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CONVOLUTION OF HILBERT TYPE IN RECONSTRUCTING

FUNCTIONS ON THE SPHERE

S.G. KAZANTSEV

Abstract. The Funk–Minkowski transform F associates a function f
on the sphere S2 with its mean values (integrals) along all great circles
of the sphere. The presented analytical inversion formula reconstruct the
unknown function f completely if two Funk–Minkowski transforms, Ff
and F∇f , are known. Another result of this article is related to the
problem of Helmholtz–Hodge decomposition for tangent vector field on
the sphere S2. We proposed solution for this problem which is used the
Funk–Minkowski transform F and Hilbert type spherical convolution S.

Keywords: Funk–Minkowski transform, Funk—Radon transform, spheri-
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spherical vector field, Helmholtz–Hodge decomposition.

1. Introduction

The paper is devoted to the analytical inverse of the Minkowski—Funk transform
(F–M transform). This transform was introduced by P. Funk [9, 10, 11], based
on the work [25] of H. Minkowski. In literature Funk–Minkowski transform is
known also as the Funk transform, Funk—Radon transform or spherical Radon
transform. F–M transform associates a function on the unit sphere S2 in R3 with
its mean values (integrals) along all great circles of the sphere. Funk–Minkowski
transform is a geodesic transform because the great circles on the sphere are
geodesics. In recent time many authors investigate the generalized Funk–Minkowski
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transforms (or nongeodesic Funk–Minkowski transforms) on the sphere S2, which
include nongeodesic paths of integration, such as circles with fixed diameter [28, 37,
46], circles perpendicular to the equator [15, 19, 28, 55] and circles, which obtained
by intersections of the sphere with planes passing through a fixed common point
a ∈ R3, for example, through the northpole k ∈ S2 [2, 6, 18, 30, 33, 43].

Funk–Minkowski transform plays an important role in the study of other integral
transforms on the sphere and has various applications, for example, it is used in
the convex geometry, harmonic analysis, image processing and in photoacoustic
tomography, see [7, 20, 22, 23, 25, 32, 50, 54, 55].

Let B3 and S2 be the unit ball and the unit sphere in R3, respectively, i.e.
B3 = {x ∈ R3 : |x| < 1} and S2 = ∂B3 = {ξ ∈ R3 : |ξ| = 1}, where | · | denotes the
Euclidean norm. Throughout the paper we adopt the convention to denote in bold
type the vectors in R3, and in simple type the scalars in R. By the greek letters θ,
η, ξ and so on we denote the units vectors S2. We will use for unit vector ξ on the
sphere S2 usual angular coordinates (θ, φ)

ξ = ξ(θ, φ) = i sin θ cosφ+ j sin θ sinφ+ k cos θ = (sin θ cosφ, sin θ sinφ, cos θ),

where 0 < θ < π (the colatitude), 0 < φ < 2π (the longitude) and t = cos θ — polar
distance.

The plane ξ⊥ = {x ∈ R3 : x � ξ = 0} is spanned by the two orthonormal vectors
e1, e2 with representations in polar coordinates

e1(ξ) =
∂ξ

∂θ
= (cos θ cosφ, cos θ sinφ,− sin θ), e2(ξ) =

1

sin θ

∂ξ

∂φ
= (− sinφ, cosφ, 0).

The vectors e1(ξ), e2(ξ) and ξ form the so called local moving triad ξ � e1 = 0,
ξ � e2 = 0, e1 � e2 = 0, where � denotes the inner product of two vectors in R3.

Let denote by feven and fodd the even and odd parts of function f on S2,
respectively, that is, we have

f(ξ) = feven(ξ) + fodd(ξ), feven(ξ) =
f(ξ) + f(−ξ)

2
, fodd(ξ) =

f(ξ)− f(−ξ)

2
.

The space of continuous functions on the sphere S2 is denoted by C(S2) and is
endowed with the supremum norms

||f ||C(S2) = supξ∈S2 |f(ξ)|.

C(S2), Ceven(S2) and Codd(S2) denote the space of continuous functions on S2, the
space of even continuous functions on S2 and the space of odd continuous functions
on S2, respectively. The subset of Ceven(S2) (Codd(S2)) that contains the infinitely
differentiable functions will be denoted by C∞

even(S2) (C∞
odd(S2)).

Definition 1. Let f be a continuous function on the sphere S2, f ∈ C(S2). Then,
for a unit vector ξ ∈ S2 the Funk–Minkowski transform of a function f is a function
Ff on S2, given by

{Ff}(ξ) ≡ Fξf =
1

2π

∫ 2π

0

f
(
e1(ξ) cosω + e2(ξ) sinω

)
dω.(1)

It is clear that the Funk–Minkowski transform is even, {Ff}(−ξ) = {Ff}(ξ),
and F annihilates all odd functions.

The inversion of the Funk–Minkowski transform has been treated by many
authors and there are exist several inversion formulas in the literature, see [9, 17,
38, 39, 47]. In [9, 11] P. Funk proved that an even function can be recovered from
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the knowledge of integrals over great circles and presented two different inversion
methods: the first method is based on the spherical harmonic decomposition of the
functions f , Ff and the second one utilizes Abel’s integral equation, [28].

The inversion formula after P. Funk was obtained by V. Semyanisty in [47,
formulas (9) and (11)],

feven(θ) = − 1

4π

∫
S2

1

(θ � η)2 {Ff}(η)dη,(2)

where the dη is the surface measure on S2 with normalization
∫
S2 dη = 4π and

integral is understood in the regularized sense.
In [17, p. 99] S. Helgason gives for (1) the inversion formula of filtered back-

projection type

feven(θ) =
1

2π

d

du

∫ u

0

∫
S2
{Ff}(η)δ

(
η � θ −

√
1− v2

)
dη

vdv√
u2 − v2

∣∣∣
u=1

,(3)

where δ denotes the the Dirac delta function.
Another example of inversion formula is due to B. Rubin [38, 39]

feven(θ) =
1

4π

∫
S2
{Ff}(η)dη +

∆θ

4π

∫
S2
ln |η � θ| {Ff}(η) dη ,(4)

here ∆θ it the Laplace–Beltrami operator (31).
In our studies, an important role is played by spherical convolution operator S,

which is the spherical analogue of Hilbert transform, see [21, 41, 44, 45].

Definition 2. Let f ∈ C(S2). The spherical convolution operator S is defined by,

{Sv}(θ) ≡ Sθv = p.v.
1

4π

∫
S2

v(η)

θ � η dη, θ ∈ S2.(5)

This transform is odd, {Sf}(−θ) = −{Sf}(θ), and S annihilates all even
functions.

The results of this paper are formulated below in Theorems 1 and 2.

