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Abstract. In the current work we consider the minimization problems
for the number of nonzero or negative values of vectors from the first
and second eigenspaces of the Johnson scheme respectively. The topic
is a meeting point for generalizations of the Manikam-Miklós-Singhi
conjecture and the minimum support problem for the eigenspaces of the
Johnson graph, asymptotically solved in [16].
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1. Introduction

Let V be an eigenspace of a symmetric association scheme (X, {R0, . . . , Rd}) of
rank d. Following [3], given an eigenvector v ∈ V denote by X+(v) = {x ∈ X :
vx > 0}, X−(v) = {x ∈ X : vx < 0}, X0(v) = {x ∈ X : vx = 0}. For a finite
set of n elements, a pair of its subsets of cardinality w are in ith relation, if their
intersection is of size w− i. The w-element subsets of {1, . . . , n} together with w+1
relations above define the Johnson scheme and the first relation defines the Johnson
graph J(n,w), n ≥ 2w. The eigenvalues of the Johnson scheme are known as the
values of the Eberlein polynomials Ek(i, w, n) =

∑k
j=0(−1)j

(
i
j

)(
w−i
k−j

)(
n−w−i
k−j

)
, k, i ∈

{0, 1, . . . w}. For this scheme (graph) by Vi, we denote the eigenspace corresponding
to the eigenvalue λi(n,w) = E1(i, w, n) = (w− i)(n−w− i)− i for i ∈ {0, 1, . . . w}.

In the current correspondence, we consider the following two characteristics for
the Johnson scheme J(n,w):

m−
i (n,w) = min

v:v∈Vi,X0(v)=∅
|X−(v)|,
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m0
i (n,w) = min

v:v∈Vi,v ̸≡0
|X+(v)|+ |X−(v)|.

When i = 1, the first number was suggested to be
(
n−1
w−1

)
, for n ≥ 4w, which is

known as the Manikam-Micklos-Singhi conjecture [12], [13]. There are recent works
with quadratic [1] and linear improvements [15].

For a vector v by the support of this vector we mean the value X+(v) +X−(v).
The number m0

i (n,w) was shown to be equal to 2i
(
n−2i
w−i

)
(along with the description

of vectors attaining the bound) for sufficiently large n in [16]. In the paper we focus
on the case when i = 1 and show that for any n and w the minimum of the support
of vectors from the first eigenspace of J(n,w) is attained on the vectors from two
classes having rather simple structure (see Section 3).

Bier and Delsarte [4] proposed to investigate the invariant min
v:v∈Vi,X0(v)=∅

|X−(v)|

for classical association schemes with further generalizations where v is from the
direct sum of several eigenspaces. They obtained several bounds involving such
well-known combinatorial concepts as coverings, completely regular codes, additive
codes and designs. The current study is motivated by a recent progress in the area of
completely regular codes and equitable partitions in Johnson graphs. In particular,
the characterizations of equitable 2-partitions of J(n, 3) in [9] for odd n, completely
regular codes in J(n,w) with the eigenvalue λ2 having nontrivial minimum distance
were characterized by Martin in [14].

An eigenvector u of the antipodal Johnson graph J(2w,w) corresponding to λi

is such that its absolute values on the pairs of antipodal vertices are equal and signs
are the same or opposite depending on the parity of i [6][p. 142-143]. So, in case of
odd i we have that m−

i (2w,w) =
(
2w−1
w−1

)
.

In [4], it was shown that

(1)
(nw)

|D|
≤ m−

i (n,w) ≤ |C|,

where C and D are codes (subsets of the vertices of J(n,w)), whose characteristic
functions belong to Vi ⊕ V0 and ⊕

j∈{0,...,w}\i
Vj respectively. Subtracting a constant

vector from the characteristic function of C, we see that there is a two-valued
eigenvector v from Vi such that vx ̸= vy iff x ∈ C, y /∈ C. In other words, (C,C)
is an equitable 2-partition of J(n,w). If there is a (w − 1)-(n,w, 1)-design C, then
its size is the value for m−

w(n,w). Indeed, such a design produces an equitable 2-
partition (C,C) of J(n,w) with eigenvalue λw(n,w), see [14]. On the other hand the
"anticode"D could be chosen to be the set {x : y ⊂ x} where y is a (w−1)-element
subset. The set D is a Delsarte clique in the Johnson graph, which is a completely
regular code with eigenvalues λ0, . . . , λw−1; so, the characteristic function of D is
orthogonal to Vw [5]. The smallest open case is i = 2, w = 3, because m−

1 (n, 2)
was shown to be ⌈n/2⌉ in [5]. Again, for n = 1, 3(mod 6), w = 3, the best known
"anticode"D from V0 ⊕V1 ⊕V3 is a Steiner triple system. So from (1) we have that

(2) n− 2 ≤ m−
2 (n, 3).

