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COMPUTATION OF THE CENTRALIZER DIMENSION OF
GENERALIZED BAUMSLAG-SOLITAR GROUPS

F.A. DUDKIN

Abstract. A finitely generated group G acting on a tree so that all
vertex and edge stabilizers are infinite cyclic groups is called a generalized
Baumslag-Solitar group (GBS group). The centralizer dimension of a
group G is the maximal length of a descending chain of centralizers.
In this paper we complete a description of centralizers for unimodular
GBS groups. This allows us to find the centralizer dimension of all GBS
groups and to establish a way to compute it.
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1. Introduction

A finitely generated group G acting on a tree so that all vertex and edge
stabilizers are infinite cyclic groups is called a generalized Baumslag–Solitar group
(GBS group). By the Bass–Serre Theorem, G is representable as π1(A), the funda-
mental group of a graph of groups A [1] whose vertex and edge groups are infinite
cyclic.

GBS groups are important examples of JSJ decompositions. JSJ decompositions
appeared first in 3-dimensional topology with the theory of the characteristic sub-
manifold by Jaco-Shalen and Johannson. These topological ideas were carried over
to group theory by Kropholler for some Poincaré duality groups of dimension at
least 3, and by Sela for torsion-free hyperbolic groups. In this group-theoretical
context, one has a finitely generated group G and a class of subgroups A (such
as cyclic groups, abelian groups, etc.), and one tries to understand splittings (i.e.
graph of groups decompositions) of G over groups in A (see [2] for details).
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With each GBS group G, we can associate a labeled graph A, a particular case
of a graph of groups. Such a labeled graph corresponds to an action of G on a tree
and defines a presentation of G (more details on labeled graphs and their properties
are given in [3]). The necessary definitions and properties are given in section 1.

As was observed by Robinson in [4], the GBS groups occupy central positions in
combinatorial group theory due to the following properties: noncyclic GBS groups
are exactly those finitely generated groups of cohomological dimension 2 having a
commensurable cyclic subgroup; GBS groups are coherent (each finitely generated
subgroup admits a finite presentation).

Let G be a group and let M be a subset of G. Denote by C(M) the centralizer
of M in G:

C(M) =
{
g ∈ G|g−1mg = m, for all m ∈ M

}
.

Suppose that a group G has a strictly descending chain of centralizers C1 ⊃ C2 ⊃
· · · ⊃ Cd of length d, i.e., a chain containing exactly d elements, but G does not
have such a chain of length d+1. Then the centralizer dimension cdim(G) equals d.
If there is no such number d then we put cdim(G) = ∞. More complete information
on the centralizer dimensions of groups can be found in [5]. It is noticed in [6] that
cdim(G) coincides with the centralizer lattice height.

In [13], Proposition 4.1 G. Levitt proved that a GBS group G is unimodular (i.e.
such GBS groups G that ∆(G) = {±1}) if and only if G contains a subgroup of
finite index isomorphic to Fn×Z. Therefore, the results of [5] imply that unimodular
GBS groups have finite centralizer dimension. However, such an approach gave no
exact estimates, no examples and no way to calculate the centralizer dimension of
GBS groups.

In [12] centralizers of sets of elements and centralizer dimension were described
for GBS groups presented by labeled trees. In section 3 we describe the centralizers
of elements for all GBS groups with ∆(G) = {1}.
Theorem 1 Let G be a GBS group, ∆(G) = {1}. If g ∈ G is not elliptic element
then

CG(g) = u−1 · (⟨r⟩ × Z(π1(Ba))) · u
for a suitable vertex element a and u, r ∈ G.
If g ∈ G is elliptic element then

CG(g) = v−1 · π1(Bb) · v

for a suitable vertex element b and u ∈ G.
In section 4 the description of centralizers of sets of elements in the case ∆(G) =

{1} established.
Theorem 2 Let G be a GBS group, ∆(G) = {1}. If M is the finite set of elements
from G, then CG(M) can be one of the three types:

u−1 · (⟨r⟩ × Z(π1(Ba))) · u,

v−1 · π1(Bb) · v,

w−1 · Z(π1(Bc)) · w,
for a suitable u, v, w, r ∈ G and Z-maximal subgraphs Ba, Bb, and Bc.

In sections 6 and 7 we provide a description of centralizer dimension for unimodular
GBS groups. Considering the results of section 2, theorems 3 and 4 complete
description of centralizer dimension for all GBS groups.
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Theorem 3 Given a reduced labeled graph A such that π1(A) is non-abelian group,
∆(π1(A)) = {1} and b1(A) = n. Then cdim(π1(A)) is odd and

3 6 cdim(π1(A)) 6 2 · |E(A)|+ 1.

Moreover, for every odd k, 3 6 k 6 2 ·m+1 there exists a labeled graph Bm,n with m
edges such that b1(Bm,n) = n 6 m, ∆(π1(Bm,n)) = {1} and cdim(π1(Bm,n)) = k.
Theorem 4 Given a reduced labeled graph A such that π1(A) is non-abelian group,
∆(π1(A)) = {±1} and b1(A) = n. Then cdim(π1(A)) is odd and

3 6 cdim(π1(A)) 6 2 · |E(A)|+ 3.

Moreover, for every odd k, 3 6 k 6 2 · m + 3 there exists a labeled graph Bm,n

with m edges such that 1 6 b1(Bm,n) = n 6 m, ∆(π1(Bm,n)) = {±1} and
cdim(π1(Bm,n)) = k.

Since the proofs are constructive, we do not just describe the centralizer dimension
for GBS groups, but also establish a way to compute it.
Remark 5 Given a labeled graph A. There is an algorithm to compute cdim(π1(A)).

The author is grateful to V. A. Churkin for valuable comments and advice.

2. Preliminaries

A graph A is the vertex set V (A), the edge set E(A), the mappings α, ω : E(A) →
V (A), are sending an edge to its beginning and end, and an inversion ¯ : E(A) →
E(A) such that α(e) = ω(e), ω(e) = α(e), ¯̄e = e, ē ̸= e. An edge path is a sequence
of edges p = (e1, e2, . . . , ek) such that α(ei+1) = ω(ei) for i = 1, 2, . . . , k − 1.

If A is a tree then for every two vertices a and b there exists a unique shortest
path with beginning a and end b. We will refer to this path as geodesic and denote
it by a− b.

Given a GBS group G, we can present the corresponding graph of groups by
a labeled graph A = (A, λ), where A is a finite connected graph and λ : E(A) →
Z \ {0} labels the edges of A. The label λe of an edge e with the origin v defines
an embedding αe : e → vλe of the cyclic edge group ⟨e⟩ into the cyclic vertex group
⟨v⟩ (for more details see [3])

The fundamental group π1(A) of a labeled graph A = (A, λ) is defined by generators
and defining relations. Denote by A the graph obtained from A by identifying e and
e. The maximal subtree T in A defines the presentation of the group π1(A)⟨

gv, v ∈ V (A), | g
λ(e)
α(e) = g

λ(e)
ω(e), e ∈ E(T ),

te, e ∈ E(A) \ E(T ) | t−1
e g

λ(e)
α(e)te = g

λ(e)
ω(e), e ∈ E(A) \ E(T )

⟩
.