Theorem 1. For any function f(θ) ∈ H1(S2) the following identity take place

f(θ) =
1

4π

∫
S2
{Ff}(η)dη︸ ︷︷ ︸
=f00

+p.v.
1

4π

∫
S2

(η + θ) �
{[

F ,∇
]
f
}
(η)

η � θ dη(6)

= f00 + Sθ(η + θ) �
[
F ,∇

]
η
f.

Here operators F and ∇ are the Funk–Minkowski transform (1) and the surface
gradient (21), respectively. Through the square brackets [., .] we, as usual, denoted
the commutator

[
F ,∇

]
f = F∇f − ∇Ff , where the F–M transform F is applied

to vector function ∇f by componentwise.
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If we decompose identity (6) on even and odd parts then we can write,

feven(θ) =
1

4π

∫
S2
{Ff}(η)dη − p.v.

1

4π

∫
S2

θ � {∇Ff}(η)
θ � η dη

=
1

4π

∫
S2
{Ff}(η)dη − θ �Sθ∇Ff ,(7)

fodd(θ) = p.v.
1

4π

∫
S2

η � {F∇f}(η)
η � θ dη = Sθη � Fη∇f.(8)

The inversion formulas for feven and fodd follow from these equations and if two
F–M transformations g(η) = {Ff}(η) and h(η) = {F∇f}(η) are known, then the
unknown function f can be reconstruct completely,

f(θ) =
1

4π

∫
S2
g(η)dη − p.v.

1

4π

∫
S2

θ �∇g(η)

θ � η dη + p.v.
1

4π

∫
S2

η � h(η)
η � θ dη .(9)

The next problem that we will consider is the problem of Helmholtz–Hodge
decomposition for a tangential vector field on the sphere S2, see [12]. The Helmholtz–
Hodge decomposition says that we can write any vector field tangent to the surface
of the sphere as the sum of a curl-free component and a divergence-free component

f(θ) = ∇θu(θ) + θ ×∇θv(θ),(10)

where ∇θ is the surface gradient on the sphere, and rotated gradient θ×∇θ means
the cross-product of the surface gradient of v with the unit normal vector θ to the
sphere. Here ∇θu is called also as inrrotational, poloidal, electric or potential field
and ∇⊥

θ v is called as incompressible, toroidal, magnetic or stream vector field. Scalar
functions u and v are called velocity potential and stream functions, respectively.

In the next theorem we show that decomposition (10) is obtained by use of
Funk–Minkowski- transform F and spherical convolution transform S.

Theorem 2. Any vector field f ∈ L2,tan(S2) that is tangent to the sphere can be
uniquely decomposed into a sum (10) of a surface curl-free component and a surface
divergence-free component with scalar valued functions u, v ∈ H1(S2)/R. Functions
u and v are velocity potential and stream functions that are calculated unique up to
a constant by the formulas

u(θ) =
[
S,η � ,F

]
θ
f =

{
Sη � Ff

}
(θ)−

{
Fη � Sf

}
(θ)

= Sθη � Fηf −Fθη � Sηf ,(11)

v(θ) = θ �
[
S,η×,F

]
θ
f = θ �

{
Sη ×Ff

}
(θ)− θ �

{
Fη × Sf

}
(θ)

= θ � Sθη ×Fηf − θ � Fθη × Sηf ,(12)

where through [A,B, C] we denote the generalized commutator,

[A,B, C] = ABC − CBA.

As a consequence of this theorem, we can obtain formulas for solving two important
problems on the sphere S2: ∇u = f and ∇⊥v = g. Answers to solve these problems
are

u(θ) = (Sθη � Fη −Fθη � Sη)f for ∇u = f ∈ L2,tan(S2)
and

v(θ) = θ � (Sθη ×Fη −Fθη × Sη)g for ∇⊥v = g ∈ L2,tan(S2).
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2. Basic methods and tools

2.1. Spherical harmonics (SHs). In this section we state some properties of
complex spherical harmonics. A spherical harmonic YNℓ of degree N on S2 is the
restriction to S2 of a homogeneous harmonic polynomial of degree N in R3.

The Legendre polynomials of the first kind PN of degree N ∈ N0 or simply
Legendre polynomials are given by the Rodrigues formula

PN (t) =
1

N !2N
dN

dtN
(t2 − 1)N .

We recall that Legendre polynomials of the first kind PN (t) are the orthogonal
polynomials on (−1, 1) with weight function w(t) = 1. We define with C

(3/2)
N the

Gegenbauer polynomial of degree N with parameter λ = 3/2,

C
(3/2)
N (t) =

d

dt
PN+1(t).

The following formulas will be used in our calculations ([1])

P2j(0) = (−1)j
Γ(j + 1/2)√

πj!
=

(−1)j(2j − 1)!!

(2j)!!
,(13)

(N + 1)PN+1(0) = −NPN−1(0),(14)

C
(3/2)
2j (0) =

(−1)j(2j + 1)!!

(2j)!!
or C

(3/2)
N−1 (0) = NPN−1(0), N = 2j + 1.(15)

The following usefull asymptotics holds as j goes to infinity

P2j(0) ∼
1√

2j + 1
and

1

C
(3/2)
2j (0)

=
1

(2j + 1)P2j(0)
∼ 1√

2j + 1
if j → ∞.(16)

The associated Legendre functions of the first kind P ℓ
N for non negative ℓ ≥ 0

are defined as

P ℓ
N (t) = (1− t2)

ℓ
2
dℓ

dtℓ
PN (t),

where N, ℓ ∈ N0 with ℓ ≤ N and for the negative order −ℓ, P−ℓ
N are given by

P−ℓ
N (t) = (−1)ℓ

(N − ℓ)!

(N + ℓ)!
P ℓ
N (t), ℓ ≥ 0 .

When the order ℓ = 0, the associated Legendre function becomes a polynomial in t
and instead being written P 0

N (t) it is designated PN (t), the Legendre polynomial.
The complex SHs YNℓ are related to the associated Legendre functions as follows

YNℓ(ξ) = (−1)ℓNNℓe
iℓφP ℓ

N (cos θ), |ℓ| ≤ N,

where NNℓ is a normalization constant

NNℓ =

√
2N + 1

4π

(N − ℓ)!

(N + ℓ)!

and the extra factor (−1)ℓ is called the Condon–Shortley phase.
The YNℓ are complex-valued polynomials of the sines and cosines of θ and φ and

for complex conjugate functions the following formula fulfil

YNℓ(ξ) = (−1)ℓYN,−ℓ(ξ).
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The parity rule for spherical harmonic is

YNℓ(−ξ) = (−1)NYNℓ(ξ).

It is known that the subspace of all spherical harmonics of degree N , span{YNℓ}Nℓ , is
the eigenspace of the Laplace–Beltrami operator (31) corresponding to the eigenvalue
−λ2

N = −N(N + 1),

∆ξYNℓ(ξ) = −N(N + 1)YNℓ(ξ).

