.A.

The work is supported by the Russian Science Foundation (project 14-11-00061-P). Received September, 30, 2018, published November, 7, 2018.

We put a more general problem: to describe finite groups whose Gruenberg-Kegel graphs as abstract graphs are isomorphic to the graph Γ .

In the frame of this problem, we prove in this paper the following two theorems.

Theorem 1. Let G be a finite non-solvable group and the graph $\Gamma(G)$ as abstract graph is isomorphic to the graph $\Gamma(A_{10})$. Then quotient group G/S(G) is almost simple.

Theorem 2. Let G be a finite almost simple group. Then the graph $\Gamma(G)$ as abstract graph is isomorphic to a subgraph of the graph $\Gamma(A_{10})$ if and only if one of the following statements holds:

(a) the graph $\Gamma(G)$ is disconnected and the group G is isomorphic to one of the following groups:

(2) $L_2(r)$ or $PGL_2(r)$, where r is a prime, $17 \neq r \geq 11$, $r^2 - 1 = 2^a 3^b s^c$, s > 3 is a prime, $a, b \in \mathbb{N}$ and c equals to either 1 or 2 for $r \in \{97, 577\}$;

(3) $L_2(2^m)$, where $m, 2^m - 1$ and $(2^m + 1)/3$ are primes greater than 3;

(4) $L_2(3^m)$ or $PGL_2(3^m)$, where m and $(3^m-1)/2$ are odd primes and $(3^m+1)/4$ equals to either a prime or 11^2 (for m = 5);

(b) the graph $\Gamma(G)$ is connected and the group G is isomorphic to one of the following groups: $Aut(A_6)$, S_9 , A_{10} , $Aut(L_2(q))$ for $q \in \{25, 27, 49, 81\}$, $L_2(81).2^2$, $PGL_3(4)$, $L_3(4).6$, $L_3(4).2^2$, $PGL_3(4).2_2$, $PGL_3(4).2_3$, $Aut(L_3(4))$, $PGL_3(7)$, $Aut(L_3(7))$, $L_4(3).2_1$, $Aut(L_4(3))$, $Aut(S_4(q))$ for $q \in \{5, 7, 9\}$, $S_4(9).2_2$, $Aut(U_3(q))$ for $q \in \{5, 8\}$, $U_3(5).3$, $U_3(8).3_2$, $U_3(8).3^2$, $U_3(8).S_3$, $U_4(3).2_1$, $U_4(3).2^2$, $U_4(3).4$, $Aut(U_4(3))$, $O_8^+(2).2$, $O_8^+(2).3$, $Aut(J_2)$.

Theorem 2 and [2, 4] imply

Corollary 1. Let G be a finite almost simple group whose Gruenberg-Kegel graph as abstract graph is isomorphic to $\Gamma(A_{10})$. Then G is isomorphic one of the following groups: S_9 , A_{10} , $Aut(L_3(4))$, $PGL_3(7)$, $Aut(L_3(7))$, $Aut(S_4(5))$, $Aut(S_4(7))$, $S_4(9).2_2$, $Aut(S_4(9))$, $U_3(5).3$, $Aut(U_3(5))$, $U_3(8).3_2$, $U_3(8).3^2$, $U_3(8).S_3$, $Aut(U_3(8))$, $O_8^+(2).2$, $O_8^+(2).3$, $Aut(J_2)$.

For the proving of Theorems, we use the results from [9, 10].

2. NOTATION AND AUXILIARY RESULTS

We use mainly standard notation and terminology (see [2, 4]). The solvable radical (the largest solvable normal subgroup) of a finite group G is denoted by S(G).

For the proving of Theorems, we need the following two lemmas.

Lemma 1 ([5]). If G be a finite simple 3-primary group, then G is isomorphic to one of following groups: A_5 , $L_2(7)$, A_6 , $L_2(8)$, $L_2(17)$, $L_3(3)$, $U_3(3)$, $U_4(2)$.

Lemma 2 ([1, 6, 11]). Let G be a finite simple 4-primary group. Then G is isomorphic to one of the following groups:

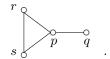
(1) $A_n \text{ for } 7 \le n \le 10, L_2(q) \text{ for } q \in \{16, 25, 49, 81\}, L_3(q) \text{ for } q \in \{4, 5, 7, 8, 17\}, L_4(3), S_4(q) \text{ for } q \in \{4, 5, 7, 9\}, S_6(2), U_3(q) \text{ for } q \in \{4, 5, 7, 8, 9\}, U_4(3), U_5(2), O_8^+(2), G_2(3), Sz(8), Sz(32), {}^{3}D_4(2), {}^{2}F_4(2)', M_{11}, M_{12}, J_2;$

(2) $L_2(r)$, where r is a prime, $17 \neq r \geq 11$, $r^2 - 1 = 2^a 3^b s^c$, s > 3 is a prime, $a, b \in \mathbb{N}$, and c equals to either 1 or 2 for $r \in \{97, 577\}$;

(3) $L_2(2^m)$, where $m, 2^m - 1$ and $(2^m + 1)/3$ are primes greater than 3;

(4) $L_2(3^m)$, where m and $(3^m - 1)/2$ are odd primes, and $(3^m + 1)/4$ equals to either a prime or 11^2 (for m = 5).