For different maximal subtrees, the corresponding presentations define isomorphic
groups. Denote the number |E(A) \ E(T )| of generators of second type by b1(A).
That is a first Betti number of graph A. If A is a tree then π1(A) admits the
presentation ⟨

gv, v ∈ V (A), |gλ(e)α(e) = g
λ(e)
ω(e), e ∈ E(T )

⟩
In what follows, we for convenience denote by v the vertex of the graph as well

as the corresponding generator gv of the fundamental group. To each connected
subgraph B of a graph A, there naturally corresponds the labeled graph B, where
the natural homomorphism π1(B) → π1(A) is an embedding.
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A group is said to be Hopfian if any homomorphism of the group onto itself has
trivial kernel, i.e. is an automorphism. Baumslag and Solitar [8] came up with a
series of examples of two-generator one-relator non-Hopfian groups. In particular,
such are the Baumslag–Solitar groups

BS(p, q) = ⟨x, y|xypx−1 = yq⟩

where p and q are coprime integers, p, q ̸= 1.
If a labeled graph B consists of one vertex and two inverse loops with labels p and

q, then π1(B) ∼= BS(p, q). Therefore, every Baumslag–Solitar group is a generalized
Baumslag–Solitar group.

It is sometimes useful to regard a GBS-group as a group obtained as follows:
start with the group Z, perform consecutive amalgamated products in accordance
with the labels on the maximal subtree; finally, apply several times the construction
of the HNN-extension (the number of times is equal to the number of the edges
outside the maximal tree). In this approach, the standard theory of amalgamated
products and HNN-extensions is applicable to the full extent. In particular, GBS-
groups admit a normal form of an element and have no torsion.

We say that word w in generators of group π1(A) is reduced, if it is reduced
as a word of HNN -extension with respect to all generators of second type. In
other words, the word w is reduced if it can not be written using a smaller number
of generators of second type. The word w is called cyclically reduced, if all cyclic
permutations (in the usual sense of HNN-extensions) of w are reduced.

Given the generator of second type t and reduced word w, the number of occurren-
ces of symbols t, t−1 in w is called t-length of w and denoted by |w|t. If the value of
t is clear from the context, then we write |w| and call this number the length of the
word w. Such a notation is well-defined because π1(A) is an HNN -extension with
a stable letter t (here any generator of second type can be taken). We will also use
the right normal form (see [9]), considering the group π1(A) as an HNN -extension.

In accordance with [7], call an element elliptic if it is conjugate to an element
of ⟨a⟩ for some a ∈ V (A); otherwise, the element is called hyperbolic. An elliptic
element is called a vertex element if it belongs to ⟨a⟩ for some a a ∈ V (A). The
subgroup generated by all vertex elements is denoted by E. It coincides with π1(T).
Given g ∈ E denote by Sg (see [12]) the minimal subtree of the tree T such that
g ∈ π1(Sg).

If two labeled graphs A and B define isomorphic GBS groups π1(A) ∼= π1(B) and
π1(A) is not isomorphic to Z and Z2 or to the Klein bottle group ⟨a, b|a−1ba = b−1⟩,
then there exists a finite sequence of expansions and collapses (Fig. 1) joining A and
B [7] (in Fig. 1, to each edge there correspond two integers λ(e), λ(e)). A labeled
graph is called reduced if it does not admit collapses (this means that the labeled
graph does not contain an edge with distinct endpoints and labels ±1).

Given a reduced labeled graph A and B,C some subgraphs of the graph A. It is
easy to prove that inclusion π1(B) ⊂ π1(C) holds if and only if B ⊂ C.

Unless otherwise specified, we assume further that A is a reduced labeled graph
and G = π1(A) is the corresponding GBS group.

Define the modular homomorphism ∆: G → Q∗. Given g ∈ G, choose an
arbitrary nontrivial elliptic element a ∈ G. Then, for some integers m and n not
equal to 0, we have g−1amg = an. In this case, we put ∆(g) = m

n . It is not hard to
prove that ∆ is well-defined. The modular homomorphism plays an important role
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Fig. 1. Expansion and collapse.

in study of GBS groups. If A is a tree then ∆(π1(A)) = {1} (details and proofs
can be found, for example, in [7]).

3. Centralizer dimension: case ∆(G) ̸⊆ {±1}

If ∆(G) ̸⊆ {±1} then either p
q ∈ ∆(G) for coprime integers p, q ̸∈ {0, 1,−1} and

in this case cdim(G) = ∞ [11] or ∆(G) is generated by ⟨n⟩ as subgroup of Q∗ under
multiplication.
Lemma 3.1 Given a GBS group G such that ∆(G) = ⟨n⟩, n ̸= ±1. If there exist
vertex element a, t ∈ G and k > 2 such that t−1 · ak · t = ak·n and for all |l| < k
word t−1 · al · t is reduced in G then cdim(G) = ∞.
PROOF. Denote by ai element t−i · a · ti. Then CG(a

k·ns

) ⊇ ⟨a, a1, . . . , as⟩, but
as+1 ̸∈ CG(a

k·ns

). Otherwise

t−s−1 · a−1 · ts+1 · a−k·ns

· t−s−1 · a · ts+1 · ak·n
s

= 1,

but, using the condition of the lemma s times, we get

t−s−1 · a−1 · t · a−k · t−1 · a · ts+1 · ak·n
s

= 1.

This equation is impossible since the left-hand side is reduced and, consequently, is
not equal to 1 by the Britton lemma [9]. The lemma is proved.
Theorem 3.2 Given a GBS group G such that ∆(G) = ⟨n⟩, n ̸= ±1. If G ̸∼=
BS(1, n) then cdim(G) = ∞. The centralizer dimension of BS(1, n) is equal to 3.
PROOF. At first, suppose that G ̸∼= BS(1, n) and G is represented by a reduced
labeled graph A.

If A has more than one vertex then the conditions of lemma 3.1 are satisfied. As
t, we need to take any word in generators of the second type such that ∆(t) = n,
and as a a suitable vertex of the graph A. Such a vertex exists, otherwise for all
v ∈ V (A) we have t−1 · v · t = vn. In this case, all the vertex elements belong to the
vertex group ⟨w⟩, where w is the beginning of the edge corresponding to the first
stable letter of t. Therefore A can not be reduced; a contradiction.

If A has a single vertex a and the number of edges of the graph A is greater
than one, then we denote two distinct edges and the corresponding generators of
the second type by t, r. We can assume that ∆(t) = m = np ̸= ±1,∆(r) = s = nd.
Denote by b = aq the minimal power of a such that t−1bt = bm. Then CG(b

mk·s) ⊇
CG(b

ml·s), for k > l. Moreover, t−k · r−1 · tk · a · t−k · r · tk belongs to CG(b
mk·s) and

does not belong to CG(b
ml·s).

If A has a single vertex a and a single edge t, but G ̸∼= BS(1, n), then G ∼=
BS(k, kn), k ̸= ±1. In this case we can apply lemma 3.1.
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Now we need to prove that cdim(BS(1, n)) = 3. Note that the group

BS(1, n) = ⟨a, t|t−1 · a · t = an⟩

is isomorphic to a subgroup M of the group T of upper triangular nondegenerate
rational 2 × 2 matrices with 1 at the place (1,1). The isomorphism φ is given on
generators

φ : a →
(

1 1
0 1

)
, b →

(
1 0
0 n

)
.

Therefore cdim(BS(1, n)) = cdim(M) 6 cdim(T ) by lemma 2.2 from [5]. Since
every matrix in T is given by a pair of rational numbers (one of which is not equal
to 0) and the centralizer of the set of elements of T is given by a system of linear
equations, we get cdim(T ) 6 3 (the maximum number of embedded subspaces).
Therefore cdim(BS(1, n)) 6 3. Since BS(1, n) is non-abelian and the centralizer
dimension can not be equal to 2 [6], then cdim(BS(1, n)) = 3. The Theorem is
proved.