The dimension of this subspace being 2N+1, so one may choose for it an orthonormal
basis in different ways.

The collection of all spherical harmonics
{
YNℓ, |ℓ| ≤ N

}∞

N=0
forms an orthonormal

basis for L2(S2;C)

(17) (YN1ℓ1 , YN2ℓ2)L2(S2) =

∫
S2
YN1ℓ1(ξ)YN2ℓ2(ξ) dξ = δN1

N2
δℓ1ℓ2 ,

where δij is the Kronecker symbol and the space L2(S2) ≡ L2(S2;C) is a Hilbert
space of square-integrable functions on S2 with the hermitian inner product and
the finite norm,

(u, v)L2(S2) =

∫
S2
u(ξ)v(ξ) dξ, ||u||2L2(S2) = (u, u)L2(S2).

The Fourier coefficients for u ∈ L2(S2) are uNℓ = (u, YNℓ)L2 . Then, every
function u ∈ L2(S2) admits a spherical harmonics series expansion in L2–sense

u(ξ) =
∞∑

N=0

∑
ℓ

uNℓYNℓ(ξ),(18)

||u||2L2(S2) =
∞∑

N=0

∑
ℓ

|uNℓ|2 .(19)

We close this section with Funk–Hecke formula. It was first published by Funk
(1916) and a little later by Hecke (1918).

Theorem 3. [The Funk–Hecke Theorem] Suppose f(t) ∈ L1(−1, 1) is an integrable
function. Then for every spherical harmonics of degree N we have

(20)
∫
S2
f(ξ � η)YNℓ(ξ) dξ = 2πYNℓ(η)

∫ 1

−1

f(t)PN (t) dt,

where ξ � η denotes the inner product of unit vectors ξ and η, PN denotes the N th
order Legendre polynomial.

The Funk–Hecke formula is useful in simplifying calculations of certain integrals
over S2 and plays an important role in the theory of spherical harmonics. For more
details on the Funk–Hecke formula see [3, 45], for example. A general overview
on spherical harmonics and the relevant problems can be found in the monographs
[1, 5, 12, 13, 27, 52].
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2.2. Surface differential operators on the sphere S2. Here we briefly recall
the definitions and some properties of surface differential operators.

The space L2(S2) ≡ L2(S2;C) is a Hilbert space of square-integrable vector
functions on S2 with the inner product and the finite norm,

(u,v)L2(S2) =

∫
S2
u(ξ) � v(ξ) dξ, ||u||2L2(S2) = (u,u)L2(S2).

Definition 3. The tangential gradient or the surface gradient, denoted by ∇ ≡ ∇ξ

and the tangential rotated gradient (the surface curl-gradient), denoted by ∇⊥ ≡
∇⊥

ξ , are defined accordingly as

∇ξu =
∂u

∂θ
e1(ξ) +

1

sin θ

∂u

∂φ
e2(ξ),(21)

∇⊥
ξ u = ξ ×∇ξu = − 1

sin θ

∂u

∂φ
e1(ξ) +

∂u

∂θ
e2(ξ),(22)

where ξ = i sin θ cos φ+ j sin θ sin φ+ k cos θ.

Obviously, we have ξ �∇ξu(ξ) = 0, ξ �∇⊥
ξ u(ξ) = 0 and ∇u �∇⊥u = 0, thus ∇u

and ∇⊥u are will be tangential vector fields on the sphere S2 with ∇⊥ is rotation
by π/2 in the tangent plane.

We must note here that integration by parts formulas on the sphere for operators
(21) and (22) are differ. Namely, for u, v ∈ C1(S2), we have∫

S2
u(ξ)∇ξv(ξ) dξ = −

∫
S2
v(ξ)∇ξu(ξ)dξ + 2

∫
S2
ξu(ξ)v(ξ) dξ,(23) ∫

S2
u(ξ)∇⊥

ξ v(ξ) dξ = −
∫
S2
v(ξ)∇⊥

ξ u(ξ) dξ.(24)

Definition 4. In canonical coordinates, the surface divergence divξ of vector-valued
function v(ξ) = v1e1(ξ) + v2e2(ξ) + v3ξ on the sphere S2 is written as,

divξv =
1

sin θ

(
∂

∂θ
(v1 sin θ) +

∂

∂φ
v2
)
+ 2v3 .(25)

For tangent vector field v we define the scalar surface rotation (or scalar curl
operator) curlξ by

curlξv = −divξ(ξ × v) =
1

sin θ

(
∂

∂θ
(v2 sin θ)− ∂

∂φ
v1
)
.(26)

If u ∈ C1(S2) and tangential vector field v ∈ C1(S2), then we have integral
formulas, which are also understood as inner products∫

S2
v(ξ) �∇ξu(ξ) dξ = −

∫
S2
u(ξ)divξv(ξ) dξ(27)

or (v,∇u)L2(S2) = −(divv, u)L2(S2),(28) ∫
S2
v(ξ) �∇⊥

ξ u(ξ) dξ = −
∫
S2
u(ξ)curlξv(ξ) dξ(29)

or (v,∇⊥u)L2(S2) = −(curlv, u)L2(S2).(30)

Definition 5. Finally, we define the Beltrami operator, which is also called the
Laplace–Beltrami operator ∆ ≡ ∆ξ as

∆ξu(ξ) = divξ∇ξu(ξ) ,(31)
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i.e. the divergence of a gradient is the Laplacian.

One easily checks that

∆ξu(ξ) = curlξ∇⊥
ξ u(ξ)(32)

and also

curlξ∇ξu(ξ) = 0, divξ∇⊥
ξ u(ξ) = 0,

thus we say that ∇ξu is the curl-free, but ∇⊥
ξ u is the divergence-free vector fields.

The next formula is Green–Beltrami identity or Green’s first surface identity, see
[3, Proposition 3.3], [24, Theorem 4.12]: for any u ∈ C1(S2) and any v ∈ C2(S2) we
have, ∫

S2
∇ξu(ξ) �∇ξv(ξ) dξ = −

∫
S2
u(ξ)∆ξv(ξ) dξ(33)

or (∇u,∇v)L2(S2) = −(u,∆v)L2(S2) .(34)

For example, if we take u = YN1ℓ1 and v = YN2ℓ2 , then

(∇YN1ℓ1 ,∇YN2ℓ2)L2(S2)(35)

=

∫
S2
∇ξYN1ℓ1(ξ) �∇ξYN2ℓ2(ξ) dξ = −

∫
S2
YN1ℓ1(ξ)∆ξYN2ℓ2(ξ)dξ

= N2(N2 + 1)

∫
S2
YN1ℓ1(ξ)YN2ℓ2(ξ) dξ = N2(N2 + 1)δN2

N1
δℓ2ℓ1 .

