СИБИРСКИЕ ЭЛЕКТРОННЫЕ MATEMAТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

COMPUTATION OF THE CENTRALIZER DIMENSION OF GENERALIZED BAUMSLAG-SOLITAR GROUPS

F.A. DUDKIN

Abstract

A finitely generated group G acting on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag-Solitar group ($G B S$ group). The centralizer dimension of a group G is the maximal length of a descending chain of centralizers. In this paper we complete a description of centralizers for unimodular $G B S$ groups. This allows us to find the centralizer dimension of all $G B S$ groups and to establish a way to compute it.

Keywords: centralizer of set of elements, centralizer dimension, generalized Baumslag-Solitar group, Baumslag-Solitar group.

1. InTRODUCTION

A finitely generated group G acting on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag-Solitar group ($G B S$ group). By the Bass-Serre Theorem, G is representable as $\pi_{1}(\mathbb{A})$, the fundamental group of a graph of groups $\mathbb{A}[1]$ whose vertex and edge groups are infinite cyclic.

GBS groups are important examples of JSJ decompositions. JSJ decompositions appeared first in 3-dimensional topology with the theory of the characteristic submanifold by Jaco-Shalen and Johannson. These topological ideas were carried over to group theory by Kropholler for some Poincaré duality groups of dimension at least 3, and by Sela for torsion-free hyperbolic groups. In this group-theoretical context, one has a finitely generated group G and a class of subgroups \mathcal{A} (such as cyclic groups, abelian groups, etc.), and one tries to understand splittings (i.e. graph of groups decompositions) of G over groups in \mathcal{A} (see [2] for details).

[^0]With each $G B S$ group G, we can associate a labeled graph \mathbb{A}, a particular case of a graph of groups. Such a labeled graph corresponds to an action of G on a tree and defines a presentation of G (more details on labeled graphs and their properties are given in [3]). The necessary definitions and properties are given in section 1.

As was observed by Robinson in [4], the $G B S$ groups occupy central positions in combinatorial group theory due to the following properties: noncyclic $G B S$ groups are exactly those finitely generated groups of cohomological dimension 2 having a commensurable cyclic subgroup; $G B S$ groups are coherent (each finitely generated subgroup admits a finite presentation).

Let G be a group and let M be a subset of G. Denote by $C(M)$ the centralizer of M in G :

$$
C(M)=\left\{g \in G \mid g^{-1} m g=m, \text { for all } m \in M\right\} .
$$

Suppose that a group G has a strictly descending chain of centralizers $C_{1} \supset C_{2} \supset$ $\cdots \supset C_{d}$ of length d, i.e., a chain containing exactly d elements, but G does not have such a chain of length $d+1$. Then the centralizer dimension $\operatorname{cdim}(G)$ equals d. If there is no such number d then we put $\operatorname{cdim}(G)=\infty$. More complete information on the centralizer dimensions of groups can be found in [5]. It is noticed in [6] that $\operatorname{cdim}(G)$ coincides with the centralizer lattice height.

In [13], Proposition 4.1 G. Levitt proved that a $G B S$ group G is unimodular (i.e. such $G B S$ groups G that $\Delta(G)=\{ \pm 1\}$) if and only if G contains a subgroup of finite index isomorphic to $F_{n} \times \mathbb{Z}$. Therefore, the results of [5] imply that unimodular $G B S$ groups have finite centralizer dimension. However, such an approach gave no exact estimates, no examples and no way to calculate the centralizer dimension of $G B S$ groups.

In [12] centralizers of sets of elements and centralizer dimension were described for $G B S$ groups presented by labeled trees. In section 3 we describe the centralizers of elements for all $G B S$ groups with $\Delta(G)=\{1\}$.
Theorem 1 Let G be a GBS group, $\Delta(G)=\{1\}$. If $g \in G$ is not elliptic element then

$$
C_{G}(g)=u^{-1} \cdot\left(\langle r\rangle \times Z\left(\pi_{1}\left(\mathbb{B}_{a}\right)\right)\right) \cdot u
$$

for a suitable vertex element a and $u, r \in G$.
If $g \in G$ is elliptic element then

$$
C_{G}(g)=v^{-1} \cdot \pi_{1}\left(\mathbb{B}_{b}\right) \cdot v
$$

for a suitable vertex element b and $u \in G$.
In section 4 the description of centralizers of sets of elements in the case $\Delta(G)=$ $\{1\}$ established.
Theorem 2 Let G be a $G B S$ group, $\Delta(G)=\{1\}$. If M is the finite set of elements from G, then $C_{G}(M)$ can be one of the three types:

$$
\begin{gathered}
u^{-1} \cdot\left(\langle r\rangle \times Z\left(\pi_{1}\left(\mathbb{B}_{a}\right)\right)\right) \cdot u \\
v^{-1} \cdot \pi_{1}\left(\mathbb{B}_{b}\right) \cdot v \\
w^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right) \cdot w
\end{gathered}
$$

for a suitable $u, v, w, r \in G$ and Z-maximal subgraphs B_{a}, B_{b}, and B_{c}.
In sections 6 and 7 we provide a description of centralizer dimension for unimodular $G B S$ groups. Considering the results of section 2, theorems 3 and 4 complete description of centralizer dimension for all $G B S$ groups.

Theorem 3 Given a reduced labeled graph \mathbb{A} such that $\pi_{1}(\mathbb{A})$ is non-abelian group, $\Delta\left(\pi_{1}(\mathbb{A})\right)=\{1\}$ and $b_{1}(A)=n$. Then $\operatorname{cdim}\left(\pi_{1}(\mathbb{A})\right)$ is odd and

$$
3 \leqslant \operatorname{cdim}\left(\pi_{1}(\mathbb{A})\right) \leqslant 2 \cdot|E(A)|+1
$$

Moreover, for every odd $k, 3 \leqslant k \leqslant 2 \cdot m+1$ there exists a labeled graph $\mathbb{B}_{m, n}$ with m edges such that $b_{1}\left(B_{m, n}\right)=n \leqslant m, \Delta\left(\pi_{1}\left(\mathbb{B}_{m, n}\right)\right)=\{1\}$ and $\operatorname{cdim}\left(\pi_{1}\left(\mathbb{B}_{m, n}\right)\right)=k$.
Theorem 4 Given a reduced labeled graph \mathbb{A} such that $\pi_{1}(\mathbb{A})$ is non-abelian group, $\Delta\left(\pi_{1}(\mathbb{A})\right)=\{ \pm 1\}$ and $b_{1}(A)=n$. Then $\operatorname{cdim}\left(\pi_{1}(\mathbb{A})\right)$ is odd and

$$
3 \leqslant \operatorname{cdim}\left(\pi_{1}(\mathbb{A})\right) \leqslant 2 \cdot|E(A)|+3
$$

Moreover, for every odd $k, 3 \leqslant k \leqslant 2 \cdot m+3$ there exists a labeled graph $\mathbb{B}_{m, n}$ with m edges such that $1 \leqslant b_{1}\left(B_{m, n}\right)=n \leqslant m, \Delta\left(\pi_{1}\left(\mathbb{B}_{m, n}\right)\right)=\{ \pm 1\}$ and $\operatorname{cdim}\left(\pi_{1}\left(\mathbb{B}_{m, n}\right)\right)=k$.

Since the proofs are constructive, we do not just describe the centralizer dimension for $G B S$ groups, but also establish a way to compute it.
Remark 5 Given a labeled graph \mathbb{A}. There is an algorithm to compute $\operatorname{cdim}\left(\pi_{1}(\mathbb{A})\right)$.
The author is grateful to V. A. Churkin for valuable comments and advice.

2. Preliminaries

A graph A is the vertex set $V(A)$, the edge set $E(A)$, the mappings $\alpha, \omega: E(A) \rightarrow$ $V(A)$, are sending an edge to its beginning and end, and an inversion ${ }^{-}: E(A) \rightarrow$ $E(A)$ such that $\alpha(\bar{e})=\omega(e), \omega(\bar{e})=\alpha(e), \overline{\bar{e}}=e, \bar{e} \neq e$. An edge path is a sequence of edges $p=\left(e_{1}, e_{2}, \ldots, e_{k}\right)$ such that $\alpha\left(e_{i+1}\right)=\omega\left(e_{i}\right)$ for $i=1,2, \ldots, k-1$.

If A is a tree then for every two vertices a and b there exists a unique shortest path with beginning a and end b. We will refer to this path as geodesic and denote it by $a-b$.

Given a $G B S$ group G, we can present the corresponding graph of groups by a labeled graph $\mathbb{A}=(A, \lambda)$, where A is a finite connected graph and $\lambda: E(A) \rightarrow$ $\mathbb{Z} \backslash\{0\}$ labels the edges of A. The label λ_{e} of an edge e with the origin v defines an embedding $\alpha_{e}: e \rightarrow v^{\lambda_{e}}$ of the cyclic edge group $\langle e\rangle$ into the cyclic vertex group $\langle v\rangle$ (for more details see [3])

The fundamental group $\pi_{1}(\mathbb{A})$ of a labeled graph $\mathbb{A}=(A, \lambda)$ is defined by generators and defining relations. Denote by \bar{A} the graph obtained from A by identifying e and \bar{e}. The maximal subtree T in \bar{A} defines the presentation of the group $\pi_{1}(\mathbb{A})$

$$
\left\langle\begin{array}{l|l}
g_{v}, v \in V(\bar{A}), & g_{\alpha(e)}^{\lambda(e)}=g_{\omega(e)}^{\lambda(\bar{e})}, e \in E(T), \\
t_{e}, e \in E(\bar{A}) \backslash E(T) & t_{e}^{-1} g_{\alpha(e)}^{\lambda(e)} t_{e}=g_{\omega(e)}^{\lambda(\bar{e})}, e \in E(\bar{A}) \backslash E(T)
\end{array}\right\rangle
$$

For different maximal subtrees, the corresponding presentations define isomorphic groups. Denote the number $|E(\bar{A}) \backslash E(T)|$ of generators of second type by $b_{1}(A)$. That is a first Betti number of graph A. If A is a tree then $\pi_{1}(\mathbb{A})$ admits the presentation

$$
\left\langle g_{v}, v \in V(\bar{A}), \mid g_{\alpha(e)}^{\lambda(e)}=g_{\omega(e)}^{\lambda(\bar{e})}, e \in E(T)\right\rangle
$$

In what follows, we for convenience denote by v the vertex of the graph as well as the corresponding generator g_{v} of the fundamental group. To each connected subgraph B of a graph A, there naturally corresponds the labeled graph \mathbb{B}, where the natural homomorphism $\pi_{1}(\mathbb{B}) \rightarrow \pi_{1}(\mathbb{A})$ is an embedding.

A group is said to be Hopfian if any homomorphism of the group onto itself has trivial kernel, i.e. is an automorphism. Baumslag and Solitar [8] came up with a series of examples of two-generator one-relator non-Hopfian groups. In particular, such are the Baumslag-Solitar groups

$$
B S(p, q)=\left\langle x, y \mid x y^{p} x^{-1}=y^{q}\right\rangle
$$

where p and q are coprime integers, $p, q \neq 1$.
If a labeled graph \mathbb{B} consists of one vertex and two inverse loops with labels p and q, then $\pi_{1}(\mathbb{B}) \cong B S(p, q)$. Therefore, every Baumslag-Solitar group is a generalized Baumslag-Solitar group.