Further we shall assume that the Gruenberg-Kegel graph of a investigated group has the form



3. Proof of theorem 1

Let G be a group satisfying the conditions of Theorem 1 and $\overline{G} = G/S(G)$. Show that \overline{G} is almost simple. Let M be a minimum normal subgroup in \overline{G} . Then $M = M_1 \times \cdots \times M_n$, where M_1, \ldots, M_n are isomorphic non-abelian simple groups.

Suppose that n > 1. Then any vertex of the graph $\Gamma(M)$ is adjacent at least two other its vertices, therefore $\pi(M_1) = \{r, s, p\}$. By Lemma 1, $\{2, 3\} \in \pi(M_1)$ and $Out(M_1)$ is a 2-group.

Suppose that $q \in \pi(\overline{G})$. Then there is an element x of order q in \overline{G} . The subgroup $\langle x \rangle$ acts (by the conjugation) on the set $\{M_1, \ldots, M_n\}$ without fixed points. Indeed, suppose that the element x normalizes M_1 . Since $N_{\overline{G}}(M_1)/M_1C_{\overline{G}}(M_1)$ is a 2-group, the element x centralizes M_1 . Hence x centralizes elements of order 2 and 3 in M_1 , a contradiction with the form of the graph $\Gamma(G)$. Thus, subgroup $K = \langle M_1, x \rangle$ is isomorphic to the wreath product $M_1 \wr \mathbb{Z}_q$. Hence, $C_K(x) \cong M_1$, and therefore x centralizes some elements of order 2 and 3 in K. This is impossible.

So, $q \notin \pi(\overline{G})$. Hence $q \in \pi(S(G))$. Let $Q \in Syl_q(S(G))$. By Frattini lemma $G = S(G)N_G(Q)$, and hence $N_G(Q)/N_{S(G)}(Q) \cong \overline{G}$. Since n > 1, a Sylow 2-subgroup from $N_G(Q)$ contains a four-subgroup, hence p = 2. Therefore the Sylow r- and s-subgroups in $N_G(Q)$, and hence in \overline{G} , are cyclic, a contradiction with the supposition n > 1.

So, n = 1, i.e., the subgroup M is simple. If \overline{G} contains a different from M minimal normal subgroups N, then, as it is proved above, N is a simple and centralize M. Then, arguing as above, we come to a contradiction.

Theorem 1 is proved.

4. Proof of theorem 2

Let G be a group satisfying the conditions of Theorem 2, and let L be its socle.

Lemma 3. If $|\pi(L)| = 3$, then G either satisfies the statement (a1) of Theorem 2, or is isomorphic to $Aut(A_6)$.

Proof. The lemma follows from Lemma 1 and [9, Table].

In view of Lemma 3, further we can assume that $|\pi(L)| = 4$.

Lemma 4. If the graph $\Gamma(G)$ is disconnected, then G satisfies the statement (a) of Theorem 2.

Proof. The lemma follows from Theorem 1 and [10, Table 1].

In view of Lemma 4, further we can assume that the graph $\Gamma(G)$ is connected.

Lemma 5. If L is isomorphic to a group from the item (1) of Lemma 2, then G satisfies the statement (b) of Theorem 2.

Proof. The lemma follows from Theorem 1 and [10, Table 1].

Lemma 6. L is not isomorphic to a group from the item (2) of Lemma 2.

Proof. Suppose the contrary. Then $G \cong Aut(L)$ and in view of [10, Table 1] the graph $\Gamma(G)$ disconnected, a contradiction.

Lemma 7. *L* is not isomorphic to a group from the item (3) of Lemma 2..

Proof. Suppose the contrary. Then $L \cong L_2(2^m)$, where $m, u = 2^m - 1$ and $t = (2^m + 1)/3$ are primes greater than 3. Since the graph $\Gamma(L)$ is disconnected, we have L < G. Hence $G \cong Aut(L) \cong L_2(2^m) : \mathbb{Z}_m$. Since $\pi(G) = \{2, 3, u, t\}$, we have $m \in \{u, t\}$.