For more definitions and properties of these differential operators see e.g. [3, 12,
13, 29, 52].

2.3. Two systems of vector spherical harmonics (VSHs). There are vectorial
analogues of scalar spherical harmonics called vector spherical harmonics. VSHs can
be defined in several ways. In this section we give definitions and properties of the
vector spherical harmonics, which are needed in our work. We refer to [8, 12, 26,
29, 52] for more details in this theme.

2.3.1. Pure–spin vector spherical harmonics. Let us now define a complete orthogonal
set of vectors in L2(S2).

Definition 6. The vector spherical harmonics (or pure–spin VSHs) are arranged in
three families: y(1)

Nℓ(ξ), y
(2)
Nℓ(ξ) and y

(3)
Nℓ(ξ). For ξ ∈ S2 and given a scalar spherical

harmonic YNℓ(ξ) the unnormalized vector spherical harmonics are the set

y
(1)
Nℓ(ξ) = ξYNℓ(ξ), N ∈ 0 ∪ N,(36)

y
(2)
Nℓ(ξ) = ∇ξYNℓ(ξ), N ∈ N,(37)

y
(3)
Nℓ(ξ) = ξ × y

(2)
Nℓ(ξ) = ∇⊥

ξ YNℓ(ξ), N ∈ N.(38)

The pure–spin VSHs form a complete set of orthogonal vector functions on the
surface of a sphere S2 with the inner product of the L2(S2) space, see [13, Theorem
5.2.7].

Clearly, ||y(1)
Nℓ||L2(S2) = 1. To calculate the norms of vector functions y

(2)
Nℓ and

y
(3)
Nℓ, we can use (35). Therefore, the normalizing vector harmonics or orthonormal

system of VSHs are

y
(1)
Nℓ, ỹ

(2)
Nℓ = y

(2)
Nℓ/

√
N(N + 1) , ỹ

(3)
Nℓ = y

(3)
Nℓ/

√
N(N + 1) .
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Each vector function f ∈ L2(S2) has the Fourier expansion

f(ξ) = f1,00y
(1)
00 (ξ) +

∞∑
N=1

∑
ℓ

f1,Nℓy
(1)
Nℓ(ξ) + f2,Nℓỹ

(2)
Nℓ(ξ) + f3,Nℓỹ

(3)
Nℓ(ξ),

||f ||2L2(S2) = |f1,00|2 +
∞∑

N=1

∑
ℓ

|f1,Nℓ|2 + |f2,Nℓ|2 + |f3,Nℓ|2.

The hermitian inner products are then given by

(f ,h)L2(S2) = f1,00h1,00 +
∞∑

N=1

∑
ℓ

f1,Nℓh1,Nℓ + f2,Nℓh2,Nℓ + f3,Nℓh3,Nℓ.

2.3.2. Pure–orbit vector spherical harmonics. An alternative orthogonal basis in the
space L2(S2) is the system of pure–orbit VSHs {h(e)

00 ,h
(e)
Nℓ,h

(i)
Nℓ,y

(3)
Nℓ, |ℓ| ≤ N}∞N=1,

where vector functions h
(e)
Nℓ and h

(i)
Nℓ defined by

h
(e)
00 = −y

(1)
00 ,(39)

h
(e)
Nℓ = −(N + 1)y

(1)
Nℓ + y

(2)
Nℓ, N ∈ N,(40)

h
(i)
Nℓ = Ny

(1)
Nℓ + y

(2)
Nℓ, N ∈ N.(41)

The pure–orbit vector spherical harmonics also has a nice properties, in particular,
they are eigenfunctions for the vectorial Funk–Minkowski operator F in the space
L2,even(S2) and for vectorial Hilbert operator S in the space L2,odd(S2), see Lemmas
1 and 2 in the section Proofs.

2.3.3. Tangent vector fields and Helmholtz–Hodge decomposition. Consider the tangent
vector field f ∈ L2,tan(S2), it can be written uniquely as

f(θ) =

∞∑
N=1

∑
ℓ

f2,Nℓỹ
(2)
Nℓ(θ)︸ ︷︷ ︸

the curl-free component

+

∞∑
N=1

∑
ℓ

f3,Nℓỹ
(3)
Nℓ(θ)︸ ︷︷ ︸

the divergence-free component

=
∞∑

N=1

1√
N(N + 1)

∑
ℓ

f2,Nℓ∇YNℓ(θ) + f3,Nℓθ ×∇YNℓ(θ).

Then formally we have

f(θ) = ∇
∞∑

N=1

1√
N(N + 1)

∑
ℓ

f2,NℓYNℓ(θ) +∇⊥
∞∑

N=1

1√
N(N + 1)

∑
ℓ

f3,NℓYNℓ(θ),

where according to (10) the velocity potential and stream functions are

u(θ) =
∞∑

N=1

1√
N(N + 1)

∑
ℓ

f2,NℓYNℓ(θ),

v(θ) =
∞∑

N=1

1√
N(N + 1)

∑
ℓ

f3,NℓYNℓ(θ).
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Another evident approach consists in solving the Laplace–Beltrami equations on
the sphere

∆θu(θ) = divθ f(θ),

∆θv(θ) = curlθ f(θ).

They can be solved in integral form, for example, involving Green’s function with
respect to the Laplace–Beltrami ∆θ, see [13, Theorem 4.6.9].

2.4. Hilbertian Sobolev spaces on the sphere.

2.4.1. Sobolev scalar functions on S2. The Sobolev space Hs(S2) with a smoothness
index s ≥ 0 is defined by ([3, 24, 29, 32, 41])

Hs(S2) := {u ∈ L2(S2;C) :
∞∑

N=0

(1 +N(N + 1))s
∑
ℓ

|uNℓ|2 < ∞}.

In other words u ∈ Hs(S2) if and only if (I −△)s/2u ∈ L2(S2). The space Hs(S2)
is a Hilbert space with the hermitian inner product

(u, v)Hs(S2) =
∞∑

N=0

(1 +N(N + 1))s
∑
ℓ

uNℓvNℓ

and the induced norm

||u||2Hs(S2) =

∞∑
N=0

(1 +N(N + 1))s
∑
ℓ

|uNℓ|2 = ||(I −△)s/2u||2L2(S2) .

Putting s = 0 we obtain H0(S2) = L2(S2). If s = 1 then in addition to (18), (19)
we have

∇ξu(ξ) =

∞∑
N=0

∑
ℓ

uNℓ∇ξYNℓ(ξ),=

∞∑
N=1

√
N(N + 1)

∑
ℓ

(u, YNℓ)L2(S2)ỹ
(2)
Nℓ ,

||∇u||2L2(S2) =
∞∑

N=0

N(N + 1)
∑
ℓ

|uNℓ|2.