It is sometimes useful to regard a GBS-group as a group obtained as follows: start with the group \mathbb{Z}, perform consecutive amalgamated products in accordance with the labels on the maximal subtree; finally, apply several times the construction of the HNN-extension (the number of times is equal to the number of the edges outside the maximal tree). In this approach, the standard theory of amalgamated products and HNN-extensions is applicable to the full extent. In particular, GBSgroups admit a normal form of an element and have no torsion.

We say that word w in generators of group $\pi_{1}(\mathbb{A})$ is reduced, if it is reduced as a word of $H N N$-extension with respect to all generators of second type. In other words, the word w is reduced if it can not be written using a smaller number of generators of second type. The word w is called cyclically reduced, if all cyclic permutations (in the usual sense of HNN-extensions) of w are reduced.

Given the generator of second type t and reduced word w, the number of occurrences of symbols t, t^{-1} in w is called t-length of w and denoted by $|w|_{t}$. If the value of t is clear from the context, then we write $|w|$ and call this number the length of the word w. Such a notation is well-defined because $\pi_{1}(\mathbb{A})$ is an $H N N$-extension with a stable letter t (here any generator of second type can be taken). We will also use the right normal form (see [9]), considering the group $\pi_{1}(\mathbb{A})$ as an $H N N$-extension.

In accordance with [7], call an element elliptic if it is conjugate to an element of $\langle a\rangle$ for some $a \in V(A)$; otherwise, the element is called hyperbolic. An elliptic element is called a vertex element if it belongs to $\langle a\rangle$ for some a $a \in V(A)$. The subgroup generated by all vertex elements is denoted by E. It coincides with $\pi_{1}(\mathbb{T})$. Given $g \in E$ denote by S_{g} (see [12]) the minimal subtree of the tree T such that $g \in \pi_{1}\left(\mathbb{S}_{g}\right)$.

If two labeled graphs \mathbb{A} and \mathbb{B} define isomorphic $G B S$ groups $\pi_{1}(\mathbb{A}) \cong \pi_{1}(\mathbb{B})$ and $\pi_{1}(\mathbb{A})$ is not isomorphic to \mathbb{Z} and \mathbb{Z}^{2} or to the Klein bottle group $\left\langle a, b \mid a^{-1} b a=b^{-1}\right\rangle$, then there exists a finite sequence of expansions and collapses (Fig. 1) joining \mathbb{A} and $\mathbb{B}[7]$ (in Fig. 1, to each edge there correspond two integers $\lambda(e), \lambda(\bar{e})$). A labeled graph is called reduced if it does not admit collapses (this means that the labeled graph does not contain an edge with distinct endpoints and labels ± 1).

Given a reduced labeled graph \mathbb{A} and B, C some subgraphs of the graph A. It is easy to prove that inclusion $\pi_{1}(\mathbb{B}) \subset \pi_{1}(\mathbb{C})$ holds if and only if $B \subset C$.

Unless otherwise specified, we assume further that \mathbb{A} is a reduced labeled graph and $G=\pi_{1}(\mathbb{A})$ is the corresponding $G B S$ group.

Define the modular homomorphism $\Delta: G \rightarrow \mathbb{Q}^{*}$. Given $g \in G$, choose an arbitrary nontrivial elliptic element $a \in G$. Then, for some integers m and n not equal to 0 , we have $g^{-1} a^{m} g=a^{n}$. In this case, we put $\Delta(g)=\frac{m}{n}$. It is not hard to prove that Δ is well-defined. The modular homomorphism plays an important role

Fig. 1. Expansion and collapse.
in study of $G B S$ groups. If A is a tree then $\Delta\left(\pi_{1}(\mathbb{A})\right)=\{1\}$ (details and proofs can be found, for example, in [7]).

3. Centralizer dimension: case $\Delta(G) \nsubseteq\{ \pm 1\}$

If $\Delta(G) \nsubseteq\{ \pm 1\}$ then either $\frac{p}{q} \in \Delta(G)$ for coprime integers $p, q \notin\{0,1,-1\}$ and in this case $\operatorname{cdim}(G)=\infty[11]$ or $\Delta(G)$ is generated by $\langle n\rangle$ as subgroup of \mathbb{Q}^{*} under multiplication.
Lemma 3.1 Given a $G B S$ group G such that $\Delta(G)=\langle n\rangle, n \neq \pm 1$. If there exist vertex element $a, t \in G$ and $k \geqslant 2$ such that $t^{-1} \cdot a^{k} \cdot t=a^{k \cdot n}$ and for all $|l|<k$ word $t^{-1} \cdot a^{l} \cdot t$ is reduced in G then $\operatorname{cdim}(G)=\infty$.
PROOF. Denote by a_{i} element $t^{-i} \cdot a \cdot t^{i}$. Then $C_{G}\left(a^{k \cdot n^{s}}\right) \supseteq\left\langle a, a_{1}, \ldots, a_{s}\right\rangle$, but $a_{s+1} \notin C_{G}\left(a^{k \cdot n^{s}}\right)$. Otherwise

$$
t^{-s-1} \cdot a^{-1} \cdot t^{s+1} \cdot a^{-k \cdot n^{s}} \cdot t^{-s-1} \cdot a \cdot t^{s+1} \cdot a^{k \cdot n^{s}}=1
$$

but, using the condition of the lemma s times, we get

$$
t^{-s-1} \cdot a^{-1} \cdot t \cdot a^{-k} \cdot t^{-1} \cdot a \cdot t^{s+1} \cdot a^{k \cdot n^{s}}=1
$$

This equation is impossible since the left-hand side is reduced and, consequently, is not equal to 1 by the Britton lemma [9]. The lemma is proved.
Theorem 3.2 Given a $G B S$ group G such that $\Delta(G)=\langle n\rangle, n \neq \pm 1$. If $G \not \approx$ $B S(1, n)$ then $\operatorname{cdim}(G)=\infty$. The centralizer dimension of $B S(1, n)$ is equal to 3 . PROOF. At first, suppose that $G \not \approx B S(1, n)$ and G is represented by a reduced labeled graph \mathbb{A}.

If A has more than one vertex then the conditions of lemma 3.1 are satisfied. As t, we need to take any word in generators of the second type such that $\Delta(t)=n$, and as a a suitable vertex of the graph A. Such a vertex exists, otherwise for all $v \in V(A)$ we have $t^{-1} \cdot v \cdot t=v^{n}$. In this case, all the vertex elements belong to the vertex group $\langle w\rangle$, where w is the beginning of the edge corresponding to the first stable letter of t. Therefore \mathbb{A} can not be reduced; a contradiction.

If A has a single vertex a and the number of edges of the graph A is greater than one, then we denote two distinct edges and the corresponding generators of the second type by t, r. We can assume that $\Delta(t)=m=n^{p} \neq \pm 1, \Delta(r)=s=n^{d}$. Denote by $b=a^{q}$ the minimal power of a such that $t^{-1} b t=b^{m}$. Then $C_{G}\left(b^{m^{k} \cdot s}\right) \supseteq$ $C_{G}\left(b^{m^{l} \cdot s}\right)$, for $k \geqslant l$. Moreover, $t^{-k} \cdot r^{-1} \cdot t^{k} \cdot a \cdot t^{-k} \cdot r \cdot t^{k}$ belongs to $C_{G}\left(b^{m^{k} \cdot s}\right)$ and does not belong to $C_{G}\left(b^{m^{l} \cdot s}\right)$.

If A has a single vertex a and a single edge t, but $G \nsubseteq B S(1, n)$, then $G \cong$ $B S(k, k n), k \neq \pm 1$. In this case we can apply lemma 3.1.

Now we need to prove that $\operatorname{cdim}(B S(1, n))=3$. Note that the group

$$
B S(1, n)=\left\langle a, t \mid t^{-1} \cdot a \cdot t=a^{n}\right\rangle
$$

is isomorphic to a subgroup M of the group T of upper triangular nondegenerate rational 2×2 matrices with 1 at the place (1,1). The isomorphism φ is given on generators

$$
\varphi: a \rightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), b \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right) .
$$

Therefore $\operatorname{cdim}(B S(1, n))=\operatorname{cdim}(M) \leqslant \operatorname{cdim}(T)$ by lemma 2.2 from [5]. Since every matrix in T is given by a pair of rational numbers (one of which is not equal to 0) and the centralizer of the set of elements of T is given by a system of linear equations, we get $\operatorname{cdim}(T) \leqslant 3$ (the maximum number of embedded subspaces). Therefore $\operatorname{cdim}(B S(1, n)) \leqslant 3$. Since $B S(1, n)$ is non-abelian and the centralizer dimension can not be equal to 2 [6], then $\operatorname{cdim}(B S(1, n))=3$. The Theorem is proved.

4. Centralizers of elements: Case $\Delta(G)=\{1\}$

Given a labeled graph \mathbb{A} such that $\Delta(\mathbb{A})=\{1\}$. The group $\pi_{1}(\mathbb{A})$ is given by a presentation depending on the choice of the maximal subtree T in the graph A. However, the groups $\pi_{1}\left(\mathbb{A}, T_{1}\right)$ and $\pi_{1}\left(\mathbb{A}, T_{2}\right)$ are isomorphic, see, for example, [10].

If B is a connected subgraph of the graph A, then we can choose the maximal subtrees T_{A} and T_{B} of the graphs A and B such that $T_{B} \subseteq T_{A}$. Such a pair of maximal subtrees is called coherent.
Remark 4.1 If B is a connected subgraph of the graph A and $T_{B} \subseteq T_{A}$, then the homomorphism $\pi_{1}\left(\mathbb{B}, T_{B}\right) \rightarrow \pi_{1}\left(\mathbb{A}, T_{A}\right)$ identical on generators is an embedding.
PROOF. Induction on the number of edges outside B, using the classical embedding results for a free product with amalgamation and $H N N$-extensions (see, for example, [9]). The remark is proved.
Definition 4.2 Let $a=v^{k}, v \in V(A)$ be a vertex element from $\pi_{1}(\mathbb{A})$, define a subgraph B_{a} of the graph A by induction:
Base: $V\left(B_{a}\right)=\{v\}, E\left(B_{a}\right)=\emptyset$.
Induction step: Suppose we already have a graph B_{a}. Consider a set of edges $\{e \in$ $\left.E(A) \mid \alpha(e) \in V\left(B_{a}\right)\right\} \backslash E\left(B_{a}\right)$ and denote it by U. Then for any $e \in U$ there exist an element $r \in \pi_{1}\left(\mathbb{B}_{a}\right)$ and an integer $l(e)$ such that $a=v^{k}=r^{-1} \cdot \alpha(e)^{l(e)} \cdot r$. If $\lambda_{e} \mid l(e)$ for some $e \in U$ then we attach e and \bar{e} to the graph B_{a} and go to the next induction step. Otherwise, the induction stops.

Note that if we add an edge e then $\alpha(e)^{l(e)}=\omega(e)^{l(e) \cdot \frac{\lambda_{\bar{e}}}{\lambda_{e}}}$ for $e \in E\left(T_{A}\right)$ or
 vertex w we get that on the one hand $a=r_{1}^{-1} \cdot w^{m} \cdot r_{1}$ and on the other hand $a=r_{2}^{-1} \cdot w^{n} \cdot r_{2}$, then $m=n$ because $\Delta(G)=1$. Therefore definition 4.2 is well-defined.
Proposition 4.3 Suppose that $u, v \in V(A)$ and the maximal subtrees of the graphs A and $B_{v^{k}}$ are coherent. If $g^{-1} \cdot v^{k} \cdot g=u^{l}$ then $u \in V\left(B_{v^{k}}\right)$ and $g \in C_{G}\left(v^{k}\right)$.
PROOF. Induction on the number of the stable letters in the reduced form of g.
Base of induction. If $g \in E$ then by corollary 4 [12], the equality $g^{-1} \cdot v^{k} \cdot g=u^{l}$ is possible only if $v^{k} \in Z\left(\pi_{1}\left(\mathbb{S}_{g}\right)\right)$. Then $g^{-1} \cdot v^{k} \cdot g=v^{k}=u^{l}$; therefore, by Lemma 1 and Proposition 2 [12], v^{k} belongs to the intersection of the vertex groups of

Fig. 2. Construction of a graph B_{a}.
the geodesic path joining u and v in T_{A}. In this case, this path belongs to B_{a} by definition 4.2.