4. Centralizers of elements: case ∆(G) = {1}

Given a labeled graph A such that ∆(A) = {1}. The group π1(A) is given by
a presentation depending on the choice of the maximal subtree T in the graph A.
However, the groups π1(A, T1) and π1(A, T2) are isomorphic, see, for example, [10].

If B is a connected subgraph of the graph A, then we can choose the maximal
subtrees TA and TB of the graphs A and B such that TB ⊆ TA. Such a pair of
maximal subtrees is called coherent.
Remark 4.1 If B is a connected subgraph of the graph A and TB ⊆ TA, then the
homomorphism π1(B, TB) → π1(A, TA) identical on generators is an embedding.
PROOF. Induction on the number of edges outside B, using the classical embedding
results for a free product with amalgamation and HNN -extensions (see, for example,
[9]). The remark is proved.
Definition 4.2 Let a = vk, v ∈ V (A) be a vertex element from π1(A), define a
subgraph Ba of the graph A by induction:
Base: V (Ba) = {v}, E(Ba) = ∅.
Induction step: Suppose we already have a graph Ba. Consider a set of edges {e ∈
E(A)|α(e) ∈ V (Ba)} \ E(Ba) and denote it by U . Then for any e ∈ U there exist
an element r ∈ π1(Ba) and an integer l(e) such that a = vk = r−1 · α(e)l(e) · r. If
λe|l(e) for some e ∈ U then we attach e and e to the graph Ba and go to the next
induction step. Otherwise, the induction stops.

Note that if we add an edge e then α(e)l(e) = ω(e)l(e)·
λe
λe for e ∈ E(TA) or

α(e)l(e) = tϵ · ω(e)l(e)·
λe
λe · t−ϵ for e ̸∈ E(TA). In addition, we note that if for some

vertex w we get that on the one hand a = r−1
1 · wm · r1 and on the other hand

a = r−1
2 · wn · r2, then m = n because ∆(G) = 1. Therefore definition 4.2 is

well-defined.
Proposition 4.3 Suppose that u, v ∈ V (A) and the maximal subtrees of the graphs
A and Bvk are coherent. If g−1 · vk · g = ul then u ∈ V (Bvk) and g ∈ CG(v

k).
PROOF. Induction on the number of the stable letters in the reduced form of g.

Base of induction. If g ∈ E then by corollary 4 [12], the equality g−1 · vk · g = ul

is possible only if vk ∈ Z(π1(Sg)). Then g−1 · vk · g = vk = ul; therefore, by Lemma
1 and Proposition 2 [12], vk belongs to the intersection of the vertex groups of
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Fig. 2. Construction of a graph Ba.

the geodesic path joining u and v in TA. In this case, this path belongs to Ba by
definition 4.2.

Induction step. Suppose that g = a0 · tε1 · · · · · tεn · an, a0 ∈ E and t is the first
stable letter in the reduced form of g. Then we have

a−1
n · t−εn · · · · · t−ε1 · a−1

0 · vk · a0 · tε1 · · · · · tεn · an = ul.

Let e be an edge corresponding to the generator t. Denote α(e) by w. Then a−1
0 ·

vk · a0 = wm, otherwise the left-hand side is reduced. By the induction hypothesis,
w ∈ V (Ba). By the definition of Ba, we obtain the equality a = vk = wn, then
m = n because ∆(G) = {1}. Therefore a0 ∈ CG(v

k).
On the left side of the equation t-reductions must continue, therefore t−ε1 ·vk ·tε =

ul, e ∈ E(Ba) and t−ε1 · vk · tε1 = ω(e)s. Consequently ω(e) ∈ V (Ba) and since the
maximal subtrees are coherent, we have vk = ω(e)p, p = s and t ∈ CG(v

k). Then
the induction hypothesis finishes the proof of the proposition. The proposition is
proved.
Proposition 4.4 If a is a vertex element and the maximal subtrees TBa and TA

are coherent then CG(a) = π1(Ba) 6 π1(A).
PROOF. At first we will prove that π1(Ba) ⊆ CG(a). The generator w of the
first type of π1(Ba) is corresponding to some vertex of the graph Ba, therefore
wk = a and [w, a] = 1. Let t ∈ π1(Ba) be a generator of the second type, then,
using coherency of the maximal subtrees, we have that t is a generator of the
second type in the group π1(A). Since α(e), ω(e) ∈ TBa

, then a = α(e)k = ω(e)l

and t−1 · α(e)m · t = ω(e)n. From e ∈ Ba follows m|k. In this case t−1 · a · t =
t−1 · α(e)k · t = t−1 · α(e)m·s · t = ω(e)n·s = t−1 · ω(e)l · t. Therefore l = n · s and
t ∈ CG(a).

Now we need to prove that CG(a) ⊆ π1(Ba). Induction on the number of stable
letters in reduced form of g ∈ CG(a).

Base of induction. If g ∈ E then we can assume that A is a tree. In this case
CG(a) = π1(Ba) by Lemma 13 [12].

Induction step. If element g = a0 · tε1 · · · · · tεn · an ∈ CG(a) is reduced, g, a0 ∈ E
and t is the first stable letter, then

a−1
n · t−εn · · · · · t−ε1 · a−1

0 · vk · a0 · tε1 · · · · · tεn · an = vk.

Arguing as in the proof of Proposition 4.3, we get a−1
0 ·vk ·a0 = ul, where u = α(e)

and e is the edge corresponding to the generator t. Then, by Proposition 4.3, using
coherency of the maximal subtrees, we get u ∈ V (Ba) and a0 ∈ CG(a). By the
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induction hypothesis a0 ∈ π1(Ba). Further, as in Proposition 4.3 t−ε ·vk · tε = ω(e)s

and e ∈ E(Ba). Therefore t ∈ π1(Ba). The proposition is proved.
Corollary 4.5 The center of π1(Ba) contains element a.
Remark 4.6 The center of π1(Bvk) coincides with ⟨vm⟩ for some m|k. Moreover,
Bvm = Bvk .
PROOF. By Proposition 2 [12] and corollary 4.5 we have

⟨vk⟩ 6 Z(π1(Bvk)) 6 Z(π1(TB
vk
)) =

∩
w∈V (B

vk )

⟨w⟩ 6 ⟨v⟩.

Therefore Z(π1(Bvk)) = ⟨vm⟩, m|k and, consequently, Bvm ⊆ Bvk by definition.
Considering the generators of the first and the second types of the group π1(Bvk)
and using vm ∈ Z(π1(Bvk)), it is possible as in the proof of Proposition 4.4, prove
that π1(Bvk) 6 π1(Bvm). Then from the fact that A is reduced it follows that
Bvk ⊆ Bvm . Therefore Bvk = Bvm . The remark is proved.

Remark 4.6. allows us to assume that for every subgraph Ba we can choose
a vertex element c such that Z(π1(Ba)) = Z(π1(Bc)) = ⟨c⟩. It is clear from the
definition that Bc is the maximal subgraph with given center. Therefore, we will
always assume that Z(π1(Bc)) = ⟨c⟩. The subgraphs Bc is called the Z-maximal
subgraphs. The latter well agreed with Proposition 5 and Remark 6 about Z-
maximal subtrees [12].

If g ∈ G is not conjugate to an element of E, then we can choose a cyclic
permutation g0 of g such that CE(g0) = Z(π1(Ba)) for a suitable vertex element a.
Lemma 4.7 Suppose that g is not conjugate to an element of E, then we can choose
a g0 – cyclic permutation of g such that CE(g0) = Z(π1(Ba)) for a suitable vertex
element a.
PROOF. Since g is not conjugate to an element of E, there exists a reduced cyclic
permutation g0 of the element g such that

g0 = a0 · tε1 · a1 · · · · · an−1 · tεn .