Thus we can define the Sobolev space H1(S2) as (see [29, p. 14])

H1(S2) = {u ∈ L2(S2) : ∇u ∈ L2(S2)}

with its inner product and the finite Sobolev norm

(u, v)H1(S2) = (u, v)L2(S2) + (∇u,∇v)L2(S2), ||u||2H1(S2) = ||u||2L2(S2) + ||∇u||2L2(S2) ,

where ∇ is the surface gradient on the sphere. Generally, if s = m which is a positive
integer, we can define the Sobolev norm via the following formula (∇-definition of
Sobolev spaces)

||u||2Hs(S2) = (u, v)L2(S2) +
m∑

k=1

(∇ku,∇kv)L2(S2).

If we s consider a closed linear subspace H1(S2)/R) ⊂ H1(S2),

H1(S2)/R = {u ∈ H1(S2) :
∫
S2
u(ξ) dξ = 0},
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then due to a Poincaré inequality for all u ∈ H1(S2)/R we can define an equivalent
norm for H1(S2)/R

||u||2H1(S2)/R = ||∇u||L2(S2) ,

such that H1(S2)/R becomes a Hilbert space with the inner product

(u, v)H1(S2)/R = (∇u,∇v)L2(S2) .

For more details on these spaces, we refer the reader to [3], [24, Theorems 4.12 and
6.12], [29, p. 41] .

2.4.2. Sobolev tangent vector fields on S2. For tangential vector fields we have the
vectorial Sobolev space Hs

tan(S2), which is the set of all f ∈ L2,tan(S2) such that

||f ||2Hs
tan(S2) =

∞∑
N=1

(1 +N(N + 1))s
∑
ℓ

|f2,Nℓ|2 + |f3,Nℓ|2.

For the scale of Sobolev spaces Hs
tan(S2) there is a Helmholtz–Hodge decomposition

([4, Theorem 4.1])

Hs
tan(S2) = ∇

(
Hs+1(S2)/R

)
⊕ ker(div) = Hs

tan,curl(S2) +Hs
tan,div(S2), s ≥ 0.

Here we denote by Hs
tan,div(S2) and Hs

tan,curl(S2) the divergence-free and curl-free
subspaces of Hs

tan(S2), respectively.
Another words vector field tangent to the sphere f ∈ Hs

tan(S2) can be uniquely
decomposed into surface curl–free and surface divergence–free components:

f = ∇u+∇⊥v,

∫
S2
u dξ =

∫
S2
v dξ = 0,

where functions u, v ∈ Hs+1(S2)/R. We can define its Hs norm, among other
equivalent versions, as

||f ||2Hs(S2) = ||u||2Hs+1(S2) + ||v||2Hs+1(S2) .

2.5. Fourier multiplier and spherical convolution operators.

2.5.1. Fourier multiplier operators. Here we define Fourier multiplication operators.

Definition 7. The operator Λ : L2(S2) → L2(S2) is called the Fourier multiplier
operator with corresponding sequence of multipliers {λN}∞N=0 if operator Λ acts on
a function u ∈ L2(S2) by the formula

{Λu}(ξ) ≡ Λξu =
∑
N=0

λN

∑
ℓ

uNℓYNℓ(ξ),

where uNℓ denote the Fourier coefficients of u with respect to the spherical harmonics,

u(ξ) =
∑
N=0

∑
ℓ

uNℓYNℓ(ξ).

The sequence of multipliers {λN}∞N=0 gives complete information about properties
of operator Λ, especially the behavior and asymptotics of multipliers at infinity. It
is not hard to see that a multiplier operator on L2(S2) is bounded if and only if its
sequence of multipliers is bounded. The works of many authors are devoted to the
study of such operators, see [5, 39, 44].
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2.5.2. Spherical convolution operators. An important example of the multiplier
operator will be a spherical convolution operator.

Definition 8. The spherical convolution K ∗ u of K ∈ L2(−1, 1) with a function
u ∈ L2(S2) is defined as

(K ∗ u)(ξ) =
∫
S2
K(ξ � η)u(η) dη, ξ ∈ S2,

dη is the rotation invariant measure, normalized so that
∫
S2 dη = 4π — the surface

area of S2. We recall that η � ξ is the usual pointwise inner product.

By the Funk—Hecke formula in Theorem 3 we have the sequence of multipliers
{λN}∞N=0

{K ∗ YNℓ}(ξ) = 2πYNℓ(ξ)

∫ 1

−1

K(x)PN (x) dx = λNYNℓ(ξ).

2.5.3. Funk’s inversion formula for the F–M transform. In [9] Funk showed that
Funk–Minkowski- transform (1) is the Fourier multiplier operator with multiplicators
λ2j = P2j(0),

{FYNℓ}(ξ) = P2j(0)Y2j,ℓ(ξ),

and asymptotics λ2j = P2j(0) ∼ (2j + 1)−1/2 if j → ∞ ([1]). Hence any even
function feven ∈ C∞(S2) can be reconstructed explicitly from its Funk–Minkowski
transform by the formula

feven(ξ) =

∞∑
j=0

∑
ℓ

f2j,ℓY2j,ℓ(ξ) =

∞∑
j=0

∑
ℓ

(Ffeven, Y2j,ℓ)L2(S2)

P2j(0)
Y2j,ℓ(ξ) ,

where

(Ffeven, Y2j,ℓ)L2(S2) = P2j(0)f2j,ℓ .

The following mapping property of the Funk–Minkowski transform between Sobolev
spaces was shown by R. S. Strichartz in [51, Lemma 4.3] : operator

F : Hs
even(S2) → Hs+1/2

even (S2), s ≥ 0

is continuous and bijective, see also [16, 32].

2.5.4. The spherical convolution operator S. Now consider the spherical convolution
operator S, which defined by formula (5), we repeat it

{Sv}(ξ) ≡ Sξv =
1

4π
{x−1 ∗ u}(ξ) = 1

4π

∫
S2

v(η)

ξ � η dη, ξ ∈ S2.

The operator S does not exist as an absolutely convergent integral and should
be understood in the principal value sense, see [41, 45],

{Sv}(ξ) = lim
ε→0

1

4π

∫
|ξ�η|>ε

v(η)

ξ � η dη = p.v.
1

4π

∫
S2

v(η)

ξ � η dη.

The operator S is considered as operator from L2(S2) into L2(S2) and can be
regarded as the spherical analogue of the Hilbert transform, [41]. Evidently, that
for even spherical harmonics {SY2j,ℓ}(ξ) = 0, so we can consider this operator only
on the subspace of odd SHs, L2,odd(S2).
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Proposition 1 ([21, 41]). The spherical analogue of the Hilbert transform (5)

S : L2,odd(S2) → L2,odd(S2)

is a compact operator and a multiplier operator on L2,odd(S2) with corresponding

sequence of Fourier-Laplace multipliers
{

1

C
(3/2)
N−1 (0)

= 1
NPN−1(0)

, N = 2j + 1
}∞

j=0
,

{SYNℓ}(ξ) = 1

C
(3/2)
N−1 (0)

YNℓ(ξ) =
1

NPN−1(0)
YNℓ(ξ), N = 2j + 1(42)

and asymptotics

(43)
1

C
(3/2)
2j (0)

=
1

(2j + 1)P2j(0)
∼ 1√

2j + 1
if j → ∞.