Induction step. Suppose that $g=a_{0} \cdot t^{\varepsilon_{1}} \cdots \cdot t^{\varepsilon_{n}} \cdot a_{n}, a_{0} \in E$ and t is the first stable letter in the reduced form of g. Then we have

$$
a_{n}^{-1} \cdot t^{-\varepsilon_{n}} \cdots \cdot t^{-\varepsilon_{1}} \cdot a_{0}^{-1} \cdot v^{k} \cdot a_{0} \cdot t^{\varepsilon_{1}} \cdots \cdot t^{\varepsilon_{n}} \cdot a_{n}=u^{l} .
$$

Let e be an edge corresponding to the generator t. Denote $\alpha(e)$ by w. Then a_{0}^{-1}. $v^{k} \cdot a_{0}=w^{m}$, otherwise the left-hand side is reduced. By the induction hypothesis, $w \in V\left(B_{a}\right)$. By the definition of B_{a}, we obtain the equality $a=v^{k}=w^{n}$, then $m=n$ because $\Delta(G)=\{1\}$. Therefore $a_{0} \in C_{G}\left(v^{k}\right)$.

On the left side of the equation t-reductions must continue, therefore $t^{-\varepsilon_{1}} \cdot v^{k} \cdot t^{\varepsilon}=$ $u^{l}, e \in E\left(B_{a}\right)$ and $t^{-\varepsilon_{1}} \cdot v^{k} \cdot t^{\varepsilon_{1}}=\omega(e)^{s}$. Consequently $\omega(e) \in V\left(B_{a}\right)$ and since the maximal subtrees are coherent, we have $v^{k}=\omega(e)^{p}, p=s$ and $t \in C_{G}\left(v^{k}\right)$. Then the induction hypothesis finishes the proof of the proposition. The proposition is proved.
Proposition 4.4 If a is a vertex element and the maximal subtrees $T_{B_{a}}$ and T_{A} are coherent then $C_{G}(a)=\pi_{1}\left(\mathbb{B}_{a}\right) \leqslant \pi_{1}(\mathbb{A})$.
PROOF. At first we will prove that $\pi_{1}\left(\mathbb{B}_{a}\right) \subseteq C_{G}(a)$. The generator w of the first type of $\pi_{1}\left(\mathbb{B}_{a}\right)$ is corresponding to some vertex of the graph B_{a}, therefore $w^{k}=a$ and $[w, a]=1$. Let $t \in \pi_{1}\left(\mathbb{B}_{a}\right)$ be a generator of the second type, then, using coherency of the maximal subtrees, we have that t is a generator of the second type in the group $\pi_{1}(\mathbb{A})$. Since $\alpha(e), \omega(e) \in T_{B_{a}}$, then $a=\alpha(e)^{k}=\omega(e)^{l}$ and $t^{-1} \cdot \alpha(e)^{m} \cdot t=\omega(e)^{n}$. From $e \in B_{a}$ follows $m \mid k$. In this case $t^{-1} \cdot a \cdot t=$ $t^{-1} \cdot \alpha(e)^{k} \cdot t=t^{-1} \cdot \alpha(e)^{m \cdot s} \cdot t=\omega(e)^{n \cdot s}=t^{-1} \cdot \omega(e)^{l} \cdot t$. Therefore $l=n \cdot s$ and $t \in C_{G}(a)$.

Now we need to prove that $C_{G}(a) \subseteq \pi_{1}\left(\mathbb{B}_{a}\right)$. Induction on the number of stable letters in reduced form of $g \in C_{G}(a)$.

Base of induction. If $g \in E$ then we can assume that A is a tree. In this case $C_{G}(a)=\pi_{1}\left(\mathbb{B}_{a}\right)$ by Lemma 13 [12].

Induction step. If element $g=a_{0} \cdot t^{\varepsilon_{1}} \cdots \cdots t^{\varepsilon_{n}} \cdot a_{n} \in C_{G}(a)$ is reduced, $g, a_{0} \in E$ and t is the first stable letter, then

$$
a_{n}^{-1} \cdot t^{-\varepsilon_{n}} \cdots \cdot t^{-\varepsilon_{1}} \cdot a_{0}^{-1} \cdot v^{k} \cdot a_{0} \cdot t^{\varepsilon_{1}} \cdots \cdot t^{\varepsilon_{n}} \cdot a_{n}=v^{k}
$$

Arguing as in the proof of Proposition 4.3, we get $a_{0}^{-1} \cdot v^{k} \cdot a_{0}=u^{l}$, where $u=\alpha(e)$ and e is the edge corresponding to the generator t. Then, by Proposition 4.3, using coherency of the maximal subtrees, we get $u \in V\left(B_{a}\right)$ and $a_{0} \in C_{G}(a)$. By the
induction hypothesis $a_{0} \in \pi_{1}\left(\mathbb{B}_{a}\right)$. Further, as in Proposition $4.3 t^{-\varepsilon} \cdot v^{k} \cdot t^{\varepsilon}=\omega(e)^{s}$ and $e \in E\left(B_{a}\right)$. Therefore $t \in \pi_{1}\left(\mathbb{B}_{a}\right)$. The proposition is proved.
Corollary 4.5 The center of $\pi_{1}\left(\mathbb{B}_{a}\right)$ contains element a.
Remark 4.6 The center of $\pi_{1}\left(\mathbb{B}_{v^{k}}\right)$ coincides with $\left\langle v^{m}\right\rangle$ for some $m \mid k$. Moreover, $B_{v^{m}}=B_{v^{k}}$.
PROOF. By Proposition 2 [12] and corollary 4.5 we have

$$
\left\langle v^{k}\right\rangle \leqslant Z\left(\pi_{1}\left(\mathbb{B}_{v^{k}}\right)\right) \leqslant Z\left(\pi_{1}\left(\mathbb{T}_{B_{v^{k}}}\right)\right)=\bigcap_{w \in V\left(B_{v^{k}}\right)}\langle w\rangle \leqslant\langle v\rangle
$$

Therefore $Z\left(\pi_{1}\left(\mathbb{B}_{v^{k}}\right)\right)=\left\langle v^{m}\right\rangle, m \mid k$ and, consequently, $B_{v^{m}} \subseteq B_{v^{k}}$ by definition. Considering the generators of the first and the second types of the group $\pi_{1}\left(\mathbb{B}_{v^{k}}\right)$ and using $v^{m} \in Z\left(\pi_{1}\left(\mathbb{B}_{v^{k}}\right)\right)$, it is possible as in the proof of Proposition 4.4, prove that $\pi_{1}\left(\mathbb{B}_{v^{k}}\right) \leqslant \pi_{1}\left(\mathbb{B}_{v^{m}}\right)$. Then from the fact that \mathbb{A} is reduced it follows that $B_{v^{k}} \subseteq B_{v^{m}}$. Therefore $B_{v^{k}}=B_{v^{m}}$. The remark is proved.

Remark 4.6. allows us to assume that for every subgraph B_{a} we can choose a vertex element c such that $Z\left(\pi_{1}\left(\mathbb{B}_{a}\right)\right)=Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right)=\langle c\rangle$. It is clear from the definition that B_{c} is the maximal subgraph with given center. Therefore, we will always assume that $Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right)=\langle c\rangle$. The subgraphs B_{c} is called the Z-maximal subgraphs. The latter well agreed with Proposition 5 and Remark 6 about Z maximal subtrees [12].

If $g \in G$ is not conjugate to an element of E, then we can choose a cyclic permutation g_{0} of g such that $C_{E}\left(g_{0}\right)=Z\left(\pi_{1}\left(\mathbb{B}_{a}\right)\right)$ for a suitable vertex element a. Lemma 4.7 Suppose that g is not conjugate to an element of E, then we can choose a g_{0} - cyclic permutation of g such that $C_{E}\left(g_{0}\right)=Z\left(\pi_{1}\left(\mathbb{B}_{a}\right)\right)$ for a suitable vertex element a.
PROOF. Since g is not conjugate to an element of E, there exists a reduced cyclic permutation g_{0} of the element g such that

$$
g_{0}=a_{0} \cdot t^{\varepsilon_{1}} \cdot a_{1} \cdots \cdots a_{n-1} \cdot t^{\varepsilon_{n}}
$$

If $h \in C_{E}\left(g_{0}\right)$ then

$$
a_{0} \cdot t^{\varepsilon_{1}} \cdot a_{1} \cdots \cdots a_{n-1} \cdot t^{\varepsilon_{n}} \cdot h \cdot t^{-\varepsilon_{n}} \cdot a_{n-1}^{-1} \cdots \cdots a_{1}^{-1} \cdot t^{-\varepsilon_{1}} \cdot a_{0}^{-1} \cdot h^{-1}=1
$$

Therefore $h \in\langle v\rangle$, where v is the beginning of the edge corresponding to the generator t. Thus $C_{E}\left(g_{0}\right)=\left\langle v^{k}\right\rangle$. By Proposition 4.4 we get $g_{0} \in C_{G}\left(v^{k}\right)=\pi_{1}\left(\mathbb{B}_{v^{k}}\right)$. On the other hand, by Remark 4.6 for a suitable $m \mid k$ we have $\left\langle v^{m}\right\rangle \cong Z\left(\pi_{1}\left(\mathbb{B}_{v^{k}}\right)\right)=$ $Z\left(\pi_{1}\left(\mathbb{B}_{v^{m}}\right)\right)$ and $g_{0} \in \pi_{1}\left(\mathbb{B}_{v^{m}}\right)$. Therefore $v^{m} \in C_{E}\left(g_{0}\right)=\left\langle v^{k}\right\rangle$ and, consequently, $k=m$ and $C_{E}\left(g_{0}\right)=Z\left(\pi_{1}\left(\mathbb{B}_{v^{m}}\right)\right)$. The lemma is proved.
Lemma 4.8 If $g \in E$ is not elliptic element then

$$
C_{G}(g)=C_{E}(g)=w^{-1} \cdot\left(\langle r\rangle \times Z\left(\pi_{1}\left(\mathbb{T}_{a}\right)\right)\right) \cdot w .
$$

PROOF. If $h \in C_{G}(g)$ then $g \in C_{E}(h)$ and if h is not conjugate to an element of E, then by Lemma 4.7 g is elliptic; a contradiction. Therefore an element $h \in C_{G}(g)$ conjugate to an element of E and has the form $h=u^{-1} \cdot a \cdot u$. Moreover, if $u \notin E$ then the equality

$$
u^{-1} \cdot a^{-1} \cdot u \cdot g \cdot u^{-1} \cdot a \cdot u=g
$$

implies that g is an elliptic element. This contradicts the hypothesis of the lemma, therefore $u \in E$. Thus, $C_{G}(g) \subseteq E$ and $C_{G}(g)=C_{E}(g)$. Now the conclusion of the lemma follows from Corollary 4 and Corollary 12 [12]. The lemma is proved.
Lemma 4.9 Let G be a $G B S$ group, $\Delta(G)=\{1\}$, elements $g, h \in G$ are not conjugate to elements of E and $[g, h]=1$. Then there exist reduced element $w \in G$ and cyclically reduced element $r \in G$ such that $g=w \cdot g_{1} \cdot w^{-1}, h=w \cdot h_{1} \cdot w^{-1}$ and $g_{1}=r^{k} \cdot a, h_{1}=r^{l} \cdot b$, where $a, b \in C_{E}(r)$.
PROOF. If g and h have no common stable letters, then we can conjugate them so that

$$
h=b_{0} \cdot t^{\delta_{1}} \cdot b_{1} \cdots \cdots b_{m-1} \cdot t^{\delta_{m}}, g=a_{0}
$$

and elements $a_{0}, b_{0}, b_{1}, \ldots, b_{m-1}$ have no stable letter t. Then $[g, h]=1$ if and only if

$$
b_{0} \cdot t^{\delta_{1}} \cdot b_{1} \cdots \cdot b_{m-1} \cdot t^{\delta_{m}} \cdot a_{0} \cdot t^{-\delta_{m}} \cdot b_{m-1}^{-1} \cdots \cdots b_{1}^{-1} \cdot t^{-\delta_{1}} \cdot b_{0}^{-1}=a_{0}
$$

Therefore $g=a_{0}$ is a vertex element and belongs to the centralizer $C_{E}(h)$. In this case we can take $g=h^{0} \cdot a_{0}$ and $h=h^{1} \cdot 1$.