If h ∈ CE(g0) then

a0 · tε1 · a1 · · · · · an−1 · tεn · h · t−εn · a−1
n−1 · · · · · a

−1
1 · t−ε1 · a−1

0 · h−1 = 1.

Therefore h ∈ ⟨v⟩, where v is the beginning of the edge corresponding to the
generator t. Thus CE(g0) = ⟨vk⟩. By Proposition 4.4 we get g0 ∈ CG(v

k) = π1(Bvk).
On the other hand, by Remark 4.6 for a suitable m|k we have ⟨vm⟩ ∼= Z(π1(Bvk)) =
Z(π1(Bvm)) and g0 ∈ π1(Bvm). Therefore vm ∈ CE(g0) = ⟨vk⟩ and, consequently,
k = m and CE(g0) = Z(π1(Bvm)). The lemma is proved.
Lemma 4.8 If g ∈ E is not elliptic element then

CG(g) = CE(g) = w−1 · (⟨r⟩ × Z(π1(Ta))) · w.

PROOF. If h ∈ CG(g) then g ∈ CE(h) and if h is not conjugate to an element of E,
then by Lemma 4.7 g is elliptic; a contradiction. Therefore an element h ∈ CG(g)
conjugate to an element of E and has the form h = u−1 · a · u. Moreover, if u ̸∈ E
then the equality

u−1 · a−1 · u · g · u−1 · a · u = g
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implies that g is an elliptic element. This contradicts the hypothesis of the lemma,
therefore u ∈ E. Thus, CG(g) ⊆ E and CG(g) = CE(g). Now the conclusion of the
lemma follows from Corollary 4 and Corollary 12 [12]. The lemma is proved.
Lemma 4.9 Let G be a GBS group, ∆(G) = {1}, elements g, h ∈ G are not
conjugate to elements of E and [g, h] = 1. Then there exist reduced element w ∈ G
and cyclically reduced element r ∈ G such that g = w · g1 · w−1, h = w · h1 · w−1

and g1 = rk · a, h1 = rl · b, where a, b ∈ CE(r).
PROOF. If g and h have no common stable letters, then we can conjugate them so
that

h = b0 · tδ1 · b1 · · · · · bm−1 · tδm , g = a0

and elements a0, b0, b1, . . . , bm−1 have no stable letter t. Then [g, h] = 1 if and only
if

b0 · tδ1 · b1 · · · · · bm−1 · tδm · a0 · t−δm · b−1
m−1 · · · · · b

−1
1 · t−δ1 · b−1

0 = a0.

Therefore g = a0 is a vertex element and belongs to the centralizer CE(h). In this
case we can take g = h0 · a0 and h = h1 · 1.

Suppose that g and h have common stable letter t. Conjugating g and h simulta-
neously, if necessary, we can obtain

h = b0 · tδ1 · b1 · · · · · bm−1 · tδm , g = a0 · tε1 · a1 · · · · · an−1 · tεn · an,

where g is cyclically reduced. It follows from [g, h] = 1 that

a0 · tε1 · a1 . . . an−1 · tεn · an · b0 · tδ1 · b1 . . . bm−1 · tδm =

= b0 · tδ1 · b1 . . . bm−1 · tδma0 · tε1 · a1 . . . an−1 · tεn · an.

Case 1. There are no stable letter t in both sides after t-reductions. Then g ·h =
a ∈ H,m = n and εi = −δn+1−i. Moreover, [g, h] = [a · h−1, h] = [h−1, a] = 1
and it follows from the beginning of the proof that a ∈ CE(h). We need to take
h = h, g = h−1 · a to prove the lemma.

Case 2. There are some t-reductions, but they are not complete. In this case
tδm · a0 · tε1 is possible to reduce, therefore a0 is a vertex element and δm = −ε1.
It follows from the fact that t-reductions are not complete, that there are some t
reductions in g · h · g−1 · h−1 = 1 in subword h · g−1. Therefore tδm · a−1

n · t−εn is
possible to reduce, an is a vertex element and δm = εn = −ε1. Thus, ε1 = −εn and

tεn · an · a0 · tε1 = tδm · an · t−εn · tεn · a0 · tε1

is possible to reduce, this contradicts the cyclic reducibility of g.
Case 3. There are no t-reductions. Then in the left-hand side of the equality

h−1 · g−1 · h · g = 1 there are n + m t-reductions in the middle. Assume that
|g|t > |h|t, then g = g1 · g2 is a reduced form such that |h−1 · g1|t = 0. Therefore
g1 = h · a and g = h · a · g2 = h · g3, where g3 = a · g2 and there are no t-reductions
in h · g3. Moreover, the equality [h, g] = 1 holds if and only if [g3, h] = 1. Arguing
in this way, using the induction on the number min{|g|t, |h|t}, we can assume that
g3 = w · g′3 · w−1, h = w · h′ · w−1 and g′3 = rk · a, h′ = rl · b, where a, b ∈ CE(r). In
this case we have g = h · g3 = w · h′ · g′3 ·w−1, h′ · g′3 = rl · b · rk · a = rk+l · b · a and
b · a ∈ CE(r). The lemma is proved.

Proof of the theorem 1 now follows from Lemmas 4.9, 4.8 and proposition 4.4.
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5. Centralizers of sets: case ∆(G) = {1}

The following lemma is well-known and can be proved using Theorem 2.1 [10,
p. 51] or Lemma 1.1 [14, p. 79].
Lemma 5.1 The product b · a of two elliptic elements a, b is an elliptic element if
and only if a, b stabilize same vertex.
Lemma 5.2 If g1 and g2 are not elliptic elements, then CG(g1, g2) either coincides
with CG(g1) = CG(g2), or is conjugate to Z(π1(Bc)) for a suitable element c.
PROOF. By Lemmas 4.7 – 4.9 we have CG(gi) = w−1

i · (⟨ri⟩ × ⟨ai⟩) · wi, where
⟨ai⟩ = Z(π1(Bai)) = CE(ri) and we can assume, that ri can not be represented as
hk ·u, u ∈ CE(h), |k| > 2. Then the element of CG(g1, g2) have to be represented as

w−1
1 · rk1

1 · al11 · w1 = w−1
2 · rk2

2 · al22 · w2,

or equivalently
rk1
1 · al11 = w−1 · rk2

2 · al22 · w,
for w = w2 · w−1

1 .
If r1 ̸∈ E then r2 ̸∈ E. Up to conjugacy we can assume that r1 is a cyclically

reduced and ends with tε. By the Theorem 2.8 (see [9]) an element rk1
1 · al11 can be

obtained from rk2
2 · al22 by a cyclic permutation, ends with tε up to conjugacy by a

vertex element h such that tε · h · t−ε is reducible. Therefore

rk1
1 · al11 = rk2

3 · al22 ,

where r3 is a cyclic permutation of r2 conjugate by h. Thus, CE(r3) = CE(r2).
If |r1| = |r3| then |k1| = |k2|. Assume that k1 = k2 > 0, then comparing right

normal forms we get r1 = r3 · u, u ∈ E.
If k1 = k2 = 1 then ⟨a1⟩ = CE(r3 · u), ⟨a2⟩ = CE(r3). Moreover, a1 ∈ CE(u) and

a1 ∈ CE(r3) = CE(r2). It follows from the symmetry of notation that a2 ∈ CE(r1)
and, consequently, CE(r1) = CE(r3)

If k1 = k2 > 1 then u · (r3 ·u)k1−1 ·al11 = rk2−1
3 ·al22 . Therefore r−1

3 ·u · r3 = v and
by Proposition 4.3 u = v ∈ CE(r3). Furthermore, arguing as in the previous case,
we obtain CG(r1) = CG(r3).