The operator S, as well as the operator F ,

S : Hs
odd(S2) → H

s+1/2
odd (S2), s ≥ 0

is continuous and bijective in the scale of Sobolev spaces Hs
odd(S2), see [41, Proposition

3.2].

2.5.5. Analytic family of fractional integrals and Funk–Minkowski transform. We
can write the F–M operator (1) in the form of spherical convolution operator as
follows

{Fu}(ξ) = 1

2π

∫ 2π

0

u
(
e1(ξ) cosω + e2(ξ) sinω

)
dω

=
1

2π

∫ 1

−1

δ(t)

∫ 2π

0

u
(
e1(ξ) cosω

√
1− t2 + e2(ξ)

√
1− t2 sinω

)
dω dt

=
1

2π

∫
S2
δ(ξ � θ)u(θ) dθ =

1

2π
{δ ∗ u}(ξ) ,

where δ is the Dirac delta function.
The papers [23, 32] give a definition of the generalized Funk–Radon transform

S(j) for u ∈ C∞(S2) by

{S(j)u}(ξ) = 1

2π

∫
S2
δ(j)(ξ � θ)u(θ) dθ, j ∈ 0 ∪ N.

Here use the notation from [23, 32] and δ(j) denotes the j-th derivative of the Dirac
delta function and operator S(0) is the Funk–Minkowski transform F .

The spherical Hilbert type operator S in (5) as well as operators S(j) are the
members of analytic family of fractional integrals {Cλ, C̃λ} defined by

{Cλf}(θ) =
Γ
(
−λ

2

)
2πΓ

(
1+λ
2

) ∫
S2
f(σ)|θ � σ|λ dσ,(44)

{C̃λf}(θ) =
Γ
(
1−λ
2

)
2πΓ

(
1 + λ

2

) ∫
S2
f(σ)|θ � σ|λsgn(θ � σ) dσ,(45)

see [35, 41]. The operators Cλ and C̃λ are called the λ-cosine transforms of f with
even and odd kernel, respectively. If f ∈ C∞(S2), they extend analytically to all
λ ∈ C with the only poles λ = 0, 2, 4, ... for Cλ and λ = 1, 3, 5, ... for C̃λ .
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The limit case λ = −1 corresponds to the Funk–Minkowski transform F and
Hilbert spherical transform S (see [41, Lemma 3.4])

F ∼ {C−1f}(θ) = 1

2
√
π

∫
S2
f(η)δ(θ � η) dη,

S ∼ {C̃−1f}(θ) = 1

2π3/2

∫
S2

f(η)

θ � η dη.

The integral operator in the inverse formula (2) by V. Semyanisty also belongs to
this family with λ = −2,

{C−2f}(θ) = −1

4π3/2

∫
S2
f(η)

1

(θ � η)2 dη.

The corresponding operator C̃−2 for C−2 is the generalized Funk–Radon transform

S(1) ∼ {C̃−2f}(θ) = −1

4
√
π

∫
S2
f(η)δ′(θ � η) dη.

If for an analytic continuation we use formulas, see for example [14],

|x|λ

Γ
(
1+λ
2

) ∣∣∣
λ=−(2m+1)

=
(−1)mm!

(2m)!
δ(2m)(x), m = 0, 1, 2, ... ,(46)

|x|λsgn(x)
Γ
(
1 + λ

2

) ∣∣∣
λ=−2m

=
(−1)m(m− 1)!

(2m− 1)!
δ(2m−1)(x), m = 1, 2, 3, ... ,(47)

then as the result, the following connection between S(2m), S(2m+1) and analytic
family {Cλ, C̃λ} take place

S(2m) ∼ {C−2m−1f}(θ) = (−1)m
√
π

2π22m

∫
S2
f(σ)δ(2m)(θ � σ) dσ, m = 0, 1, 2, ... ,

(48)

S(2m+1) ∼ {C̃−2mf}(θ) = (−1)m
√
π

2π22m−1

∫
S2
f(σ)δ(2m−1)(θ � σ) dσ, m = 1, 2, 3, ... .

(49)

According to the general theory of analytic family {Cλ, C̃λ} on the sphere S2, we
can find inverse operators of Cλ, C̃λ by the formulas (see [41, Proposition 3.1])

CλC−λ−3f = C−λ−3Cλf = f, where λ,−λ− 3 ̸= 0, 2, 4, ... f ∈ C∞
even(S2),

and

C̃λC̃−λ−3f = C̃−λ−3C̃λf = f, where λ,−λ− 3 ̸= 1, 3, 5, ... , f ∈ C∞
odd(S2).

In the particular case λ = −1 we have F−1 ∼
(
C−1

)−1
= C−2 and it is

appropriate to formula (2) by V. Semyanisty, see also [40, Corollary 3.3]. If we
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apply (formally) the integration by parts formula (23) to (7), then we get

θ �
4π

∫
S2

{∇Ff}(η)
θ � η dη = −θ �

4π

∫
S2
∇ 1

θ � η {Ff}(η)dη +
θ �
2π

∫
S2

η{Ff}(η)
η � θ dη

=
θ �
4π

∫
S2

θ − (θ � η)η
(θ � η)2 {Ff}(η)dη +

1

2π

∫
S2
{Ff}(η)dη

=
1

4π

∫
S2

1− (θ � η)2
(θ � η)2 {Ff}(η)dη +

1

2π

∫
S2
{Ff}(η)dη

=
1

4π

∫
S2

1

(θ � η)2 {Ff}(η)dη +
1

4π

∫
S2
{Ff}(η)dη.

Thus, this formal calculations show that formula (7) corresponds to formula (2)
and serves as its regularization

− 1

4π

∫
S2

1

(θ � η)2 {Ff}(η)dη =
1

4π

∫
S2
{Ff}(η)dη − p.v.

1

4π

∫
S2

θ � {∇Ff}(η)
θ � η dη.

3. Proofs

In this section we present the proofs of Theorems 1, 2, which will be based on
Lemmas 1 and 2. In vector case, as in the scalar case, the vectorial Funk–Minkowski
transform F : L2,even(S2) → L2,even(S2) and vectorial Hilbert type spherical
transform S : L2,odd(S2) → L2,odd(S2) are multiplier operators and relevant mapping
properties between Sobolev spaces are valid. The accurate formulations are given
below.