Suppose that g and h have common stable letter t. Conjugating g and h simultaneously, if necessary, we can obtain

$$
h=b_{0} \cdot t^{\delta_{1}} \cdot b_{1} \cdots b_{m-1} \cdot t^{\delta_{m}}, g=a_{0} \cdot t^{\varepsilon_{1}} \cdot a_{1} \cdots a_{n-1} \cdot t^{\varepsilon_{n}} \cdot a_{n}
$$

where g is cyclically reduced. It follows from $[g, h]=1$ that

$$
\begin{aligned}
& a_{0} \cdot t^{\varepsilon_{1}} \cdot a_{1} \ldots a_{n-1} \cdot t^{\varepsilon_{n}} \cdot a_{n} \cdot b_{0} \cdot t^{\delta_{1}} \cdot b_{1} \ldots b_{m-1} \cdot t^{\delta_{m}}= \\
& =b_{0} \cdot t^{\delta_{1}} \cdot b_{1} \ldots b_{m-1} \cdot t^{\delta_{m}} a_{0} \cdot t^{\varepsilon_{1}} \cdot a_{1} \ldots a_{n-1} \cdot t^{\varepsilon_{n}} \cdot a_{n} .
\end{aligned}
$$

Case 1. There are no stable letter t in both sides after t-reductions. Then $g \cdot h=$ $a \in H, m=n$ and $\varepsilon_{i}=-\delta_{n+1-i}$. Moreover, $[g, h]=\left[a \cdot h^{-1}, h\right]=\left[h^{-1}, a\right]=1$ and it follows from the beginning of the proof that $a \in C_{E}(h)$. We need to take $h=h, g=h^{-1} \cdot a$ to prove the lemma.

Case 2. There are some t-reductions, but they are not complete. In this case $t^{\delta_{m}} \cdot a_{0} \cdot t^{\varepsilon_{1}}$ is possible to reduce, therefore a_{0} is a vertex element and $\delta_{m}=-\varepsilon_{1}$. It follows from the fact that t-reductions are not complete, that there are some t reductions in $g \cdot h \cdot g^{-1} \cdot h^{-1}=1$ in subword $h \cdot g^{-1}$. Therefore $t^{\delta_{m}} \cdot a_{n}^{-1} \cdot t^{-\varepsilon_{n}}$ is possible to reduce, a_{n} is a vertex element and $\delta_{m}=\varepsilon_{n}=-\varepsilon_{1}$. Thus, $\varepsilon_{1}=-\varepsilon_{n}$ and

$$
t^{\varepsilon_{n}} \cdot a_{n} \cdot a_{0} \cdot t^{\varepsilon_{1}}=t^{\delta_{m}} \cdot a_{n} \cdot t^{-\varepsilon_{n}} \cdot t^{\varepsilon_{n}} \cdot a_{0} \cdot t^{\varepsilon_{1}}
$$

is possible to reduce, this contradicts the cyclic reducibility of g.
Case 3 . There are no t-reductions. Then in the left-hand side of the equality $h^{-1} \cdot g^{-1} \cdot h \cdot g=1$ there are $n+m t$-reductions in the middle. Assume that $|g|_{t} \geqslant|h|_{t}$, then $g=g_{1} \cdot g_{2}$ is a reduced form such that $\left|h^{-1} \cdot g_{1}\right|_{t}=0$. Therefore $g_{1}=h \cdot a$ and $g=h \cdot a \cdot g_{2}=h \cdot g_{3}$, where $g_{3}=a \cdot g_{2}$ and there are no t-reductions in $h \cdot g_{3}$. Moreover, the equality $[h, g]=1$ holds if and only if $\left[g_{3}, h\right]=1$. Arguing in this way, using the induction on the number $\min \left\{|g|_{t},|h|_{t}\right\}$, we can assume that $g_{3}=w \cdot g_{3}^{\prime} \cdot w^{-1}, h=w \cdot h^{\prime} \cdot w^{-1}$ and $g_{3}^{\prime}=r^{k} \cdot a, h^{\prime}=r^{l} \cdot b$, where $a, b \in C_{E}(r)$. In this case we have $g=h \cdot g_{3}=w \cdot h^{\prime} \cdot g_{3}^{\prime} \cdot w^{-1}, h^{\prime} \cdot g_{3}^{\prime}=r^{l} \cdot b \cdot r^{k} \cdot a=r^{k+l} \cdot b \cdot a$ and $b \cdot a \in C_{E}(r)$. The lemma is proved.

Proof of the theorem 1 now follows from Lemmas 4.9, 4.8 and proposition 4.4.

5. Centralizers of sets: case $\Delta(G)=\{1\}$

The following lemma is well-known and can be proved using Theorem 2.1 [10, p. 51] or Lemma 1.1 [14, p. 79].

Lemma 5.1 The product $b \cdot a$ of two elliptic elements a, b is an elliptic element if and only if a, b stabilize same vertex.
Lemma 5.2 If g_{1} and g_{2} are not elliptic elements, then $C_{G}\left(g_{1}, g_{2}\right)$ either coincides with $C_{G}\left(g_{1}\right)=C_{G}\left(g_{2}\right)$, or is conjugate to $Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right)$ for a suitable element c.
PROOF. By Lemmas $4.7-4.9$ we have $C_{G}\left(g_{i}\right)=w_{i}^{-1} \cdot\left(\left\langle r_{i}\right\rangle \times\left\langle a_{i}\right\rangle\right) \cdot w_{i}$, where $\left\langle a_{i}\right\rangle=Z\left(\pi_{1}\left(\mathbb{B}_{a_{i}}\right)\right)=C_{E}\left(r_{i}\right)$ and we can assume, that r_{i} can not be represented as $h^{k} \cdot u, u \in C_{E}(h),|k| \geqslant 2$. Then the element of $C_{G}\left(g_{1}, g_{2}\right)$ have to be represented as

$$
w_{1}^{-1} \cdot r_{1}^{k_{1}} \cdot a_{1}^{l_{1}} \cdot w_{1}=w_{2}^{-1} \cdot r_{2}^{k_{2}} \cdot a_{2}^{l_{2}} \cdot w_{2}
$$

or equivalently

$$
r_{1}^{k_{1}} \cdot a_{1}^{l_{1}}=w^{-1} \cdot r_{2}^{k_{2}} \cdot a_{2}^{l_{2}} \cdot w,
$$

for $w=w_{2} \cdot w_{1}^{-1}$.
If $r_{1} \notin E$ then $r_{2} \notin E$. Up to conjugacy we can assume that r_{1} is a cyclically reduced and ends with t^{ε}. By the Theorem 2.8 (see [9]) an element $r_{1}^{k_{1}} \cdot a_{1}^{l_{1}}$ can be obtained from $r_{2}^{k_{2}} \cdot a_{2}^{l_{2}}$ by a cyclic permutation, ends with t^{ε} up to conjugacy by a vertex element h such that $t^{\varepsilon} \cdot h \cdot t^{-\varepsilon}$ is reducible. Therefore

$$
r_{1}^{k_{1}} \cdot a_{1}^{l_{1}}=r_{3}^{k_{2}} \cdot a_{2}^{l_{2}}
$$

where r_{3} is a cyclic permutation of r_{2} conjugate by h. Thus, $C_{E}\left(r_{3}\right)=C_{E}\left(r_{2}\right)$.
If $\left|r_{1}\right|=\left|r_{3}\right|$ then $\left|k_{1}\right|=\left|k_{2}\right|$. Assume that $k_{1}=k_{2}>0$, then comparing right normal forms we get $r_{1}=r_{3} \cdot u, u \in E$.

If $k_{1}=k_{2}=1$ then $\left\langle a_{1}\right\rangle=C_{E}\left(r_{3} \cdot u\right),\left\langle a_{2}\right\rangle=C_{E}\left(r_{3}\right)$. Moreover, $a_{1} \in C_{E}(u)$ and $a_{1} \in C_{E}\left(r_{3}\right)=C_{E}\left(r_{2}\right)$. It follows from the symmetry of notation that $a_{2} \in C_{E}\left(r_{1}\right)$ and, consequently, $C_{E}\left(r_{1}\right)=C_{E}\left(r_{3}\right)$

If $k_{1}=k_{2}>1$ then $u \cdot\left(r_{3} \cdot u\right)^{k_{1}-1} \cdot a_{1}^{l_{1}}=r_{3}^{k_{2}-1} \cdot a_{2}^{l_{2}}$. Therefore $r_{3}^{-1} \cdot u \cdot r_{3}=v$ and by Proposition $4.3 u=v \in C_{E}\left(r_{3}\right)$. Furthermore, arguing as in the previous case, we obtain $C_{G}\left(r_{1}\right)=C_{G}\left(r_{3}\right)$.

If $\left|r_{1}\right|>\left|r_{3}\right| \neq 0$ then $r_{1}=r_{3}^{m} \cdot r_{3}^{\prime}$, where $r_{3}=r_{3}^{\prime} \cdot r_{3}^{\prime \prime}$. In this case $\left(r_{3}^{m} \cdot r_{3}^{\prime}\right)^{k_{1}} \cdot a_{1}^{l_{1}}=$ $r_{3}^{k_{2}} \cdot a_{2}^{l_{2}}$ and $r_{3}^{\prime} \cdot\left(r_{3}^{m} \cdot r_{3}^{\prime}\right)^{k_{1}-1} \cdot a_{1}^{l_{1}}=r_{3}^{k_{2}-m} \cdot a_{2}^{l_{2}}$. Therefore, comparing the initial segments of the left and right sides of equality, we get $r_{3}=r_{3}^{\prime} \cdot r_{3}^{\prime \prime}=r_{3}^{\prime \prime} \cdot r_{3}^{\prime} \cdot u$. Moreover, for $k_{1}>2$ we have

$$
r_{3}^{\prime} \cdot u \cdot\left(r_{3}^{\prime \prime} \cdot r_{3}^{\prime} \cdot u\right)^{m-1} \cdot r_{3}^{\prime} \cdot\left(r_{3}^{m} \cdot r_{3}^{\prime}\right)^{k_{1}-2} \cdot a_{1}^{l_{1}}=\left(r_{3}^{\prime} \cdot r_{3}^{\prime \prime}\right)^{k_{2}-m-1} \cdot a_{2}^{l_{2}} .
$$

Again, comparing the initial segments of the left and right sides of equality we get $u \cdot r_{3}^{\prime \prime} \cdot r_{3}^{\prime}=r_{3}^{\prime \prime} \cdot r_{3}^{\prime} \cdot v$. Since $u, v \in E$, it follows from the last equality that u and v are elliptic. By Proposition 4.3 we have $u=v \in C_{E}\left(r_{1}\right), C_{E}\left(r_{3}\right)$. Therefore, by reducing $u=v$ if necessary, we can assume that $u=1$. By Lemma 4.9 we get $r_{3}^{\prime}=r^{k_{0}} \cdot w^{l_{0}}$ and $r_{3}^{\prime \prime}=r^{k_{3}} \cdot w^{l_{3}}$; a contradiction.