If |r1| > |r3| ̸= 0 then r1 = rm3 ·r′3, where r3 = r′3 ·r′′3 . In this case (rm3 ·r′3)k1 ·al11 =

rk2
3 · al22 and r′3 · (rm3 · r′3)k1−1 · al11 = rk2−m

3 · al22 . Therefore, comparing the initial
segments of the left and right sides of equality, we get r3 = r′3 · r′′3 = r′′3 · r′3 · u.
Moreover, for k1 > 2 we have

r′3 · u · (r′′3 · r′3 · u)m−1 · r′3 · (rm3 · r′3)k1−2 · al11 = (r′3 · r′′3 )k2−m−1 · al22 .

Again, comparing the initial segments of the left and right sides of equality we get
u · r′′3 · r′3 = r′′3 · r′3 · v. Since u, v ∈ E, it follows from the last equality that u and
v are elliptic. By Proposition 4.3 we have u = v ∈ CE(r1), CE(r3). Therefore, by
reducing u = v if necessary, we can assume that u = 1. By Lemma 4.9 we get
r′3 = rk0 · wl0 and r′′3 = rk3 · wl3 ; a contradiction.

If |r1| = |r3| = 0 then all elements belongs to the subgroup E and we can apply
the Lemma 14 from [12] and the Lemma 4.8, the last case appears. The lemma is
proved.

Thus, there are three types of centralizers:

u−1 · (⟨r⟩ × Z(π1(Ba))) · u, (1)

v−1 · π1(Bb) · v, (2)
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w−1 · Z(π1(Bc)) · w, (3)

for suitable Z-maximal subgraphs Ba, Bb, and Bc.
Lemma 5.3 Given a non-elliptic g1 ∈ G and an elliptic g2 ∈ G. Then CG(g1, g2)
either coincides with CG(g1) of type (1), or is conjugate to Z(π1(Bc)) for an element
c such that Bc ⊇ Ba.
PROOF. By Proposition 4.4 and Lemmas 4.8, 4.9 we can assume that

CG(g1) = w−1
1 · (⟨r1⟩ × Z(π1(Ba))) · w1, CG(g2) = w−1

2 · π1(Bb) · w2.

If g ∈ CG(g1, g2) then w2 · g · w−1
2 ∈ π1(Bb) on the other hand

w2 · g · w−1
2 = w2 · w−1

1 · rk1 · al · w1 · w−1
2 .

After reducing the right-hand side of the last equality, we obtain w · rk · al · w−1.
There w is obtained from w2 · w−1

1 first by reductions in w2 · w−1
1 , and then, if

necessary, by reductions with rk1 · al. Since r1 is a cyclically reduced, then we can
assume that r is obtained from r1 by cyclic permutation so that r ends with tε (this
can be achieved by selecting w).

Let k ̸= 0. Reduced element w−1 · rk · al ·w belongs to π1(Bb) only if r ∈ π1(Bb).
By Lemma 4.7 we get

⟨b⟩ = Z(π1(Bb)) ⊆ CE(r) = Z(π1(Ba)) = ⟨a⟩,

therefore b = ak and, consequently, Bb ⊇ Ba (otherwise we can find v ∈ V (Ba) \
V (Bb) such that vp = aq, but there are no such non-zero integers m,n that vn = bm.
On the other hand, b centralizes v ∈ Ba and we have a contradiction with Lemma
1 [12]). Therefore CG(g1) ⊆ CG(g2).

If k = 0 then for a suitable l ̸= 0 (we can assume that l is minimal) w−1 ·al ·w ∈
π1(Bb). Suppose that after reductions element w−1 ·al ·w takes a form w−1

0 ·al ·w0 ∈
π1(Bb), then w0 ∈ π1(Bb) and al = dk for a suitable element d ∈ V (Bb).

Prove that in this case CG(g1, g2) is conjugate to Z(π1(Bc)). If g ∈ CG(g1, g2)
then we have shown that g is conjugate to al. If ⟨c⟩ = Z(π1(Bal)) then by Remark
4.6 we get c = ak, k|l. On the other hand, Bak ⊇ Ba. We need to take c = ak to
finish the proof. The lemma is proved.

If B1, B2 are two intersecting subgraphs of the graph A, then it is some times
impossible to choose coherent maximal subtrees of A and B1, B2. In this case, we
need to elaborate the embedding of π1(B1) and π1(B2) in π1(A). To do this, consider
the equivalent definition of the fundamental group of the graph of groups [10]:
Definition 5.4 Given a labeled graph A, define a group

F (A) = (∗v∈V (A)⟨v⟩ ∗ F (te, e ∈ E(A)))/N,

where N is a normal closure of t−1
e · (α(e))λe · te · (ω(e))λe , te · te, e ∈ E(A)

Definition 5.5 Given a vertex P ∈ V (A), then π1(A, P ) is a subgroup of F (A)
consisting of the elements of the form g0 · te1 ·g1 · te2 · · · · · ten ·gn, where e1, e2, . . . , en
is a closed path in A with endpoints P , g0 ∈ ⟨P ⟩, gi ∈ Gω(ei).

In terms of definition 5.4 and 5.5 for each v ∈ V (A) we denote the element
te1 · te2 · · · · · ten by γv, where e1, e2, . . . , en is the geodesic path in TA that connects
P and v, γP = 1.
Remark 5.6 (Theorem 16.5 [10]) A map from the set of generators of π1(A, TA)
to π1(A, P ) given by the rules

v → γv · v · γ−1
v , v ∈ V (A), te → γα(e) · te · γ−1

ω(e), e ∈ E(A)
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can be extended to isomorphism φP : π1(A, TA) → π1(A, P ).
If B1 and B2 are two intersecting subgraphs of the graph A, then we can take

P ∈ B1 ∩B2. Then groups π1(B1, P ) and π1(B2, P ) can be naturally embedded in
π1(A, P ). Therefore we can denote by π1(B1) and π1(B2) the images of π1(B1, P )
and π1(B2, P ) in π1(A, TA) under φP .
Remark 5.7 It is clear from Remark 5.6 that the isomorphism φP depends on
the choice of P . It is easy to understand that φP can be obtained from φQ by the
conjugation by te1 · te2 · · · · · tem , where e1, e2, . . . , em is a geodesic path in TA joining
P and Q. Therefore π1(B1) and π1(B2) are defined up to the conjugation.
Remark 5.8 If B1, B2 are two non-intersecting subgraphs of the graph A, then it
is possible to choose coherent maximal subtree TA, TB1 and TB2 . In this case π1(B1)
and π1(B2) can be defined as the images under the trivial embedding.
Lemma 5.9 If P ∈ Ba ∩ Bb then π1(Ba, P ) ∩ π1(Bb, P ) = π1(B, P ), where B is a
connected component of Ba ∩Bb containing the vertex P .
PROOF. Follows from the definition 5.5 directly.
Lemma 5.10 Given elliptic elements g1, g2. Suppose that g1 is conjugate to the
vertex element a, g2 is conjugate to the vertex element b. Then CG(g1, g2) is either
conjugate to π1(B), where B is a suitable connected component Ba∩Bb, or conjugate
to Z(π1(Bc)) for a suitable vertex element c.
PROOF. If g ∈ CG(g1, g2) then it follows from proposition 4.4 that g ∈ π1(Ba) ∩
w−1 · π1(Bb) · w up to conjugacy. Write a reduced form of w: w = r1 · r2 · r3 such
that r1 ∈ π1(Bb), r3 ∈ π1(Ba) and r2 is a word of the minimal length such that
r2 ̸∈ π1(Bb) ∩ π1(Ba).