The bound (2) could be tightened up to 2n − 9 by considering a modification
of the weight distribution lower bound [11] with a generalization for arbitrary w,
which we discuss in Section 4.1. The choice of C in (1) is generalized to be a part of
an equitable partition with appropriate eigenvalue. This gives an upper bound in



MMS-TYPE PROBLEMS FOR JOHNSON SCHEME 1665

case of J(n, 3) for odd n and i = 2 (see Section 4.2), where no equitable 2-partitions
exist [9]. For even n, the upper bound (1) from equitable 2-partitions of J(n, 3) is
n(n− 2)/2.

2. Definitions and Preliminaries

2.1. Equitable partitions. Let G be an undirected graph. An equitable r-partition
with parts C1, . . . , Cr of the vertex set of G is called equitable if for any i, j ∈
{1, . . . , r} a vertex from Ci has exactly Aij neighbors in Cj . The matrix A =
(Aij)i,j∈{1,...,r} is called the quotient matrix. An eigenvalue of the quotient matrix
A is called an eigenvalue of the partition. Given an eigenvector u of A corresponding
to an eigenvalue λ define uG to be the vector indexed by the vertices of G such that
uG
x = ui, if x ∈ Ci. The vector uG is an eigenvector of the adjacency matrix of G

corresponding to λ [7][§4.5]. In view of the said above, the upper bound in (1) is
generalized as follows:

Proposition 1. Let u be an eigenvector without zero entries of the quotient matrix
of an equitable partition of the Johnson graph J(n,w) with parts C1, . . . , Cr. Then

m−
i (n,w) ≤

∑
j:uj<0

|Cj |.

2.2. The first eigenspace of J(n,w). Consider the eigenvectors of the complete
graph Kn = J(n, 1) with vertices indexed by integers from {1, . . . , n}. The graph
has two eigenvalues: n − 1 and −1. An eigenvector a = (α1, . . . , αn) of the graph
corresponding to the eigenvalue −1 could be characterized as a solution for the
equation: α1 + . . . + αn = 0. We use the following isomorphism between the
λ1(n,w)-eigenspace of J(n,w) and the λ1(n, 1)-eigenspace of J(n, 1) established
by the inclusion mapping I (see [8]): the image I(a) is such that (I(a))x =

∑
i∈x

αi.

Consider the following two equitable 2-partitions of J(n,w): ({x : 1 ∈ x}, {x :
1 /∈ x}) and ({x : 2 ∈ x}, {x : 2 /∈ x}) [14]. Denote by v1,2 the difference of the
eigenvectors of J(n,w) arising from these partitions:

v1,2x =


1, 1 ∈ x and 2 /∈ x,

−1, 1 /∈ x and 2 ∈ x,

0, otherwise.

In [16], it was shown that the minimum-support eigenvectors from the first eigenspace
are exactly v1,2 up to appropriate permutation of coordinate positions starting with
large enough n (as well as a generalization of the result for any eigenspace). It is
easy to see that v1,2 is I(e1 − e2), where e1, e2 are 1-st and 2-nd vectors of the
standard basis.

In Section 3 we extend results from [16] in further details. We show that for any
n the minimum-support eigenvector is either v1,2 or I(a), where a is a two-valued
(−1)-eigenvector of J(n, 1).

3. Minimum support λ1-eigenvectors

Theorem 1. Let v be a λ1-eigenvector of J(n,w), n ≥ 2w, w ≥ 2, with minimum
support. Then v is I(e1 − e2) or I(

∑k
i=1 ei −

k
n−k

∑n
i=k+1 ei) for some

k ∈ {2, 3, . . . , n− 2}



1666 I.YU.MOGILNYKH, K.V.VOROB’EV, A.A.VALYUZHENICH

such that kw
n ∈ N up to a permutation of coordinate positions and the multiplication

by a scalar. In particular,

m0
1(n,w) = min

(
2

(
n− 2

w − 1

)
,

(
n

w

)
− max

k∈{2,3,...,n−2}, kw
n ∈N

(
k
kw
n

)(
n− k
(n−k)w

n

))

Proof. As it was mentioned above, every λ1-eigenvector equals I(a) for some
vector a = (α1, . . . , αn) such that α1 + . . .+ αn = 0. Our next goal is to determine
values α1, . . . , αn for which the support of I(a) is minimal. Let v = I(a) be a
λ1-eigenvector with minimum support. Since the vector I(e1 − e2) has the size of
the support equal 2