If $\left|r_{1}\right|=\left|r_{3}\right|=0$ then all elements belongs to the subgroup E and we can apply the Lemma 14 from [12] and the Lemma 4.8, the last case appears. The lemma is proved.

Thus, there are three types of centralizers:

$$
\begin{gather*}
u^{-1} \cdot\left(\langle r\rangle \times Z\left(\pi_{1}\left(\mathbb{B}_{a}\right)\right)\right) \cdot u, \tag{1}\\
v^{-1} \cdot \pi_{1}\left(\mathbb{B}_{b}\right) \cdot v, \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
w^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right) \cdot w \tag{3}
\end{equation*}
$$

for suitable Z-maximal subgraphs B_{a}, B_{b}, and B_{c}.
Lemma 5.3 Given a non-elliptic $g_{1} \in G$ and an elliptic $g_{2} \in G$. Then $C_{G}\left(g_{1}, g_{2}\right)$ either coincides with $C_{G}\left(g_{1}\right)$ of type (1), or is conjugate to $Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right)$ for an element c such that $\mathbb{B}_{c} \supseteq \mathbb{B}_{a}$.
PROOF. By Proposition 4.4 and Lemmas $4.8,4.9$ we can assume that

$$
C_{G}\left(g_{1}\right)=w_{1}^{-1} \cdot\left(\left\langle r_{1}\right\rangle \times Z\left(\pi_{1}\left(\mathbb{B}_{a}\right)\right)\right) \cdot w_{1}, C_{G}\left(g_{2}\right)=w_{2}^{-1} \cdot \pi_{1}\left(\mathbb{B}_{b}\right) \cdot w_{2}
$$

If $g \in C_{G}\left(g_{1}, g_{2}\right)$ then $w_{2} \cdot g \cdot w_{2}^{-1} \in \pi_{1}\left(\mathbb{B}_{b}\right)$ on the other hand

$$
w_{2} \cdot g \cdot w_{2}^{-1}=w_{2} \cdot w_{1}^{-1} \cdot r_{1}^{k} \cdot a^{l} \cdot w_{1} \cdot w_{2}^{-1}
$$

After reducing the right-hand side of the last equality, we obtain $w \cdot r^{k} \cdot a^{l} \cdot w^{-1}$. There w is obtained from $w_{2} \cdot w_{1}^{-1}$ first by reductions in $w_{2} \cdot w_{1}^{-1}$, and then, if necessary, by reductions with $r_{1}^{k} \cdot a^{l}$. Since r_{1} is a cyclically reduced, then we can assume that r is obtained from r_{1} by cyclic permutation so that r ends with t^{ε} (this can be achieved by selecting w).

Let $k \neq 0$. Reduced element $w^{-1} \cdot r^{k} \cdot a^{l} \cdot w$ belongs to $\pi_{1}\left(\mathbb{B}_{b}\right)$ only if $r \in \pi_{1}\left(\mathbb{B}_{b}\right)$. By Lemma 4.7 we get

$$
\langle b\rangle=Z\left(\pi_{1}\left(\mathbb{B}_{b}\right)\right) \subseteq C_{E}(r)=Z\left(\pi_{1}\left(\mathbb{B}_{a}\right)\right)=\langle a\rangle
$$

therefore $b=a^{k}$ and, consequently, $B_{b} \supseteq B_{a}$ (otherwise we can find $v \in V\left(B_{a}\right) \backslash$ $V\left(B_{b}\right)$ such that $v^{p}=a^{q}$, but there are no such non-zero integers m, n that $v^{n}=b^{m}$. On the other hand, b centralizes $v \in B_{a}$ and we have a contradiction with Lemma 1 [12]). Therefore $C_{G}\left(g_{1}\right) \subseteq C_{G}\left(g_{2}\right)$.

If $k=0$ then for a suitable $l \neq 0$ (we can assume that l is minimal) $w^{-1} \cdot a^{l} \cdot w \in$ $\pi_{1}\left(\mathbb{B}_{b}\right)$. Suppose that after reductions element $w^{-1} \cdot a^{l} \cdot w$ takes a form $w_{0}^{-1} \cdot a^{l} \cdot w_{0} \in$ $\pi_{1}\left(\mathbb{B}_{b}\right)$, then $w_{0} \in \pi_{1}\left(\mathbb{B}_{b}\right)$ and $a^{l}=d^{k}$ for a suitable element $d \in V\left(\mathbb{B}_{b}\right)$.

Prove that in this case $C_{G}\left(g_{1}, g_{2}\right)$ is conjugate to $Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right)$. If $g \in C_{G}\left(g_{1}, g_{2}\right)$ then we have shown that g is conjugate to a^{l}. If $\langle c\rangle=Z\left(\pi_{1}\left(\mathbb{B}_{a^{l}}\right)\right)$ then by Remark 4.6 we get $c=a^{k}, k \mid l$. On the other hand, $\mathbb{B}_{a^{k}} \supseteq \mathbb{B}_{a}$. We need to take $c=a^{k}$ to finish the proof. The lemma is proved.

If B_{1}, B_{2} are two intersecting subgraphs of the graph A, then it is some times impossible to choose coherent maximal subtrees of A and B_{1}, B_{2}. In this case, we need to elaborate the embedding of $\pi_{1}\left(\mathbb{B}_{1}\right)$ and $\pi_{1}\left(\mathbb{B}_{2}\right)$ in $\pi_{1}(\mathbb{A})$. To do this, consider the equivalent definition of the fundamental group of the graph of groups [10]:
Definition 5.4 Given a labeled graph \mathbb{A}, define a group

$$
F(\mathbb{A})=\left(*_{v \in V(A)}\langle v\rangle * F\left(t_{e}, e \in E(A)\right)\right) / N
$$

where N is a normal closure of $t_{e}^{-1} \cdot(\alpha(e))^{\lambda_{e}} \cdot t_{e} \cdot(\omega(e))^{\lambda_{\bar{e}}}, t_{e} \cdot t_{\bar{e}}, e \in E(A)$
Definition 5.5 Given a vertex $P \in V(A)$, then $\pi_{1}(\mathbb{A}, P)$ is a subgroup of $F(A)$ consisting of the elements of the form $g_{0} \cdot t_{e_{1}} \cdot g_{1} \cdot t_{e_{2}} \cdots t_{e_{n}} \cdot g_{n}$, where $e_{1}, e_{2}, \ldots, e_{n}$ is a closed path in A with endpoints $P, g_{0} \in\langle P\rangle, g_{i} \in G_{\omega\left(e_{i}\right)}$.

In terms of definition 5.4 and 5.5 for each $v \in V(A)$ we denote the element $t_{e_{1}} \cdot t_{e_{2}} \cdots t_{e_{n}}$ by γ_{v}, where $e_{1}, e_{2}, \ldots, e_{n}$ is the geodesic path in T_{A} that connects P and $v, \gamma_{P}=1$.
Remark 5.6 (Theorem 16.5 [10]) A map from the set of generators of $\pi_{1}\left(\mathbb{A}, T_{A}\right)$ to $\pi_{1}(\mathbb{A}, P)$ given by the rules

$$
v \rightarrow \gamma_{v} \cdot v \cdot \gamma_{v}^{-1}, v \in V(A), t_{e} \rightarrow \gamma_{\alpha(e)} \cdot t_{e} \cdot \gamma_{\omega(e)}^{-1}, e \in E(A)
$$

can be extended to isomorphism $\varphi_{P}: \pi_{1}\left(\mathbb{A}, T_{A}\right) \rightarrow \pi_{1}(\mathbb{A}, P)$.
If B_{1} and B_{2} are two intersecting subgraphs of the graph A, then we can take $P \in B_{1} \cap B_{2}$. Then groups $\pi_{1}\left(\mathbb{B}_{1}, P\right)$ and $\pi_{1}\left(\mathbb{B}_{2}, P\right)$ can be naturally embedded in $\pi_{1}(\mathbb{A}, P)$. Therefore we can denote by $\pi_{1}\left(\mathbb{B}_{1}\right)$ and $\pi_{1}\left(\mathbb{B}_{2}\right)$ the images of $\pi_{1}\left(\mathbb{B}_{1}, P\right)$ and $\pi_{1}\left(\mathbb{B}_{2}, P\right)$ in $\pi_{1}\left(\mathbb{A}, T_{A}\right)$ under φ_{P}.
Remark 5.7 It is clear from Remark 5.6 that the isomorphism φ_{P} depends on the choice of P. It is easy to understand that φ_{P} can be obtained from φ_{Q} by the conjugation by $t_{e_{1}} \cdot t_{e_{2}} \cdots \cdots t_{e_{m}}$, where $e_{1}, e_{2}, \ldots, e_{m}$ is a geodesic path in T_{A} joining P and Q. Therefore $\pi_{1}\left(\mathbb{B}_{1}\right)$ and $\pi_{1}\left(\mathbb{B}_{2}\right)$ are defined up to the conjugation.
Remark 5.8 If B_{1}, B_{2} are two non-intersecting subgraphs of the graph A, then it is possible to choose coherent maximal subtree $T_{A}, T_{B_{1}}$ and $T_{B_{2}}$. In this case $\pi_{1}\left(\mathbb{B}_{1}\right)$ and $\pi_{1}\left(\mathbb{B}_{2}\right)$ can be defined as the images under the trivial embedding.
Lemma 5.9 If $P \in B_{a} \cap B_{b}$ then $\pi_{1}\left(\mathbb{B}_{a}, P\right) \cap \pi_{1}\left(\mathbb{B}_{b}, P\right)=\pi_{1}(\mathbb{B}, P)$, where B is a connected component of $B_{a} \cap B_{b}$ containing the vertex P.
PROOF. Follows from the definition 5.5 directly.
Lemma 5.10 Given elliptic elements g_{1}, g_{2}. Suppose that g_{1} is conjugate to the vertex element a, g_{2} is conjugate to the vertex element b. Then $C_{G}\left(g_{1}, g_{2}\right)$ is either conjugate to $\pi_{1}(\mathbb{B})$, where B is a suitable connected component $B_{a} \cap B_{b}$, or conjugate to $Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right)$ for a suitable vertex element c.
PROOF. If $g \in C_{G}\left(g_{1}, g_{2}\right)$ then it follows from proposition 4.4 that $g \in \pi_{1}\left(\mathbb{B}_{a}\right) \cap$ $w^{-1} \cdot \pi_{1}\left(\mathbb{B}_{b}\right) \cdot w$ up to conjugacy. Write a reduced form of $w: w=r_{1} \cdot r_{2} \cdot r_{3}$ such that $r_{1} \in \pi_{1}\left(\mathbb{B}_{b}\right), r_{3} \in \pi_{1}\left(\mathbb{B}_{a}\right)$ and r_{2} is a word of the minimal length such that $r_{2} \notin \pi_{1}\left(\mathbb{B}_{b}\right) \cap \pi_{1}\left(\mathbb{B}_{a}\right)$.

