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ABSTRACT. We consider the problem of describing finite groups whose
the Gruenberg-Kegel graphs as abstract graphs are isomorphic to the
Gruenberg-Kegel graph of the alternating group Aig. In the given paper,
we prove that if such group is non-solvable then its quotient group by
solvable radical is almost simple and classify all finite almost simple
groups whose the Gruenberg-Kegel graphs as abstract graphs are isomor-
phic to subgraphs of the Gruenberg-Kegel graph of Ajp.
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1. INTRODUCTION

Let G be a finite group. Denote by 7(G) the set of prime divisors of the order
of G. The Gruenberg-Kegel graph (prime graph) I'(G) of G is a graph with the
vertex set m(G), in which two different vertices p and ¢ are adjacent if and only if
there exists an element of order pq in G. If |7(G)| = n then the group G is called
n-primary.

In 2012-2013, the first author described finite groups with the Gruenberg-Kegel
graphs as for groups Aut(J2) (see [7]) and Ajg (see [8]), respectively. The Gruenberg-
Kegel graphs of these groups as abstract graphs are isomorphic to the graph I' of
the form
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We put a more general problem: to describe finite groups whose Gruenberg-Kegel
graphs as abstract graphs are isomorphic to the graph T'.
In the frame of this problem, we prove in this paper the following two theorems.

Theorem 1. Let G be a finite non-solvable group and the graph T'(G) as abstract
graph is isomorphic to the graph T'(Aip). Then quotient group G/S(G) is almost
simple.

Theorem 2. Let G be a finite almost simple group. Then the graph T'(G) as abstract
graph is isomorphic to a subgraph of the graph T'(Aio) if and only if one of the
following statements holds:

(a) the graph T'(G) is disconnected and the group G is isomorphic to one of the
following groups:

(1) A, for5<n <9, S, for5<n<8, My, La(q) for q € {7,8,16,17,25,49,
81}, PGLs(q) for q € {7,9,17}, L2(q).2 for q € {16,25,49,81}, Aut(L2(16)),
L4(27).3, La(81).41, Lo(81).42, Ls(q) for q € {3,4,5,7,8,17}, Aut(Ls(q)) for q €
{3,5,8,17}, Ls(q).2 for q € {2,7,8}, L3(8).3, La(3), L4(3).22, L4(3).23, S4(q) for
q < {3,4,5, 7,9}, Aut(S4(q)) fOT q € {3,4}, 54(4)2, 54(9).21, 54(9).23, 56(2)7
Aut(S6(2)), Us(q) for q € {3,4,5,7,8,9}, Aut(Us(q)) for q € {4,5,7,9}, Us(q).2
fOT‘ q € {5,8,9}, U3(8).31, U3(8).33, U3(8)6, U4(3), U4(3).22, U4(3).23, U5(2),
Aut(Us(2)), Sz(8), Sz(32), Aut(Sz(32)), 3D4(2), Aut(®D4(2)), 2F4(2), 2F4(2),
My, Mo, Aut(Miz), Jo;

(2) La(r) or PGLo(r), where v is a prime, 17 #r > 11, 72 — 1 = 293%s¢, 5 > 3
is a prime, a,b € N and ¢ equals to either 1 or 2 for r € {97,577};

(3) La(2™), where m, 2™ — 1 and (2™ + 1)/3 are primes greater than 3;

(4) La(3™) or PGL2(3™), where m and (3™—1)/2 are odd primes and (3™ +1)/4
equals to either a prime or 112 (for m = 5);

(b) the graph T'(G) is connected and the group G is isomorphic to one of the
following groups: Aut(Ag), So, A1g, Aut(La(q)) for q € {25,27,49,81}, Lo(81).22,
PGLs(4), L3(4).6, L3(4).22, PGLs(4).25, PGL3(4).25, Aut(L3(4)), PGLs(7),
Aut(Ls (7)), La(3).21, Aut(L4(3)), Aut(S4(q)) forq € {5,7,9}, S4(9).22, Aut(Us(q))
fOT‘ q € {5,8}, U3(5)3, U3(8).32, U3(8).32, U3(8)S3, U4(3).21, U4(3).22, U4(3)4,
Aut(U4(3)), OF (2).2, OF (2).3, Aut(Js).