If r2 = 1 and Ba ∩ Bb ̸= ∅ then by Lemma 5.9 CG(g1, g2) is conjugate to
π1(Ba) ∩ π1(Bb) = π1(B), where B is a suitable connected component Ba ∩Bb.

If r2 = 1 and Ba ∩ Bb = ∅ then π1(Ba) and π1(Bb) are defined by Remark 5.8
as natural subgroups of π1(A). Moreover, g ∈ π1(Ba) ∩ π1(Bb) only if g = h1 = h2,
for h1 ∈ π1(Ba), h2 ∈ π1(Bb). This equality does not hold if h1 and h2 are non-
elliptic. To prove this we can find a subgroup G1 of the group G such that G1

is an amalgamated product of A and B with amalgamated subgroup C ∼= Z and
π1(Ba) ↪→ A, π1(Bb) ↪→ B. The element g ∈ π1(Ba) ∩ π1(Bb) have to belong to the
vertex group C.

Therefore we can assume that hi = s−1
i · vki

i · si, i = 1, 2. Then by Proposition
4.3 this equality implies v2 ∈ V (B

v
k1
1
) and vk1

1 = vk2
2 . If ⟨vk1

1 ⟩ ⊂ Z(π1(Bv
k1
1
)) =

⟨vl11 ⟩, then vl11 ∈ π1(Ba)∩ π1(Bb). On the other hand, this intersection is generated
by vk1

1 ; a contradiction. Hence the subgroup ⟨vk1
1 ⟩ = Z(π1(Bv

k1
1
)) is conjugate to

π1(Ba) ∩ π1(Bb) and vk1
1 = c.

If r2 ̸= 1 then g = h1 = r−1
2 · h2 · r2. In this case the proof is similar. The lemma

is proved.
Lemma 5.11 Given a non-elliptic element g, and CG(g) is of the type (1). Then
the intersection CG(g) ∩ w−1 · Z(π1(Bc)) · w = H is conjugate to Z(π1(Bb)) for a
suitable Bb ⊇ Bc, Bb ⊇ Ba.
PROOF. By Lemmas 4.7 – 4.9 the element h ∈ H up to conjugacy belongs to
⟨r⟩×⟨a⟩∩w−1·Z(π1((B)c))·w = ⟨r⟩×⟨a⟩∩w−1·⟨c⟩·w. Hence h = rk ·al ∈ w−1·⟨c⟩·w.
Therefore h is an elliptic element and k = 0. We get h = al = w−1 · c · w. By
Proposition 4.3 a ∈ V (Bcm), c ∈ V (Bal). Thus, cm = al ∈ CE(w). Let m, l be a
minimal pair satisfying this equation (this is a well-defined condition, since all such



COMPUTATION OF THE CENTRALIZER DIMENSION 1835

pairs are proportional), denote cm = al by b. We can assume that Z(π1(Bb)) = ⟨b⟩,
otherwise we can find k|l, k < l as in Remark 4.6 such that ak ∈ Z(π1(Bb)), in
particular ak = cs, this contradicts minimality. The lemma is proved.
Lemma 5.12 The intersection w−1

1 ·Z(π1(Ba))·w1∩w−1
2 ·Z(π1(Bb))·w2 is conjugate

to Z(π1(Bc)) for a suitable Bc ⊇ Ba, Bc ⊇ Bb.
PROOF. As in Lemma 5.11.
Lemma 5.13 Given an elliptic element g, then the intersection CG(g) ∩ w−1 ·
Z(π1(Bc)) · w = H is conjugate to Z(π1(Ba)) for a suitable Ba ⊇ Bc such that
Ba ∩Bb ̸= ∅.
PROOF. The element h ∈ H up to conjugacy belongs to π1(B)∩w−1

1 ·Z(π1(Bc))·w1.
Therefore h is an elliptic element of π1(B). Using conjugation of h, if necessary, we
get h = vk = w−1

2 · cl ·w2 for a suitable v ∈ V (B) and a minimal pair k, l. Arguing
as in the proof of Lemma 5.11, one can understand that h = vk = cl ∈ CG(w2) and
⟨vk⟩ = Z(π1(Bvk)). If we take a = vk = cl then we get Ba ⊇ Bc and v ∈ V (Ba∩B).
The lemma is proved.

In this section we described the intersection of centralizers and proved the
theorem 2.

6. Embeddings of centralizers: case ∆(G) = {1}

Proposition 6.1 Given non-elliptic elements g1, g2 ∈ G, elliptic elements h1, h2 ∈
G, Z-maximal subgraphs Bc1 , Bc2 . If CG(gi) = w−1

i · (⟨ri⟩ × Z(π1(Bai))) · wi,

CG(hi) = u−1
i · π1(Bbi) · ui, v

−1
i · Z(π1(Bci)) · vi, i = 1, 2 are the centralizers of

type (1), (2) and (3) respectively, then
1. CG(g1) ̸⊃ CG(g2),
2. If CG(g1) ⊃ CG(h1) then Bb1 = {b1},
3. If CG(g1) ⊃ v−1

1 · Z(π1(Bc1)) · v1 then Bc1 ⊇ Ba1 ,
4. If CG(h1) ⊃ CG(g1) then r1 ∈ π1(Bb1), Ba1 ⊆ Bb1 ,
5. If CG(h1) ⊃ CG(h2) then Bb1 ⊃ Bb2 ,
6. If CG(h1) ⊃ v−1

1 · Z(π1(Bc1)) · v1 then Bb1 ∩Bc1 ̸= ∅,
7. v−1

1 · Z(π1(Bc1)) · v1 ̸⊃ CG(g1),
8. v−1

1 · Z(π1(Bc1)) · v1 ̸⊃ CG(h1),
9. If v−1

1 · Z(π1(Bc1)) · v1 ⊃ v−1
2 · Z(π1(Bc2)) · v2 then Bc2 ⊃ Bc1 .

PROOF. 1. If CG(g1) ⊃ CG(g2), then CG(g2) = CG(g1, g2) and by Lemma 5.2
CG(g2) is either coincide with CG(g1) = CG(g2), this is impossible because of strict
inclusion, or a cyclic group. The latter is impossible since by Lemmas 4.8 and 4.9
CG(g2) ∼= Z× Z.
2. If CG(g1) ⊃ CG(h1), then CG(h1) = CG(g1, h) and by Lemma 5.3 CG(h1) is
either coincide with CG(g1), this is impossible because of strict inclusion, or a
cyclic group. Since A is a reduced labeled graph, then the latter is possible only if
Bb1 = {b1}.
3. If CG(g1) ⊃ v−1

1 · Z(π1(Bc1)) · v1 then v−1
1 · Z(π1(Bc1)) · v1 = v−1

1 · Z(π1(Bc1)) ·
v1 ∩ CG(g1) and by Lemma 5.11 the latter is conjugate to Z(π1(Bd)) and Bd ⊇
Bc1 , Bd ⊇ Ba1 . Thus, the center of π1(Bc1) is conjugate to π1(Bd), therefore the
element c1 is conjugate to the element d and by Proposition 4.3 we get c1 = d.
Finally, we get Bc1 ⊇ Ba1 .
4. If CG(h1) ⊃ CG(g1) then CG(g1) = CG(g1, h1) and by Lemma 5.3 the latter is
either coincide with CG(g1), or conjugate to Z(π1(Bd)). In the first case r1 ∈ π1(Bb1)
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and CE(r1) = ⟨a1⟩ = Z(π1(Ba1)) ⊇ Z(π1(Bb1)). Therefore Bb1 ⊇ Ba1 . In the
second case CG(g1) = CG(g1, h1) is a cyclic group. But by Lemmas 4.8 and 4.9
CG(g1) ∼= Z× Z; a contradiction.
5. If CG(h1) ⊃ CG(h2) then CG(h2) = CG(h1, h2) and by Lemma 5.10 the latter
is either conjugate to π1(B), or a cyclic group. In the first case B is a connected
component of Bb1 ∩ Bb2 , then B = Bb2 and Bb1 ⊃ B = Bb2 . In the second case
Bb2 = {b2} ⊂ Bb1 .
6. If CG(h1) ⊃ v−1