If $r_{2}=1$ and $B_{a} \cap B_{b} \neq \emptyset$ then by Lemma $5.9 C_{G}\left(g_{1}, g_{2}\right)$ is conjugate to $\pi_{1}\left(\mathbb{B}_{a}\right) \cap \pi_{1}\left(\mathbb{B}_{b}\right)=\pi_{1}(\mathbb{B})$, where B is a suitable connected component $B_{a} \cap B_{b}$.

If $r_{2}=1$ and $B_{a} \cap B_{b}=\emptyset$ then $\pi_{1}\left(\mathbb{B}_{a}\right)$ and $\pi_{1}\left(\mathbb{B}_{b}\right)$ are defined by Remark 5.8 as natural subgroups of $\pi_{1}(\mathbb{A})$. Moreover, $g \in \pi_{1}\left(\mathbb{B}_{a}\right) \cap \pi_{1}\left(\mathbb{B}_{b}\right)$ only if $g=h_{1}=h_{2}$, for $h_{1} \in \pi_{1}\left(\mathbb{B}_{a}\right), h_{2} \in \pi_{1}\left(\mathbb{B}_{b}\right)$. This equality does not hold if h_{1} and h_{2} are nonelliptic. To prove this we can find a subgroup G_{1} of the group G such that G_{1} is an amalgamated product of A and B with amalgamated subgroup $C \cong \mathbb{Z}$ and $\pi_{1}\left(\mathbb{B}_{a}\right) \hookrightarrow A, \pi_{1}\left(\mathbb{B}_{b}\right) \hookrightarrow B$. The element $g \in \pi_{1}\left(\mathbb{B}_{a}\right) \cap \pi_{1}\left(\mathbb{B}_{b}\right)$ have to belong to the vertex group C.

Therefore we can assume that $h_{i}=s_{i}^{-1} \cdot v_{i}^{k_{i}} \cdot s_{i}, i=1,2$. Then by Proposition 4.3 this equality implies $v_{2} \in V\left(B_{v_{1}^{k_{1}}}\right)$ and $v_{1}^{k_{1}}=v_{2}^{k_{2}}$. If $\left\langle v_{1}^{k_{1}}\right\rangle \subset Z\left(\pi_{1}\left(\mathbb{B}_{v_{1}^{k_{1}}}\right)\right)=$ $\left\langle v_{1}^{l_{1}}\right\rangle$, then $v_{1}^{l_{1}} \in \pi_{1}\left(\mathbb{B}_{a}\right) \cap \pi_{1}\left(\mathbb{B}_{b}\right)$. On the other hand, this intersection is generated by $v_{1}^{k_{1}}$; a contradiction. Hence the subgroup $\left\langle v_{1}^{k_{1}}\right\rangle=Z\left(\pi_{1}\left(\mathbb{B}_{v_{1}^{k_{1}}}\right)\right)$ is conjugate to $\pi_{1}\left(\mathbb{B}_{a}\right) \cap \pi_{1}\left(\mathbb{B}_{b}\right)$ and $v_{1}^{k_{1}}=c$.

If $r_{2} \neq 1$ then $g=h_{1}=r_{2}^{-1} \cdot h_{2} \cdot r_{2}$. In this case the proof is similar. The lemma is proved.
Lemma 5.11 Given a non-elliptic element g, and $C_{G}(g)$ is of the type (1). Then the intersection $C_{G}(g) \cap w^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right) \cdot w=H$ is conjugate to $Z\left(\pi_{1}\left(\mathbb{B}_{b}\right)\right)$ for a suitable $B_{b} \supseteq B_{c}, B_{b} \supseteq B_{a}$.
PROOF. By Lemmas $4.7-4.9$ the element $h \in H$ up to conjugacy belongs to $\langle r\rangle \times\langle a\rangle \cap w^{-1} \cdot Z\left(\pi_{1}\left((B)_{c}\right)\right) \cdot w=\langle r\rangle \times\langle a\rangle \cap w^{-1} \cdot\langle c\rangle \cdot w$. Hence $h=r^{k} \cdot a^{l} \in w^{-1} \cdot\langle c\rangle \cdot w$. Therefore h is an elliptic element and $k=0$. We get $h=a^{l}=w^{-1} \cdot c \cdot w$. By Proposition $4.3 a \in V\left(B_{c^{m}}\right), c \in V\left(B_{a^{l}}\right)$. Thus, $c^{m}=a^{l} \in C_{E}(w)$. Let m, l be a minimal pair satisfying this equation (this is a well-defined condition, since all such
pairs are proportional), denote $c^{m}=a^{l}$ by b. We can assume that $Z\left(\pi_{1}\left(\mathbb{B}_{b}\right)\right)=\langle b\rangle$, otherwise we can find $k \mid l, k<l$ as in Remark 4.6 such that $a^{k} \in Z\left(\pi_{1}\left(\mathbb{B}_{b}\right)\right)$, in particular $a^{k}=c^{s}$, this contradicts minimality. The lemma is proved.
Lemma 5.12 The intersection $w_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{a}\right)\right) \cdot w_{1} \cap w_{2}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{b}\right)\right) \cdot w_{2}$ is conjugate to $Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right.$) for a suitable $B_{c} \supseteq B_{a}, B_{c} \supseteq B_{b}$.
PROOF. As in Lemma 5.11.
Lemma 5.13 Given an elliptic element g, then the intersection $C_{G}(g) \cap w^{-1}$. $Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right) \cdot w=H$ is conjugate to $Z\left(\pi_{1}\left(\mathbb{B}_{a}\right)\right)$ for a suitable $B_{a} \supseteq B_{c}$ such that $B_{a} \cap B_{b} \neq \emptyset$.
PROOF. The element $h \in H$ up to conjugacy belongs to $\pi_{1}(\mathbb{B}) \cap w_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right) \cdot w_{1}$. Therefore h is an elliptic element of $\pi_{1}(\mathbb{B})$. Using conjugation of h, if necessary, we get $h=v^{k}=w_{2}^{-1} \cdot c^{l} \cdot w_{2}$ for a suitable $v \in V(B)$ and a minimal pair k, l. Arguing as in the proof of Lemma 5.11, one can understand that $h=v^{k}=c^{l} \in C_{G}\left(w_{2}\right)$ and $\left\langle v^{k}\right\rangle=Z\left(\pi_{1}\left(\mathbb{B}_{v^{k}}\right)\right)$. If we take $a=v^{k}=c^{l}$ then we get $B_{a} \supseteq B_{c}$ and $v \in V\left(B_{a} \cap B\right)$. The lemma is proved.

In this section we described the intersection of centralizers and proved the theorem 2.

6. Embeddings of centralizers: case $\Delta(G)=\{1\}$

Proposition 6.1 Given non-elliptic elements $g_{1}, g_{2} \in G$, elliptic elements $h_{1}, h_{2} \in$ G, Z-maximal subgraphs $B_{c_{1}}, B_{c_{2}}$. If $C_{G}\left(g_{i}\right)=w_{i}^{-1} \cdot\left(\left\langle r_{i}\right\rangle \times Z\left(\pi_{1}\left(\mathbb{B}_{a_{i}}\right)\right)\right) \cdot w_{i}$, $C_{G}\left(h_{i}\right)=u_{i}^{-1} \cdot \pi_{1}\left(\mathbb{B}_{b_{i}}\right) \cdot u_{i}, v_{i}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{i}}\right)\right) \cdot v_{i}, i=1,2$ are the centralizers of type (1), (2) and (3) respectively, then

1. $C_{G}\left(g_{1}\right) \not \supset C_{G}\left(g_{2}\right)$,
2. If $C_{G}\left(g_{1}\right) \supset C_{G}\left(h_{1}\right)$ then $B_{b_{1}}=\left\{b_{1}\right\}$,
3. If $C_{G}\left(g_{1}\right) \supset v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1}$ then $B_{c_{1}} \supseteq B_{a_{1}}$,
4. If $C_{G}\left(h_{1}\right) \supset C_{G}\left(g_{1}\right)$ then $r_{1} \in \pi_{1}\left(\mathbb{B}_{b_{1}}\right), B_{a_{1}} \subseteq B_{b_{1}}$,
5. If $C_{G}\left(h_{1}\right) \supset C_{G}\left(h_{2}\right)$ then $B_{b_{1}} \supset B_{b_{2}}$,
6. If $C_{G}\left(h_{1}\right) \supset v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1}$ then $B_{b_{1}} \cap B_{c_{1}} \neq \emptyset$,
7. $v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1} \not \supset C_{G}\left(g_{1}\right)$,
8. $v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1} \not \supset C_{G}\left(h_{1}\right)$,
9. If $v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1} \supset v_{2}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{2}}\right)\right) \cdot v_{2}$ then $B_{c_{2}} \supset B_{c_{1}}$.