Theorem 2 and [2, 4] imply

Corollary 1. Let G be a finite almost simple group whose Gruenberg-Kegel graph as
abstract graph is isomorphic to I'(A1g). Then G is isomorphic one of the following
groups: Sg, Ajo, Aut(Ls(4)), PGL3(7), Aut(L3(7)), Aut(S4(5)), Aut(Ss(7)),
54(9).22, Aut(S4(9)), U3(5).3, A’ut(Ug(5)), U3(8).32, U3(8).32, Ug(8).S3, Aut(Ug(S)),
O (2).2, OF (2).3, Aut(J2).

For the proving of Theorems, we use the results from [9, 10].
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2. NOTATION AND AUXILIARY RESULTS

We use mainly standard notation and terminology (see [2, 4]). The solvable
radical (the largest solvable normal subgroup) of a finite group G is denoted by
S(Q).

For the proving of Theorems, we need the following two lemmas.

Lemma 1 ([5]). If G be a finite simple 3-primary group, then G is isomorphic to
one of following groups: As, La(7), Ag, L2(8), La(17), L3(3), Us(3), U(2).

Lemma 2 ([1, 6, 11|). Let G be a finite simple 4-primary group. Then G is
isomorphic to one of the following groups:

(1) A, for7 <n <10, La(q) forq € {16,25,49,81}, L3(q) forq € {4,5,7,8,17},
L4(3), S4(q) for g € {4,5,7,9}, Ss(2), Us(q) for q € {4,5,7,8,9}, Us(3), Us(2),
Of (2), Go(3), Sz(8), S2(32), 3D4(2), 2F4(2), My1, Mya, Jo;

(2) La(r), where r is a prime, 17 # r > 11, r2 — 1 = 223%s¢, s > 3 is a prime,
a,b € N, and c equals to either 1 or 2 for r € {97,577};

(3) L2(2™), where m, 2™ — 1 and (2™ + 1)/3 are primes greater than 3;

(4) Lo(3™), where m and (3™ — 1)/2 are odd primes, and (3™ + 1)/4 equals to
either a prime or 112 (for m = 5).

Further we shall assume that the Gruenberg-Kegel graph of a investigated group
has the form

p q
s

3. PROOF OF THEOREM 1

Let G be a group satisfying the conditions of Theorem 1 and G = G/S(G).
Show that G is almost simple. Let M be a minimum normal subgroup in G. Then
M = My X -+ x M,,, where My, ..., M, are isomorphic non-abelian simple groups.

Suppose that n > 1. Then any vertex of the graph I'(M) is adjacent at least two
other its vertices, therefore w(M;) = {r,s,p}. By Lemma 1, {2,3} € 7(M;) and
Out(My) is a 2-group.

Suppose that ¢ € 7(G). Then there is an element x of order ¢ in G. The subgroup
(z) acts (by the conjugation) on the set {Mj, ..., M, } without fixed points. Indeed,
suppose that the element x normalizes M. Since Ng(M1)/M,Cq(M,) is a 2-group,
the element = centralizes M;. Hence x centralizes elements of order 2 and 3 in M,
a contradiction with the form of the graph I'(G). Thus, subgroup K = (M, z) is
isomorphic to the wreath product M; ! Z,. Hence, Cx(x) = My, and therefore x
centralizes some elements of order 2 and 3 in K. This is impossible.

So, ¢ ¢ m(G). Hence ¢ € 7(S(G)). Let @ € Syly(S(GQ)). By Frattini lemma
G = S(G)Ng(Q), and hence Ng(Q)/Ns)(Q) = G. Since n > 1, a Sylow 2-
subgroup from N¢(Q) contains a four-subgroup, hence p = 2. Therefore the Sylow
7r- and s-subgroups in Ng(Q), and hence in G, are cyclic, a contradiction with the
supposition n > 1.