1 · Z(π1(Bc1)) · v1 then v−1
1 · Z(π1(Bc1)) · v1 = v−1

1 · Z(π1(Bc1)) ·
v1 ∩ CG(h1) and by Lemma 5.13 the latter is conjugate to Z(π1(Bd)), where Bd ⊇
Bc1 , Bd ∩ Bb1 ̸= ∅. Hence Z(π1(Bd)) is conjugate to Z(π1(Bc1)). Therefore c1 = d
and Bb1 ∩Bc1 ̸= ∅.
7. If v−1

1 · Z(π1(Bc1)) · v1 ⊃ CG(g1) then CG(g1) = CG(g1) ∩ v−1
1 · Z(π1(Bc1)) · v1

and by Lemma 5.11 CG(g1) is a cyclic group. The latter is impossible because by
Lemmas 4.8 and 4.9 CG(g1) ∼= Z× Z.
8. If v−1

1 · Z(π1(Bc1)) · v1 ⊃ CG(h1) then CG(h1) = CG(h1) ∩ v−1
1 · Z(π1(Bc1)) · v1

and by Lemma 5.13 CG(h1) is a cyclic group. Therefore Bb1 = {b1}, b1 ∈ V (A)
and Z(π1(Bc1)) is conjugate to ⟨b1⟩. Hence c1 = b1 by Proposition 4.3 and v−1

1 ·
Z(π1(Bc1)) · v1 = CG(h1), this is impossible because of strict inclusion.
9. If v−1

1 · Z(π1(Bc1)) · v1 ⊃ v−1
2 · Z(π1(Bc2)) · v2 then v−1

2 · Z(π1(Bc2)) · v2 =
v−1
1 ·Z(π1(Bc1)) ·v1∩v−1

2 ·Z(π1(Bc2)) ·v2 and by Lemma 5.12 the latter is conjugate
to Z(π1(Bc)). Therefore c2 = c and Z(π1(Bc1)) ⊃ Z(π1(Bc2)). Thus, Bc2 ⊃ Bc1 .
The proposition is proved.
Remark 6.2 In the chain CG(A1) ⊃ CG(A2) ⊃ · · · ⊃ CG(An), where Ai is a finite
set of elements of G, the first k, 0 6 k 6 n centralizers have to be of type (2), then
one can be of type (1) and the rest is of type (3).
Remark 6.3 Any strictly descending chain of centralizers of type (2) corresponds
to a strictly descending chain of Z-maximal subgraphs

CG(A1) ⊃ CG(A2) ⊃ . . . ⊃ CG(An)
Bb1 ⊃ Bb2 ⊃ . . . ⊃ Bbn .

Remark 6.4 Any strictly descending chain of centralizers of type (3) corresponds
to a strictly ascending chain of Z-maximal subgraphs

CG(C1) ⊃ CG(C2) ⊃ . . . ⊃ CG(Cl)
Bc1 ⊂ Bc2 ⊂ . . . ⊂ Bcl .

7. Centralizer dimension: case ∆(G) = {1}

PROOF of the theorem 3. By Remark 6.2 any centralizer chain has the form

(2) ⊃ (2) ⊃ · · · ⊃ (2) ⊃ (1) ⊃ (3) ⊃ (3) ⊃ · · · ⊃ (3)

or
(2) ⊃ (2) ⊃ · · · ⊃ (2) ⊃ (3) ⊃ (3) ⊃ · · · ⊃ (3),

where (1), (2) or (3) denotes the type of centralizer. The finiteness of such chains
follows from Remarks 6.3 and 6.4.

Suppose that the maximal chain has the form (2) ⊃ (2) ⊃ · · · ⊃ (2) ⊃ (3) ⊃
(3) ⊃ · · · ⊃ (3), then by Remark 6.3 centralizer subchain of type (2) corresponds to
a maximal descending chain of Z-maximal subgraphs. Because of the maximality
of the chain of subgraphs, the last Z-maximal subgraph in the chain consists of
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one vertex (because of A is reduced). Therefore, the last centralizer of type (2) has
also type (3). Suppose that the longest chain of Z-maximal subgraphs consists of
s graphs, then s 6 |E(A)| + 1. Similarly, by Remark 6.4, in the maximal chain
of centralizers of type (3) there are s elements. Since one element is common, the
centralizer dimension is equal to 2 · s− 1 6 2 · |E(A)|+ 2− 1.

In the case when the maximal chain has the form (2) ⊃ (2) ⊃ · · · ⊃ (2) ⊃
(1) ⊃ (3) ⊃ (3) ⊃ · · · ⊃ (3), we can act the same way. It only needs to be noted
that a centralizer of type (1) is not contained in Z and not contain the vertex
group, because by Proposition 6.1.3 Bc1 ⊇ Ba1 , ⟨a1⟩ = CE(r) and r is not elliptic.
Therefore CE(r) does not coincide with ⟨v⟩, v ∈ V (A). Hence the maximal length of
the centralizer subchains of type (2) and (3) is equal to s−1. Thus, cdim(π1(A)) =
2 · (s− 1) + 1 = 2 · s− 1 6 2 · |E(A)|+ 1.

It remains to give examples of labeled graphs Bm,n. The idea is that the chain
of Z-maximal subgraphs is need to have length l, 2 6 l 6 m+ 1, then k = 2 · l− 1.

Fig. 3. Labeled graphs Bm,n, for l 6 n.

In the case l 6 n (see fig. 4) Ti = ⟨e1, . . . , ei, f1, . . . , fn−m⟩ are Z-maximal
subgraphs forming the desired maximal chain and Z(π1(Ti)) = ⟨a2i⟩, i = 1, 2, . . . , l−
1, n.

Fig. 4. Labeled graphs Bm,n, for m > l = n+ r > n.

In the case m > l = n+ r > n (see fig. 5) Ti = ⟨e1, . . . , ei⟩, Sj = ⟨Tn, f1, . . . , fj⟩
are Z-maximal subgraphs forming the desired maximal chain and Z(π1(Ti)) =

⟨a2i⟩, i = 1, 2, . . . , n, Z(π1(Sj)) = ⟨a2n·3j ⟩, j = 1, . . . , r − 1,m− n. The Proposition
is proved.

Using the labeled graphs constructed in the proof of Theorem 3, the following
remark can be proved.
Remark 7.1 Given a finite connected graph A. For any odd k, 3 6 k 6 2|E(A)|+1
we can choose labeling of the edges of A so that cdim(π1(A)) = k.
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8. Centralizer dimension: case ∆(G) = {±1}

If ∆(G) = {±1} then Ker∆ = G1 is a GBS group and a subgroup of index 2 of
G. Denote by A1 the labeled graph as in fig. 6. Given a generator of second type
t of G ∼= π1(A) such that ∆(t) = −1. Relations of second type in π1(A) have the
form

t−1
i · bαi

i · ti = aβi

i , i = 1, 2, . . . , b1(A)− 1, t−1 · bα · t = aβ .