Lemma 1. Vectorial Funk–Minkowski transform F : L2,even(S2) → L2,even(S2) is
a multiplier operator

Fh
(i)
Nℓ = PN−1(0)h

(i)
Nℓ, N = 2j + 1,(50)

Fy
(3)
Nℓ = PN (0)y

(3)
Nℓ, N = 2j,(51)

Fh
(e)
Nℓ = PN+1(0)h

(e)
Nℓ, N = 2j + 1,(52)

where h
(i)
Nℓ,y

(3)
Nℓ,h

(e)
Nℓ are pure–orbit vector spherical harmonics (39)–(41). We have

that in the scale of Sobolev spaces operator F : Hs
even(S2) → H

s+1/2
even (S2), s ≥ 0 is

continuous and bijective.
If we choose as a basis pure–spin vector spherical harmonics, then following

formulas take place

Fy
(1)
Nℓ = PN−1(0)

y
(2)
Nℓ

N + 1
, N = 2j + 1,(53)

Fy
(2)
Nℓ = PN−1(0)

(
Ny

(1)
Nℓ +

y
(2)
Nℓ

N + 1

)
, N = 2j + 1 ,(54)

Fy
(3)
Nℓ = PN (0)y

(3)
Nℓ , N = 2j .(55)

Similar statements are valid for the operator S
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Lemma 2. Vectorial spherical convolution transform S : L2,odd(S2) → L2,odd(S2)
is a multiplier operator

Sh(e)
00 = h

(e)
00 ,(56)

Sh(e)
Nℓ =

h
(e)
Nℓ

(N + 1)PN (0)
, N = 2j,(57)

Sh(i)
Nℓ = − 1

(N + 1)PN (0)

N + 1

N
h
(i)
Nℓ, N = 2j,(58)

Sy(3)
Nℓ =

y
(3)
Nℓ

NPN−1(0)
, N = 2j + 1 ,(59)

where h
(i)
Nℓ,y

(3)
Nℓ,h

(e)
Nℓ are pure–orbit vector spherical harmonics (39)–(41). In the

scale of Sobolev spaces operator S : Hs
odd(S2) → H

s+1/2
odd (S2), s ≥ 0 is continuous

and bijective.
The images of pure–spin spherical harmonics under the action of operator S are

listed below

Sy(1)
00 = y

(1)
00 ,(60)

Sy(1)
Nℓ =

−1

PN (0)

y
(2)
Nℓ

N(N + 1)
, N = 2j,(61)

Sy(2)
Nℓ =

−1

PN (0)

(
y
(1)
Nℓ +

y
(2)
Nℓ

N(N + 1)

)
, N = 2j,(62)

Sy(3)
Nℓ =

1

PN−1(0)

y
(3)
Nℓ

N
, N = 2j + 1 .(63)

Proof of Lemma 1. The pure–orbit VSHs are expressed through scalar spherical
harmonics with the help of three term relations, see for example [8],

h
(i)
Nℓ = Ny

(1)
Nℓ(ξ) + y

(2)
Nℓ(ξ)(64)

= α1YN−1,ℓ−1(ξ)

 1
i
0

+ β1YN−1,ℓ(ξ)

 0
0
1

+ γ1YN−1,ℓ+1(ξ)

 1
−i
0

 ,

h
(e)
Nℓ = −(N + 1)y

(1)
Nℓ(ξ) + y

(2)
Nℓ(ξ)(65)

= α2YN+1,ℓ−1(ξ)

 1
i
0

+ β2YN+1,ℓ(ξ)

 0
0
1

+ γ2YN+1,ℓ+1(ξ)

 1
−i
0

 ,

y
(3)
Nℓ(ξ) = α3YN,ℓ−1(ξ)

 1
i
0

+ β3YNℓ(ξ)

 0
0
1

+ γ3YN,ℓ+1(ξ)

 1
−i
0

 ,(66)

where αi, βi, γi (i = 1, 2, 3) some coefficients. The values of this coefficients are
unimportant here, but their accurate expressions can be found in [8].

By applying the operator F to these three term relations we immediately obtain:
for N = 2j + 1

Fh
(i)
Nℓ = PN−1(0)h

(i)
Nℓ, Fh

(e)
Nℓ = PN+1(0)h

(e)
Nℓ(67)
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and for N = 2j

Fy
(3)
Nℓ = PN (0)y

(3)
Nℓ .

Because the multipliers have asymptotics P2j(0) ∼ 1√
2j+1

as j goes to infinity,

we have that F : Hs
even(S2) → H

s+1/2
even (S2) is a continuous operator in the scale of

Sobolev spaces, as in the scalar case.
The two equations (67) can be written as{

NFy
(1)
Nℓ + Fy

(2)
Nℓ = NPN−1(0)y

(1)
Nℓ + PN−1(0)y

(2)
Nℓ

−(N + 1)Fy
(1)
Nℓ + Fy

(2)
Nℓ = −(N + 1)PN+1(0)y

(1)
Nℓ + PN+1(0)y

(2)
Nℓ .

We need to solve this system with respect to Fy
(1)
Nℓ and Fy

(2)
Nℓ. Subtracting the

second from the first equation, we obtain

(2N + 1)Fy
(1)
Nℓ = (NPN−1(0) + (N + 1)PN+1(0))y

(1)
Nℓ + (PN−1(0)− PN+1(0))y

(2)
Nℓ

= PN−1(0)

(
N − (N + 1)

N

N + 1

)
y
(1)
Nℓ + PN−1(0)

(
1 +

N

N + 1

)
y
(2)
Nℓ

= PN−1(0)
2N + 1

N + 1
y
(2)
Nℓ.

Here we used the formula (14), (N + 1)PN+1(0) = −NPN−1(0), thus we have

Fy
(1)
Nℓ = PN−1(0)

y
(2)
Nℓ

N + 1
, Fy

(2)
Nℓ = PN−1(0)

(
Ny

(1)
Nℓ +

y
(2)
Nℓ

N + 1

)
, N = 2j + 1.

Proof of Lemma 2. By applying operator S to three term relations, as well as
in the previous case, we obtain: for N = 2j

Sh(i)
Nℓ =

h
(i)
Nℓ

(N − 1)PN−2(0)
= − 1

(N + 1)PN (0)

N + 1

N
h
(i)
Nℓ,

Sh(e)
Nℓ =

h
(e)
Nℓ

(N + 1)PN (0)

and for N = 2j + 1

Sy(3)
Nℓ =

y
(3)
Nℓ

NPN−1(0)
.

In the first formula we used equality (N − 1)PN−2(0) = −NPN (0).
Continuity of the operator S in the scale Hs

odd(S2) follows from asymptotic
behavior 1

(2j+1)P2j(0)
∼ 1√

2j+1
if j → ∞.