So, n = 1, i.e., the subgroup M is simple. If G contains a different from M
minimal normal subgroups N, then, as it is proved above, N is a simple and
centralize M. Then, arguing as above, we come to a contradiction.
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Theorem 1 is proved.

4. PROOF OF THEOREM 2
Let G be a group satisfying the conditions of Theorem 2, and let L be its socle.

Lemma 3. If |n(L)| = 3, then G ecither satisfies the statement (al) of Theorem 2,
or is isomorphic to Aut(Ag).

Proof. The lemma follows from Lemma 1 and [9, Table]. O
In view of Lemma 3, further we can assume that |7(L)| = 4.

Lemma 4. If the graph T'(G) is disconnected, then G satisfies the statement (a) of
Theorem 2.

Proof. The lemma follows from Theorem 1 and [10, Table 1]. O
In view of Lemma 4, further we can assume that the graph I'(G) is connected.

Lemma 5. If L is isomorphic to a group from the item (1) of Lemma 2, then G
satisfies the statement (b) of Theorem 2.

Proof. The lemma follows from Theorem 1 and [10, Table 1]. (]
Lemma 6. L is not isomorphic to a group from the item (2) of Lemma 2.

Proof. Suppose the contrary. Then G = Aut(L) and in view of [10, Table 1] the
graph I'(G) disconnected, a contradiction. O

Lemma 7. L is not isomorphic to a group from the item (3) of Lemma 2..

Proof. Suppose the contrary. Then L = Lo(2™), where m,u = 2™ — 1 and ¢t =
(2™ + 1)/3 are primes greater than 3. Since the graph T'(L) is disconnected, we
have L < G. Hence G = Aut(L) = L3(2™) : Zy,. Since 7(G) = {2,3, u,t}, we have
m € {u,t}.

Let m = uw. Then m = 2™ — 1, i.e., 2™ = m + 1. Show by induction on m
that 2™ > m + 1 for m > 2. For m = 2, we have 22 = 4 > 2+ 1 = 3, so
the base of induction is satisfied. Suppose that m > 2 and 2™ > m + 1. Then
2m+L > 29m +2 = m+ (m+2) > m+2, so the induction step is satisfied too. Thus,
m=u.

So, m =t = (2™ + 1)/3. Then 2™ = 3m — 1. Show by induction on m that
2™ > 3m — 1 for m > 3. For m = 4, we have 2* = 16 > 3-4 -1 = 11, so
the base of induction is satisfied. Suppose that m > 3 and 2™ > 3m — 1. Then
2m+l > 6m —2=3(m+1)— 1+ (3m —4) > 3(m +1) — 1, so the induction step is
satisfied too. Thus, m#t.

The obtained contradiction proves the lemma. (I

Lemma 8. If L is isomorphic to a group from the item (4) of Lemma 2, then
G = Aut(L2(27)).

Proof. Suppose that L = Ly(3™), where m and u = (3™ —1)/2 are odd primes, and
(3™ +1)/4 equals to either a prime or 112 for m = 5. Then 7((3™ + 1)/4) = {t}
for some prime ¢. In view of [10, Table 1], the graphs I'(L2(3™)) and T'(PG L2 (3™))
are disconnected.

Since |Out(L)| = 2m (see [2, Table 5]) and the graph I'(G) is connected, the group
G is isomorphic to either L : Z,, or Aut(L). Hence m € 7n(G) = n(L) = {2, 3, u,t}.
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Suppose that m € {u,t}. Then m > 3, and hence m € 7(L). But then a field

automorphism ¢ of order m of the group L centralizes an element of order m in L.
We have CL(¢) = La(3) =2 Ay (see [4, 4.9.1]); a contradiction. Thus, m = 3. In view
of [10, Table 1] the graph I'(Lo(3%).Z3) is disconnected, hence G = Aut(L2(33)). O

(1]
(2]

(3]
[4]

(]
[6]
(7]
(8]
[

The statement of the necessity of Theorem 2 follows from Lemmas 3-8.
The statement of the sufficiency of Theorem 2 follows from [9, 10, 2, 4].
Theorem 2 is proved.
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