(
n−2
w−1

)
, we shall assume that the size of the support of I(a) is

not more than 2
(
n−2
w−1

)
. Let us denote by m the size of {α1, . . . , αn}. There are two

different cases:

m ≥ 3. Without loss of generality we can assume that α1, α2 and α3 are pairwise
different. Take arbitrary subsets A1, A2 of the set {4, . . . , n} of cardinalities
w − 1 and w − 2 respectively. Clearly, there are at least 2 nonzero values
among I(a)i∪A1 = αi +

∑
k∈A1

αk, i = 1, 2, 3 and at least 2 nonzero values
among I(a){i,j}∪A2

= αi + αj +
∑

k∈A2
αk, i, j ∈ {1, 2, 3}, i ̸= j. So, the

support of v is at least 2
(
n−3
w−1

)
+ 2

(
n−3
w−2

)
= 2

(
n−2
w−1

)
. By hypothesis, the

vector I(a) has minimal size of the support; so, we conclude that I(a)x = 0
for any w-subset x of {4, . . . , n}. In other words, I ′(a′) is the zero vector,
where a′ is obtained from a by removing its first 3 entries, I ′ is the inclusion
mapping from J(n− 3, 1) to J(n− 3, w).

We have that
∑

i=4,...,n αi =
∑

x⊂{4,...,n},|x|=w I′(a′)x

(n−4
w−1)

= 0. Therefore, the

vector a′ = (α4, . . . , αn) belongs to V1(n − 3, 1) and is the zero vector
because I ′(a′) is the zero vector and I ′ is an isomorphism from V1(n− 3, 1)
to V1(n− 3, w).

From the above, there are exactly 2 nonzero values among α1 + α2,
α1 + α3, α2 + α3. Consequently, we can consider α3 = 0 and α1 = −α2,
which means that v is equal to cI(e1 − e2) for some constant c.

m = 2. Without loss of generality we can take α1 = α2 = . . . = αk = α̂ and
αk+1 = αk+2 = . . . = αn = β̂ for some integer k such that 2 ≤ k ≤ n− 2.
Using the equality α1 + . . . + αn = 0, we have β̂ = −α̂ k

n−k . Let us take
an arbitrary vertex x of J(n,w). It is easy to see that I(a)x = 0 if and
only if x has exactly kw

n ones in the first k coordinate positions and w− kw
n

ones in the rest n − k coordinate positions. Particularly, kw
n must be an

integer. Therefore, the support of v equals
(
n
w

)
−
(

k
kw
n

)( n−k
(n−k)w

n

)
. Taking the

minimum of this expression over all admissible k we obtain the statement
of the theorem.

In the case m = 1, we automatically obtain the all-zero eigenvector v, which is not
possible.

�
Theorem 1 reduces the problem of minimizing m0

1(n,w) to the comparison of
two expressions containing binomial coefficients.
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4. Bounds on m−
i (n,w)

4.1. A lower bound on m−
i (n,w). Let v be an eigenvector of the Johnson graph

J(n,w) without zero entries; let x be a vertex such that vx is negative and takes
maximum absolute value over all negative entries of v. Consider the distance partition
(C0, . . . , Cw) of the vertices of J(n,w) with respect to the vertex x. It is well-known
that the sum of the entries of v over Ck is expressed using the Eberlein polynomials
and the value vx: ∑

y∈Ck

vy = vxEk(i, w, n).

Let Ek(i, w, n) be non-negative. Then by the choice of vx with the maximum
absolute value we see that there are at least |Ek(i, w, n)| negative values for vy
in Ck. Moreover, there are more than |Ek(i, w, n)| negative vy’s not less then vx,
because there is at least one positive vy in Ck, since obviously |Ek(i, w, n)| < |Ck|
for k > 0. Thus we obtain the following bound.

Theorem 2. m−
i (n,w) ≥ 1 +

∑
k>0:Ek(i,w,n)≥0

(|Ek(i, w, n)|+ 1).

The consideration for the proof above is similar to the one for the weight distribu-
tion bound on the number of nonzeros for the eigenvector of distance-regular graph,
see [11]. The values of the Eberlein polynomials for i = 2 and w = 3 are as follows
E0(2) = 1, E1(2) = n− 7, E2(2) = 11− 2n, E3(2) = n− 5. Therefore, we have the
bound below.

Corollary 1. m−
2 (n, 3) ≥ 2n− 9.