PROOF. 1. If $C_{G}\left(g_{1}\right) \supset C_{G}\left(g_{2}\right)$, then $C_{G}\left(g_{2}\right)=C_{G}\left(g_{1}, g_{2}\right)$ and by Lemma 5.2 $C_{G}\left(g_{2}\right)$ is either coincide with $C_{G}\left(g_{1}\right)=C_{G}\left(g_{2}\right)$, this is impossible because of strict inclusion, or a cyclic group. The latter is impossible since by Lemmas 4.8 and 4.9 $C_{G}\left(g_{2}\right) \cong \mathbb{Z} \times \mathbb{Z}$.
2. If $C_{G}\left(g_{1}\right) \supset C_{G}\left(h_{1}\right)$, then $C_{G}\left(h_{1}\right)=C_{G}\left(g_{1}, h\right)$ and by Lemma 5.3 $C_{G}\left(h_{1}\right)$ is either coincide with $C_{G}\left(g_{1}\right)$, this is impossible because of strict inclusion, or a cyclic group. Since \mathbb{A} is a reduced labeled graph, then the latter is possible only if $B_{b_{1}}=\left\{b_{1}\right\}$.
3. If $C_{G}\left(g_{1}\right) \supset v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1}$ then $v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1}=v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot$ $v_{1} \cap C_{G}\left(g_{1}\right)$ and by Lemma 5.11 the latter is conjugate to $Z\left(\pi_{1}\left(\mathbb{B}_{d}\right)\right)$ and $B_{d} \supseteq$ $B_{c_{1}}, B_{d} \supseteq B_{a_{1}}$. Thus, the center of $\pi_{1}\left(\mathbb{B}_{c_{1}}\right)$ is conjugate to $\pi_{1}\left(\mathbb{B}_{d}\right)$, therefore the element c_{1} is conjugate to the element d and by Proposition 4.3 we get $c_{1}=d$. Finally, we get $B_{c_{1}} \supseteq B_{a_{1}}$.
4. If $C_{G}\left(h_{1}\right) \supset C_{G}\left(g_{1}\right)$ then $C_{G}\left(g_{1}\right)=C_{G}\left(g_{1}, h_{1}\right)$ and by Lemma 5.3 the latter is either coincide with $C_{G}\left(g_{1}\right)$, or conjugate to $Z\left(\pi_{1}\left(\mathbb{B}_{d}\right)\right)$. In the first case $r_{1} \in \pi_{1}\left(\mathbb{B}_{b_{1}}\right)$
and $C_{E}\left(r_{1}\right)=\left\langle a_{1}\right\rangle=Z\left(\pi_{1}\left(\mathbb{B}_{a_{1}}\right)\right) \supseteq Z\left(\pi_{1}\left(\mathbb{B}_{b_{1}}\right)\right)$. Therefore $B_{b_{1}} \supseteq B_{a_{1}}$. In the second case $C_{G}\left(g_{1}\right)=C_{G}\left(g_{1}, h_{1}\right)$ is a cyclic group. But by Lemmas 4.8 and 4.9 $C_{G}\left(g_{1}\right) \cong \mathbb{Z} \times \mathbb{Z} ;$ a contradiction.
5. If $C_{G}\left(h_{1}\right) \supset C_{G}\left(h_{2}\right)$ then $C_{G}\left(h_{2}\right)=C_{G}\left(h_{1}, h_{2}\right)$ and by Lemma 5.10 the latter is either conjugate to $\pi_{1}(\mathbb{B})$, or a cyclic group. In the first case B is a connected component of $B_{b_{1}} \cap B_{b_{2}}$, then $B=B_{b_{2}}$ and $B_{b_{1}} \supset B=B_{b_{2}}$. In the second case $B_{b_{2}}=\left\{b_{2}\right\} \subset B_{b_{1}}$.
6. If $C_{G}\left(h_{1}\right) \supset v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1}$ then $v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1}=v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right)$. $v_{1} \cap C_{G}\left(h_{1}\right)$ and by Lemma 5.13 the latter is conjugate to $Z\left(\pi_{1}\left(\mathbb{B}_{d}\right)\right)$, where $B_{d} \supseteq$ $B_{c_{1}}, B_{d} \cap B_{b_{1}} \neq \emptyset$. Hence $Z\left(\pi_{1}\left(\mathbb{B}_{d}\right)\right)$ is conjugate to $Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right)$. Therefore $c_{1}=d$ and $B_{b_{1}} \cap B_{c_{1}} \neq \emptyset$.
7. If $v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1} \supset C_{G}\left(g_{1}\right)$ then $C_{G}\left(g_{1}\right)=C_{G}\left(g_{1}\right) \cap v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1}$ and by Lemma $5.11 C_{G}\left(g_{1}\right)$ is a cyclic group. The latter is impossible because by Lemmas 4.8 and $4.9 C_{G}\left(g_{1}\right) \cong \mathbb{Z} \times \mathbb{Z}$.
8. If $v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1} \supset C_{G}\left(h_{1}\right)$ then $C_{G}\left(h_{1}\right)=C_{G}\left(h_{1}\right) \cap v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1}$ and by Lemma $5.13 C_{G}\left(h_{1}\right)$ is a cyclic group. Therefore $B_{b_{1}}=\left\{b_{1}\right\}, b_{1} \in V(A)$ and $Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right)$ is conjugate to $\left\langle b_{1}\right\rangle$. Hence $c_{1}=b_{1}$ by Proposition 4.3 and v_{1}^{-1}. $Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1}=C_{G}\left(h_{1}\right)$, this is impossible because of strict inclusion.
9. If $v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1} \supset v_{2}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{2}}\right)\right) \cdot v_{2}$ then $v_{2}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{2}}\right)\right) \cdot v_{2}=$ $v_{1}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \cdot v_{1} \cap v_{2}^{-1} \cdot Z\left(\pi_{1}\left(\mathbb{B}_{c_{2}}\right)\right) \cdot v_{2}$ and by Lemma 5.12 the latter is conjugate to $Z\left(\pi_{1}\left(\mathbb{B}_{c}\right)\right)$. Therefore $c_{2}=c$ and $Z\left(\pi_{1}\left(\mathbb{B}_{c_{1}}\right)\right) \supset Z\left(\pi_{1}\left(\mathbb{B}_{c_{2}}\right)\right)$. Thus, $B_{c_{2}} \supset B_{c_{1}}$. The proposition is proved.
Remark 6.2 In the chain $C_{G}\left(A_{1}\right) \supset C_{G}\left(A_{2}\right) \supset \cdots \supset C_{G}\left(A_{n}\right)$, where A_{i} is a finite set of elements of G, the first $k, 0 \leqslant k \leqslant n$ centralizers have to be of type (2), then one can be of type (1) and the rest is of type (3).
Remark 6.3 Any strictly descending chain of centralizers of type (2) corresponds to a strictly descending chain of Z-maximal subgraphs

$$
\begin{array}{ccccccc}
C_{G}\left(A_{1}\right) & \supset & C_{G}\left(A_{2}\right) & \supset & \ldots & \supset & C_{G}\left(A_{n}\right) \\
B_{b_{1}} & \supset & B_{b_{2}} & \supset & \ldots & \supset & B_{b_{n}} .
\end{array}
$$

Remark 6.4 Any strictly descending chain of centralizers of type (3) corresponds to a strictly ascending chain of Z-maximal subgraphs

$$
\begin{array}{ccccccc}
C_{G}\left(C_{1}\right) & \supset & C_{G}\left(C_{2}\right) & \supset & \ldots & \supset & C_{G}\left(C_{l}\right) \\
B_{c_{1}} & \subset & B_{c_{2}} & \subset & \ldots & \subset & B_{c_{l}} .
\end{array}
$$

7. Centralizer dimension: case $\Delta(G)=\{1\}$

PROOF of the theorem 3. By Remark 6.2 any centralizer chain has the form

$$
(2) \supset(2) \supset \cdots \supset(2) \supset(1) \supset(3) \supset(3) \supset \cdots \supset(3)
$$

or

$$
(2) \supset(2) \supset \cdots \supset(2) \supset(3) \supset(3) \supset \cdots \supset(3),
$$

where (1), (2) or (3) denotes the type of centralizer. The finiteness of such chains follows from Remarks 6.3 and 6.4.

Suppose that the maximal chain has the form (2) $\supset(2) \supset \cdots \supset(2) \supset(3) \supset$ (3) $\supset \cdots \supset(3)$, then by Remark 6.3 centralizer subchain of type (2) corresponds to a maximal descending chain of Z-maximal subgraphs. Because of the maximality of the chain of subgraphs, the last Z-maximal subgraph in the chain consists of
one vertex (because of \mathbb{A} is reduced). Therefore, the last centralizer of type (2) has also type (3). Suppose that the longest chain of Z-maximal subgraphs consists of s graphs, then $s \leqslant|E(A)|+1$. Similarly, by Remark 6.4 , in the maximal chain of centralizers of type (3) there are s elements. Since one element is common, the centralizer dimension is equal to $2 \cdot s-1 \leqslant 2 \cdot|E(A)|+2-1$.

In the case when the maximal chain has the form (2) $\supset(2) \supset \cdots \supset(2) \supset$ $(1) \supset(3) \supset(3) \supset \cdots \supset(3)$, we can act the same way. It only needs to be noted that a centralizer of type (1) is not contained in \mathbb{Z} and not contain the vertex group, because by Proposition 6.1.3 $B_{c_{1}} \supseteq B_{a_{1}},\left\langle a_{1}\right\rangle=C_{E}(r)$ and r is not elliptic. Therefore $C_{E}(r)$ does not coincide with $\langle v\rangle, v \in V(A)$. Hence the maximal length of the centralizer subchains of type (2) and (3) is equal to $s-1$. Thus, $\operatorname{cdim}\left(\pi_{1}(\mathbb{A})\right)=$ $2 \cdot(s-1)+1=2 \cdot s-1 \leqslant 2 \cdot|E(A)|+1$.

It remains to give examples of labeled graphs $\mathbb{B}_{m, n}$. The idea is that the chain of Z-maximal subgraphs is need to have length $l, 2 \leqslant l \leqslant m+1$, then $k=2 \cdot l-1$.

Fig. 3. Labeled graphs $\mathbb{B}_{m, n}$, for $l \leqslant n$.

In the case $l \leqslant n$ (see fig. 4) $T_{i}=\left\langle e_{1}, \ldots, e_{i}, f_{1}, \ldots, f_{n-m}\right\rangle$ are Z-maximal subgraphs forming the desired maximal chain and $Z\left(\pi_{1}\left(\mathbb{T}_{i}\right)\right)=\left\langle a^{2^{2}}\right\rangle, i=1,2, \ldots, l-$ $1, n$.

...

FIG. 4. Labeled graphs $\mathbb{B}_{m, n}$, for $m \geqslant l=n+r>n$.
In the case $m \geqslant l=n+r>n$ (see fig. 5) $T_{i}=\left\langle e_{1}, \ldots, e_{i}\right\rangle, S_{j}=\left\langle T_{n}, f_{1}, \ldots, f_{j}\right\rangle$ are Z-maximal subgraphs forming the desired maximal chain and $Z\left(\pi_{1}\left(\mathbb{T}_{i}\right)\right)=$ $\left\langle a^{2^{i}}\right\rangle, i=1,2, \ldots, n, Z\left(\pi_{1}\left(\mathbb{S}_{j}\right)\right)=\left\langle a^{2^{n} \cdot 3^{j}}\right\rangle, j=1, \ldots, r-1, m-n$. The Proposition is proved.

Using the labeled graphs constructed in the proof of Theorem 3, the following remark can be proved.
Remark 7.1 Given a finite connected graph A. For any odd $k, 3 \leqslant k \leqslant 2|E(A)|+1$ we can choose labeling of the edges of A so that $\operatorname{cdim}\left(\pi_{1}(\mathbb{A})\right)=k$.

8. Centralizer dimension: case $\Delta(G)=\{ \pm 1\}$

If $\Delta(G)=\{ \pm 1\}$ then $\operatorname{Ker} \Delta=G_{1}$ is a $G B S$ group and a subgroup of index 2 of G. Denote by \mathbb{A}_{1} the labeled graph as in fig. 6. Given a generator of second type t of $G \cong \pi_{1}(\mathbb{A})$ such that $\Delta(t)=-1$. Relations of second type in $\pi_{1}(\mathbb{A})$ have the form

$$
t_{i}^{-1} \cdot b_{i}^{\alpha_{i}} \cdot t_{i}=a_{i}^{\beta_{i}}, i=1,2, \ldots, b_{1}(A)-1, t^{-1} \cdot b^{\alpha} \cdot t=a^{\beta} .
$$

Describe labeled graph \mathbb{A}_{1}. We can assume that $\Delta\left(t_{i}\right)=-1$ for $1 \leqslant i \leqslant k$, $\Delta\left(t_{j}\right)=1$ for $k+1 \leqslant j \leqslant b_{1}(A)-1$. To each generator of the first type v of G there correspond two generators of the first type v, v^{\prime} of $\pi_{1}\left(\mathbb{A}_{1}\right)$. To each edge $e \in E\left(T_{A}\right)$ there correspond two edges e, e^{\prime} of the maximal subtree $T\left(A_{1}\right)$. Moreover, there is a special edge f with endpoints a and b^{\prime} and the same labels as on the edge t in $T\left(A_{1}\right)$. There are no more edges in $T\left(A_{1}\right)$. To each edge $t_{i}, i=1,2, \ldots, b_{1}(A)-1$ outside the maximal subtree in A there correspond two edges $s_{i}, r_{i}, i=1,2, \ldots, b_{1}(A)-1$ outside the maximum subtree in A_{1}. The edges s_{i} have endpoints b_{i} and a_{i}^{\prime}; the edges r_{i} have endpoints a_{i} and b_{i}^{\prime} for $1 \leqslant i \leqslant k$, The edges s_{j} have endpoints b_{j} and a_{j}; the edges r_{j} have endpoints a_{i}^{\prime} and b_{i}^{\prime} for $k+1 \leqslant j \leqslant b_{1}(A)-1$. Finally, there is one more edge t^{\prime} outside maximal subtree of A_{1} with endpoints b and a^{\prime}.