Let m = u. Then $m = 2^m - 1$, i.e., $2^m = m + 1$. Show by induction on m that $2^m > m + 1$ for $m \ge 2$. For m = 2, we have $2^2 = 4 > 2 + 1 = 3$, so the base of induction is satisfied. Suppose that $m \ge 2$ and $2^m > m + 1$. Then $2^{m+1} > 2m + 2 = m + (m+2) > m + 2$, so the induction step is satisfied too. Thus, $m \ne u$.

So, $m = t = (2^m + 1)/3$. Then $2^m = 3m - 1$. Show by induction on m that $2^m > 3m - 1$ for m > 3. For m = 4, we have $2^4 = 16 > 3 \cdot 4 - 1 = 11$, so the base of induction is satisfied. Suppose that m > 3 and $2^m > 3m - 1$. Then $2^{m+1} > 6m - 2 = 3(m+1) - 1 + (3m-4) > 3(m+1) - 1$, so the induction step is satisfied too. Thus, $m \neq t$.

The obtained contradiction proves the lemma.

Lemma 8. If L is isomorphic to a group from the item (4) of Lemma 2, then $G \cong Aut(L_2(27))$.

Proof. Suppose that $L \cong L_2(3^m)$, where m and $u = (3^m - 1)/2$ are odd primes, and $(3^m + 1)/4$ equals to either a prime or 11^2 for m = 5. Then $\pi((3^m + 1)/4) = \{t\}$ for some prime t. In view of [10, Table 1], the graphs $\Gamma(L_2(3^m))$ and $\Gamma(PGL_2(3^m))$ are disconnected.

Since |Out(L)| = 2m (see [2, Table 5]) and the graph $\Gamma(G)$ is connected, the group G is isomorphic to either $L : \mathbb{Z}_m$ or Aut(L). Hence $m \in \pi(G) = \pi(L) = \{2, 3, u, t\}$.

Suppose that $m \in \{u, t\}$. Then m > 3, and hence $m \in \pi(L)$. But then a field automorphism φ of order m of the group L centralizes an element of order m in L. We have $C_L(\varphi) \cong L_2(3) \cong A_4$ (see [4, 4.9.1]); a contradiction. Thus, m = 3. In view of [10, Table 1] the graph $\Gamma(L_2(3^3).\mathbb{Z}_3)$ is disconnected, hence $G \cong Aut(L_2(3^3))$. \Box

The statement of the necessity of Theorem 2 follows from Lemmas 3–8. The statement of the sufficiency of Theorem 2 follows from [9, 10, 2, 4]. Theorem 2 is proved.

References

- Y. Bugeaud, Z. Cao, M. Mignotte, On simple K₄-groups, J. Algebra, **241**:10 (2001), 658–668. MR1843317
- [2] J.N. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups, Oxford: Clarendon Press, 1985. MR0827219
- [3] D. Gorenstein, Finite groups, New York–London: Harper and Row, 1968. MR0231903
- D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups. Number 3, Mathematical Surveys and Monographs, 40:3 (1998). MR1490581
- [5] M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra, 10:3 (1968), 383–388. MR0233881
- [6] B. Huppert, W. Lempken, Simple groups of order divisible by at most four primes, Proc. F. Scorina Gomel State University, Problems in algebra, 16:3 (2000), 64–75. Zbl 1159.20303
- [7] A.S. Kondrat'ev, Finite groups with prime graph as in the group Aut(J₂), Proc. Steklov Inst. Math., 283:1 (2013), S78–S85. MR3476380
- [8] A.S. Kondrat'ev, Finite groups that have the same prime graph as the group A₁₀, Proc. Steklov Inst. Math., 285:1 (2014), Suppl. 1, S99–S107. Zbl 1307.20021
- [9] A.S. Kondrat'ev, I.V. Khramtsov, On finite triprimary groups, Trudy Inst. Mat. Mech. UrO RAN, 16:3 (2010), 150–158.
- [10] A.S. Kondrat'ev, I.V. Khramtsov, On finite tetraprimary groups, Proc. Steklov Inst. Math., 279 (2012), Suppl. 1, 43-61. Zbl 1303.20025
- [11] W.J. Shi, On simple K₄-groups, Chinese Scince Bull., 36:17 (1991), 1281-1283.

ANATOLY SEMENOVICH KONDRAT'EV N.N. KRASOVSKII INSTITUTE OF MATHEMATICS AND MECHANICS, S. KOVALEVSKAYA ST., 16, 620990, YEKATERINBURG, RUSSIA *E-mail address*: a.s.kondratiev@imm.uran.ru

Nikolai Alexandrovich Minigulov

N.N. Krasovskii Institute of Mathematics and Mechanics, S. Kovalevskaya St., 16,

620990, Yekaterinburg, Russia

E-mail address: nikola-minigulov@mail.ru