4.2. An upper bound on m−
2 (n, 3). Let n be 2r. The following construction could

be found in [10] (see also [2]). Consider the complement of a perfect matching on
vertices labeled with {1, . . . , 2k} to a complete bipartite graph. Then the triples of
vertices are partitioned into three orbits C1, C2, C3 with respect to the action of the
automorphism group of the graph. The triples of C1 consist of vertices belonging to
the same part; the triples of C2 induce a walk of length 2 in the graph; the triples
of C3 contain exactly one pair of adjacent vertices. Any two parts could be merged
and result in equitable 2-partition of the triples, e.g. the Johnson graph J(2r, 3)
[2]. In particular, the partition (C ′

1 = C1 ∪C2, C ′
2 = C3) has the following quotient

matrix: (
3(2r − 5) 6
4(r − 2) 2r − 1

)
,

whose eigenvalues are λ0(n, 3) and λ2(n, 3). The cells of the partition are in 4(r−2)
to 6 ratio; so, in view of Proposition 1, we see that

m−
2 (n, 3) ≤ n(n− 2)/2.

Let n be 2r+1. Consider the graph G with 2r+1 vertices which is the union of
an isolated vertex and the graph G′ which is equal to a complete bipartite graph
Kr,r without a perfect matching. We have the following orbits of triples of vertices:

C1: the vertices of the triple are in one part of G′;
C2: the vertices of the triple induce a walk of length 2 in G′;
C3: the vertices of the triple belong to G′ and contain only two adjacent

vertices;
C4: two nonadjacent vertices belong to different parts of G′ and the third one

is isolated;
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C5: two vertices are in one part of G′ and the third one is isolated;
C6: two vertices are adjacent and the third one is isolated.

The equitable partition (C1, . . . , C6) of J(2r + 1, 3) has the following quotient
matrix: 

3(r − 3) 3(r − 2) 6 0 3 0
r − 2 5r − 13 6 0 1 2
r − 2 3(r − 2) 2r − 1 1 1 1
0 0 2(r − 1) 0 2(r − 1) 2(r − 1)

r − 2 r − 2 2 2 2(r − 2) 2(r − 1)
0 2(r − 2) 2 2 2(r − 1) 2(r − 2)

 .

The matrix has the eigenvector (3, 3, 4−2r, 2−2r, 1, 1) corresponding to eigenvalue
λ2(2r + 1, 3) = 2r − 6. By Proposition 1, we see that

m−
2 (n, 3) ≤ |C3|+ |C4| = 2r(r − 1) + r = (n− 1)(n− 2)/2.

Thus we obtain

Theorem 3.

m−
2 (n, 3) ≤

{
n(n− 2)/2, if n is even;
(n− 1)(n− 2)/2, if n is odd.

5. Conclusion

Theorem 1 reduces the problem of finding m0
1(n,w) to the determination which

one of values((
n

w

)
− max

k∈{2,3,...,n−2}, kw
n ∈N

(
k
kw
n

)(
n− k
(n−k)w

n

))
or 2

(
n− 2

w − 1

)
is smaller. In [16], it was shown that the second one is the answer for all n starting
from some value n0(w). We have compared these values for 6 ≤ n ≤ 600 and
3 ≤ w ≤ n

2 and consequently found corresponding m0
1(n,w). Based on these

computational results, we state the following conjecture:

Conjecture 1. For w ≥ 5 and n ≥ 2w + 1 the following identity holds

m0
1(n,w) = 2

(
n− 2

w − 1

)
.

For w < 5, we have found several curious examples:
(1) m0

1(6, 2) = 6 is attained on the vector v = I(e1 + e2 + e3 − e4 − e5 − e6),
(2) m0

1(8, 2) = 12 is attained on vectors v = I(e1+e2+e3+e4−e5−e6−e7−e8)
and u = (e1 − e2),

(3) m0
1(9, 3) = 39 is attained on the vector v = I(2e1 + 2e2 + 2e3 − e4 − e5 −

e6 − e7 − e8 − e9),
(4) m0

1(10, 4) = 110 is attained on the vector v = I(e1 + e2 + e3 + e4 + e5 −
e6 − e7 − e8 − e9 − e10).

Let us notice that it is not hard to show using Theorem 1 and basic properties
of binomial coefficients that

m0
1(2w,w) =

(
2w

w

)
− 2

(
2w − 2

w − 1

)
,
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which is attained on the vector I((w − 1)(e1 + e2)−
∑2w

i=3 ei).
In Theorem 3, we described a construction providing a quadratic upper bound

for the characteristic m−
2 (n, 3), n → ∞. At the same time, Corollary 1 gives us a

lower bound that is linear in n. The real behaviour of the growth rate of m−
2 (n, 3)

remains to be an intriguing open problem.
The characteristic min

v:v∈Vi,X0(v)=∅
|X−(v)|, considered by Bier and Delsarte [4],

requires that v does not have zero entries. It may be interesting in the future
research to remove this condition and try to find this value in this case for classical
association schemes.
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