The first two equations above are equivalent to the system NSy(1)
Nℓ + Sy(2)

Nℓ = − y
(1)
Nℓ

PN (0) −
y
(2)
Nℓ

NPN (0)

−(N + 1)Sy(1)
Nℓ + Sy(2)

Nℓ = − y
(1)
Nℓ

PN (0) +
y
(2)
Nℓ

(N+1)PN (0) .

Solving this system, we obtain the desired

Sy(1)
Nℓ =

−y
(2)
Nℓ

PN (0)N(N + 1)
, Sy(2)

Nℓ =
−1

PN (0)

(
y
(1)
Nℓ +

y
(2)
Nℓ

N(N + 1)

)
.
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3.1. Proof Theorem 1. We recall some of the basic properties that are implied
in our proof. The Funk–Minkowski transform is even, {Ff}(−ξ) = {Ff}(ξ), and
Ffodd = 0, but spherical transform S is odd, {Sf}(−ξ) = −{Sf}(ξ), and Sfeven =
0. It is obviously that the surface gradient ∇, scalar (dot) product η � and vector
(cross) product η× change the parity. We also recall the parity rules for scalar and
vector spherical harmonics : YNℓ(−ξ) = (−1)NYNℓ(ξ), y

(1)
Nℓ(−ξ) = (−1)N+1y

(1)
Nℓ(ξ),

y
(2)
Nℓ(−ξ) = (−1)N+1y

(2)
Nℓ(ξ), y

(3)
Nℓ(−ξ) = (−1)Ny

(3)
Nℓ(ξ).

Now we can proceed to our formula (6) and without loss of generality, we assume
that f(θ) ∈ H1(S2)/R, then we have

f(θ) =
1

4π

∫
S2

(η + θ) �
{[

F ,∇
]
f
}
(η)

η � θ dη

=
1

4π

∫
S2

η �
{[

F ,∇
]
f
}
(η) + θ �

{[
F ,∇

]
f
}
(η)

η � θ dη

=
1

4π

∫
S2

η � Fη∇f −
=0︷ ︸︸ ︷

η �∇Fηf −θ �∇Fηf

η � θ dη +
θ�
4π

∫
S2

eveen︷ ︸︸ ︷
Fη∇f

η � θ dη

=
1

4π

∫
S2

η � Fη∇f − θ �∇Fηf

η � θ dη = Sθη � Fη∇f − Sθθ �∇Fηf.

It is clear that ker(Sθη � Fη∇) = Hs
even(S2) and ker(θ�Sθ∇Fη) = Hs

odd(S2).
From the Lemmas 1, 2 we have Sη � Fη∇ : Hs(S2) → Hs(S2) if s ≥ 1, that looks
on the diagram

Hs(S2) ∇−−−−→ Hs−1
tan (S2)

η�Fη−−−−→ Hs−1/2(S2) S−−−−→ Hs(S2).

Similarly, θ � Sθ∇F : Hs(S2) → Hs(S2) if s ≥ 1/2, which is also confirmed by the
diagram

Hs(S2) F−−−−→ Hs+1/2(S2) ∇−−−−→ H
s−1/2
tan (S2) θ�Sθ−−−−→ Hs(S2).

For further calculations we take specifically f = YNℓ, then from (54) and (55) we
have

for N = 2j : Fη∇YNℓ = 0, ∇FηYNℓ = PN (0)y
(2)
Nℓ(η),

for N = 2j + 1 : Fη∇YNℓ = PN−1(0)
(
Ny

(1)
Nℓ(η) +

y
(2)
Nℓ(η)

N + 1

)
, ∇FηYNℓ = 0.

Consequently

η � Fη∇YNℓ − θ �∇FηYNℓ =

{
−PN (0)θ � y(2)

Nℓ(η), N = 2j
PN−1(0)NYNℓ(η), N = 2j + 1

and finally, using formulas (42) and (62), we get

1

4π

∫
S2

η � Fη∇YNℓ − θ �∇FηYNℓ

η � θ dη =

{
YNℓ(θ), N = 2j
YNℓ(θ), N = 2j + 1 .

So we proved that, if s ≥ 1 then operator Sθη �Fη∇−Sθθ �∇Fη : Hs(S2) → Hs(S2)
is identical operator.
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3.2. Proof Theorem 2. We have already mentioned two approaches to the solution
of Helmholtz–Hodge decomposition problem for f ∈ L2,tan(S2). Now we proof
formulas (11) and (12) in Theorem 2 for the velocity potential u and stream
functions v of the Helmholtz–Hodge decomposition (10),

u(θ) = Sθη � Fηf −Fθη � Sηf ,

v(θ) = θ � Sθη ×Fηf − θ � Fθη × Sηf .

For the proof it suffices to verify these formulas on the basis elements f = y
(2)
Nℓ

and f = y
(3)
Nℓ. Applying the scalar and cross products to the the formulas (54)–(55)

and (62)–(63), we obtain

for N = 2j : η � Fηy
(3)
Nℓ = 0, η ×Fηy

(3)
Nℓ = −PN (0)y

(2)
Nℓ(η),

for N = 2j + 1 : η � Fηy
(2)
Nℓ = PN−1(0)NYNℓ(η), η ×Fηy

(2)
Nℓ = PN−1(0)

y
(3)
Nℓ(η)

N + 1
,

for N = 2j : η � Sηy
(2)
Nℓ =

−1

PN (0)
YNℓ(η), η × Sηy

(2)
Nℓ =

−1

PN (0)

y
(3)
Nℓ(η)

N(N + 1)
,

for N = 2j + 1 : η � Sηy
(3)
Nℓ = 0, η × Sηy

(3)
Nℓ =

−1

PN−1(0)

y
(2)
Nℓ(η)

N
.

Based on the above, we get

Sθη � Fηy
(2)
Nℓ −Fθη � Sηy

(2)
Nℓ =

{
YNℓ(θ), N = 2j
YNℓ(θ), N = 2j + 1,

Sθη � Fηy
(3)
Nℓ −Fθη � Sηy

(3)
Nℓ =

{
0, N = 2j
0, N = 2j + 1,

θ � Sθη ×Fηy
(2)
Nℓ − θ � Fθη × Sηy

(2)
Nℓ =

{
0, N = 2j
0 N = 2j + 1,

θ � Sθη ×Fηy
(3)
Nℓ − θ � Fθη × Sηy

(3)
Nℓ =

{
YNℓ(θ), N = 2j
YNℓ(θ), N = 2j + 1.

4. Conclusion

This paper is devoted to the study of Funk–Minkowski transform F and Hilbert
type spherical convolution S. We provide inversion formulas for two F–M transforms
Ff and F∇f . In this case both even and odd parts of the function f are determined.
Also, the formulas for decomposition of a tangent vector field on the sphere into
divergence–free and curl–free parts with the participation of operators F and S
are derived. In the process of obtaining and proving all formulas, the spherical
multipliers approach is used.
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