Describe labeled graph A1. We can assume that ∆(ti) = −1 for 1 6 i 6 k,
∆(tj) = 1 for k+1 6 j 6 b1(A)−1. To each generator of the first type v of G there
correspond two generators of the first type v, v′ of π1(A1). To each edge e ∈ E(TA)
there correspond two edges e, e′ of the maximal subtree T (A1). Moreover, there is a
special edge f with endpoints a and b′ and the same labels as on the edge t in T (A1).
There are no more edges in T (A1). To each edge ti, i = 1, 2, . . . , b1(A) − 1 outside
the maximal subtree in A there correspond two edges si, ri, i = 1, 2, . . . , b1(A) − 1
outside the maximum subtree in A1. The edges si have endpoints bi and a′i; the
edges ri have endpoints ai and b′i for 1 6 i 6 k, The edges sj have endpoints bj
and aj ; the edges rj have endpoints a′i and b′i for k + 1 6 j 6 b1(A) − 1. Finally,
there is one more edge t′ outside maximal subtree of A1 with endpoints b and a′.

Fig. 5. Labeled graphs A1 and A.

The labels on the corresponding edges are placed as in A. Therefore relations of
the first type in π1(A1) have form

uλ = vµ, (u′)λ = (v′)µ,
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for all relations of the first type of uλ = vµ in π1(A), plus the relation aβ = (b′)α.
The relations of the second type in π1(A1) have form

s−1
i · (a′i)

βi · si = bαi
i , i = 1, 2, . . . , k,

r−1
i · (b′i)

αi · ri = aβi

i , i = 1, 2, . . . , k,

s−1
j · b

αj

j · sj = a
βj

j , j = k + 1, . . . , b1(A)− 1

r−1
j · (b′j)

αj · rj = (a′j)
βj , j = k + 1, . . . , b1(A)− 1,

(t′)−1 · bα · t′ = (a′)β .

The constructed graph A1 is a two-sheeted covering of A.
Proposition 8.1 Group G1 is isomorphic to π1(A1).
PROOF. We construct a map φ on the set of generators π1(A1) in G by the rule

φ :

si → t−1 · t−1
i , i = 1, 2, . . . , k,

ri → t−1 · ti, i = 1, 2, . . . , k,
sj → ti, j = k + 1, . . . , b1(A)− 1,
rj → t−1 · tj · t, j = k + 1, . . . , b1(A)− 1,
v → v, v ∈ V (TA),
v′ → t−1 · v · t, v ∈ V (TA),
t′ → t2.

This map extends to a homomorphism because the relations of π1(A1) pass to
identity of G. Prove that G1 = Imφ.

It is easy to see that ∆(φ(g)) = 1 for any generator g of π1(A1), therefore
G1 ⊇ Imφ. In addition, it can be noted that Imφ is a subgroup of index 2 in G
with the coset representatives 1 and t. Therefore G1 = Imφ.

Show that Kerφ = {id}. Suppose that reduced element g belongs to Kerφ. If
g ̸= id then either φ(g) belongs to E and reducible, or by Britton’s Lemma [9]
there is a subword of the form t−1

i · a · ti = b in φ(g). It is easy to understand that
in both cases similar reduction should be in the word g of π1(A1), this contradicts
reducibility. The proposition is proved.
Proposition 8.2 The maximal chains of Z-maximal subgraphs in A1 have the same
lengths as in A.
PROOF. At first we prove that if Bc is a Z-maximal subgraph of A1 and there is
a pair v, v′ ∈ V (Bc), then w ∈ V (Bc) if and only if w′ ∈ V (Bc).

By definition of Bc there are two integers k, k′ such that vk = c = (v′)k
′
. It

follows from Proposition 8.1 that k = k′. If w ∈ V (Bc) then wl = c = vk = (v′)k.
Since wl = vk then (w′)l = (v′)k. Therefore wl = c = (w′)l. Hence w′ ∈ V (Bc). To
prove the converse implication we can argue the same way.

Therefore each Z-maximal subgraph either has no pair v, v′ of the vertices
(consequently, it’s vertex number is less then |V (A)|+ 1), or contains B ∪B′ for a
suitable Z-maximal subgraph B of the labeled graph A. Therefore a maximal chain
of Z-maximal subgraphs has the same length as in A. The proposition is proved.
Corollary 8.3 The centralizer dimension of π1(A1) is equal to the centralizer
dimension of π1(A).
Remark 8.4 Given a GBS group G such that ∆(G) = {±1}. If g ∈ G,∆(g) = −1
then CG(g) = ⟨r⟩, where g = rm,m is odd and an element r is not a power of some
other element.



1840 F.A. DUDKIN

PROOF. Arguing as in the proof of the Lemma 4.9 we can show that CG(g) =
⟨r⟩ × CE(r). But CE(g) = {1} because of CE(g) consists of vertex elements and
∆(g) = −1. The remark is proved.
PROOF of the theorem 4. The group G = π1(A) has a trivial center. Therefore
there is a centralizer chain

G = CG(1) ⊃ CG(g1) ⊃ · · · ⊃ CG(g1, . . . , g2s+1) ⊃ {1} = CG(t, g1, . . . , g2s+1)

of the length 2 · s + 3, where s is the length of the maximal chain of Z-maximal
subgraphs in A1. Suppose that there exists a longer chain

G = CG(1) ⊃ C1 ⊃ · · · ⊃ Ck ⊃ {id} = CG(t, h1, . . . , hr).

If C1, . . . , Cl ̸⊆ G1 then there is g ∈ Ci, 1 6 i 6 l such that ∆(g) = −1. Since
g ∈ Ci = CG(g1, . . . , gi−1, g) and CG(g) = ⟨r⟩ then by remark 8.4 we have gi ∈ ⟨r⟩.
However, CG(g

m) is coincide either with ⟨r⟩ for odd m, or with ⟨r⟩ × ⟨a⟩ for even
m (there CE(r

2) is generated by a). Therefore l 6 2 and the length of the chain is
less then 5.

Suppose that the length is equal to 4. If the length of the chain of Z-maximal
subgraphs in A greater or equal to 2, then we know how to construct the centralizer
chain of the length 2 · 2 + 1 and 4 is not maximal. Suppose that the length of the
chain of Z-maximal subgraphs in A is equal to 1. Since A is a reduced labeled graph,
we get |V (A)| = 1. Moreover, the labels equal to 1 or −1. Hence π1(A) contains
subgroup H of index 2 isomorphic to Fn × Z. This subgroup H corresponds to
two-sheeted covering (as in fig. 6). If n > 2 then cdim(H) = 3 and centralizer chain
constructed at the beginning of the proof has the length equals to 5. If n = 1 then
H is an abelian group and cdim(G) can not be equal to 4.

Therefore the length of the chain is not greater than 3. However, 3 is a minimal
centralizer dimension of non-abelian group, this contradicts to the minimality.
Therefore l = 0.

Examples can be constructed as in fig. 4 and 5, changing a sign of one suitable
label. The theorem is proved.
PROOF of the remark 5. At first we need to compute ∆(π1(A)). If ∆(π1(A)) ̸⊆ {±1}
then by Theorem 3.2 either cdim(π1(A)) = ∞, or π1(A) ∼= BS(1, n), cdim(π1(A)) =
3.

If ∆(π1(A)) ⊆ {±1} then, starting from an arbitrary vertex, one can find a
chain of Z-maximal subgraphs. Then, as in Theorems 3 and 4, we can compute
cdim(π1(A)). The remark is proved.
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