Fig. 5. Labeled graphs \mathbb{A}_{1} and \mathbb{A}.

The labels on the corresponding edges are placed as in \mathbb{A}. Therefore relations of the first type in $\pi_{1}\left(\mathbb{A}_{1}\right)$ have form

$$
u^{\lambda}=v^{\mu},\left(u^{\prime}\right)^{\lambda}=\left(v^{\prime}\right)^{\mu}
$$

for all relations of the first type of $u^{\lambda}=v^{\mu}$ in $\pi_{1}(\mathbb{A})$, plus the relation $a^{\beta}=\left(b^{\prime}\right)^{\alpha}$. The relations of the second type in $\pi_{1}\left(\mathbb{A}_{1}\right)$ have form

$$
\begin{array}{rccll}
s_{i}^{-1} & \cdot\left(a_{i}^{\prime}\right)^{\beta_{i}} & \cdot & s_{i}=b_{i}^{\alpha_{i}}, & i=1,2, \ldots, k, \\
r_{i}^{-1} \cdot & \left(b_{i}^{\prime}\right)^{\alpha_{i}} & \cdot & r_{i}=a_{i}^{\beta_{i}}, & i=1,2, \ldots, k, \\
s_{j}^{-1} & \cdot & b_{j}^{\alpha_{j}} & \cdot & s_{j}=a_{j}^{\beta_{j}}, \\
r_{j}^{-1} \cdot & \left(b_{j}^{\prime}\right)^{\alpha_{j}} & \cdot & r_{j}=k+1, \ldots, b_{1}(A)-1 \\
\left(a_{j}^{\prime}\right)^{\beta_{j}}, & j=k+1, \ldots, b_{1}(A)-1, \\
\left(t^{\prime}\right)^{-1} & \cdot & b^{\alpha} & \cdot & t^{\prime}=\left(a^{\prime}\right)^{\beta} .
\end{array}
$$

The constructed graph A_{1} is a two-sheeted covering of A.
Proposition 8.1 Group G_{1} is isomorphic to $\pi_{1}\left(\mathbb{A}_{1}\right)$.
PROOF. We construct a map φ on the set of generators $\pi_{1}\left(\mathbb{A}_{1}\right)$ in G by the rule

$$
\begin{array}{rlrl}
s_{i} & \rightarrow t^{-1} \cdot t_{i}^{-1}, & i=1,2, \ldots, k, \\
r_{i} & \rightarrow t^{-1} \cdot t_{i}, & i=1,2, \ldots, k, \\
s_{j} & \rightarrow t_{i}, & j=k+1, \ldots, b_{1}(A)-1, \\
\varphi: r_{j} & \rightarrow t^{-1} \cdot t_{j} \cdot t, \quad j=k+1, \ldots, b_{1}(A)-1, \\
v & \rightarrow v, & v \in V\left(T_{A}\right), \\
v^{\prime} & \rightarrow t^{-1} \cdot v \cdot t, \quad v \in V\left(T_{A}\right), \\
t^{\prime} & \rightarrow t^{2} .
\end{array}
$$

This map extends to a homomorphism because the relations of $\pi_{1}\left(\mathbb{A}_{1}\right)$ pass to identity of G. Prove that $G_{1}=\operatorname{Im} \varphi$.

It is easy to see that $\Delta(\varphi(g))=1$ for any generator g of $\pi_{1}\left(\mathbb{A}_{1}\right)$, therefore $G_{1} \supseteq \operatorname{Im} \varphi$. In addition, it can be noted that $\operatorname{Im} \varphi$ is a subgroup of index 2 in G with the coset representatives 1 and t. Therefore $G_{1}=\operatorname{Im} \varphi$.

Show that $\operatorname{Ker} \varphi=\{i d\}$. Suppose that reduced element g belongs to $\operatorname{Ker} \varphi$. If $g \neq i d$ then either $\varphi(g)$ belongs to E and reducible, or by Britton's Lemma [9] there is a subword of the form $t_{i}^{-1} \cdot a \cdot t_{i}=b$ in $\varphi(g)$. It is easy to understand that in both cases similar reduction should be in the word g of $\pi_{1}\left(\mathbb{A}_{1}\right)$, this contradicts reducibility. The proposition is proved.
Proposition 8.2 The maximal chains of Z-maximal subgraphs in \mathbb{A}_{1} have the same lengths as in \mathbb{A}.
PROOF. At first we prove that if B_{c} is a Z-maximal subgraph of \mathbb{A}_{1} and there is a pair $v, v^{\prime} \in V\left(B_{c}\right)$, then $w \in V\left(B_{c}\right)$ if and only if $w^{\prime} \in V\left(B_{c}\right)$.

By definition of B_{c} there are two integers k, k^{\prime} such that $v^{k}=c=\left(v^{\prime}\right)^{k^{\prime}}$. It follows from Proposition 8.1 that $k=k^{\prime}$. If $w \in V\left(B_{c}\right)$ then $w^{l}=c=v^{k}=\left(v^{\prime}\right)^{k}$. Since $w^{l}=v^{k}$ then $\left(w^{\prime}\right)^{l}=\left(v^{\prime}\right)^{k}$. Therefore $w^{l}=c=\left(w^{\prime}\right)^{l}$. Hence $w^{\prime} \in V\left(B_{c}\right)$. To prove the converse implication we can argue the same way.

Therefore each Z-maximal subgraph either has no pair v, v^{\prime} of the vertices (consequently, it's vertex number is less then $|V(A)|+1$), or contains $B \cup B^{\prime}$ for a suitable Z-maximal subgraph B of the labeled graph \mathbb{A}. Therefore a maximal chain of Z-maximal subgraphs has the same length as in \mathbb{A}. The proposition is proved.
Corollary 8.3 The centralizer dimension of $\pi_{1}\left(\mathbb{A}_{1}\right)$ is equal to the centralizer dimension of $\pi_{1}(\mathbb{A})$.
Remark 8.4 Given a $G B S$ group G such that $\Delta(G)=\{ \pm 1\}$. If $g \in G, \Delta(g)=-1$ then $C_{G}(g)=\langle r\rangle$, where $g=r^{m}, m$ is odd and an element r is not a power of some other element.

PROOF. Arguing as in the proof of the Lemma 4.9 we can show that $C_{G}(g)=$ $\langle r\rangle \times C_{E}(r)$. But $C_{E}(g)=\{1\}$ because of $C_{E}(g)$ consists of vertex elements and $\Delta(g)=-1$. The remark is proved.
PROOF of the theorem 4 . The group $G=\pi_{1}(\mathbb{A})$ has a trivial center. Therefore there is a centralizer chain

$$
G=C_{G}(1) \supset C_{G}\left(g_{1}\right) \supset \cdots \supset C_{G}\left(g_{1}, \ldots, g_{2 s+1}\right) \supset\{1\}=C_{G}\left(t, g_{1}, \ldots, g_{2 s+1}\right)
$$

of the length $2 \cdot s+3$, where s is the length of the maximal chain of Z-maximal subgraphs in \mathbb{A}_{1}. Suppose that there exists a longer chain

$$
G=C_{G}(1) \supset C_{1} \supset \cdots \supset C_{k} \supset\{i d\}=C_{G}\left(t, h_{1}, \ldots, h_{r}\right) .
$$

If $C_{1}, \ldots, C_{l} \nsubseteq G_{1}$ then there is $g \in C_{i}, 1 \leqslant i \leqslant l$ such that $\Delta(g)=-1$. Since $g \in C_{i}=C_{G}\left(g_{1}, \ldots, g_{i-1}, g\right)$ and $C_{G}(g)=\langle r\rangle$ then by remark 8.4 we have $g_{i} \in\langle r\rangle$. However, $C_{G}\left(g^{m}\right)$ is coincide either with $\langle r\rangle$ for odd m, or with $\langle r\rangle \times\langle a\rangle$ for even m (there $C_{E}\left(r^{2}\right)$ is generated by $\left.a\right)$. Therefore $l \leqslant 2$ and the length of the chain is less then 5 .

Suppose that the length is equal to 4 . If the length of the chain of Z-maximal subgraphs in \mathbb{A} greater or equal to 2 , then we know how to construct the centralizer chain of the length $2 \cdot 2+1$ and 4 is not maximal. Suppose that the length of the chain of Z-maximal subgraphs in \mathbb{A} is equal to 1 . Since \mathbb{A} is a reduced labeled graph, we get $|V(A)|=1$. Moreover, the labels equal to 1 or -1 . Hence $\pi_{1}(\mathbb{A})$ contains subgroup H of index 2 isomorphic to $F_{n} \times \mathbb{Z}$. This subgroup H corresponds to two-sheeted covering (as in fig. 6). If $n \geqslant 2$ then $\operatorname{cdim}(H)=3$ and centralizer chain constructed at the beginning of the proof has the length equals to 5 . If $n=1$ then H is an abelian group and $\operatorname{cdim}(G)$ can not be equal to 4 .

Therefore the length of the chain is not greater than 3 . However, 3 is a minimal centralizer dimension of non-abelian group, this contradicts to the minimality. Therefore $l=0$.

Examples can be constructed as in fig. 4 and 5, changing a sign of one suitable label. The theorem is proved.
PROOF of the remark 5 . At first we need to compute $\Delta\left(\pi_{1}(\mathbb{A})\right)$. If $\Delta\left(\pi_{1}(\mathbb{A})\right) \nsubseteq\{ \pm 1\}$ then by Theorem 3.2 either $\operatorname{cdim}\left(\pi_{1}(\mathbb{A})\right)=\infty$, or $\pi_{1}(\mathbb{A}) \cong B S(1, n), \operatorname{cdim}\left(\pi_{1}(\mathbb{A})\right)=$ 3.

If $\Delta\left(\pi_{1}(\mathbb{A})\right) \subseteq\{ \pm 1\}$ then, starting from an arbitrary vertex, one can find a chain of Z-maximal subgraphs. Then, as in Theorems 3 and 4, we can compute $\operatorname{cdim}\left(\pi_{1}(\mathbb{A})\right)$. The remark is proved.

References

[1] J.P. Serre, Trees, Berlin/Heidelberg/New York: Springer, 1980. MR0607504
[2] V. Guirardel, G. Levitt, JSJ decompositions of groups, Astérisque, 395 (2017). MR3758992
[3] M. Clay, M. Forester, On the isomorphism problem for generalized Baumslag-Solitar groups, Algebraic \& Geometric Topology, 8 (2008), 2289-2322. MR2465742
[4] D. J. S. Robinson, Generalized Baumslag-Solitar groups: a survey of recent progress, Groups St Andrews 2013, LMS, Lecture Note Series 422, (2016), 457-469.
[5] A. Myasnikov, P. Shumayatsky, Discriminating groups and c-dimension, J. Group Theory, 7:1 (2004), 135-142. MR2030235
[6] A. J. Duncan, I. V. Kazachkov, V. N. Remeslennikov, Centralizer dimension and universal classes of group, Sib. Electron. Math. Rep., 3 (2006), 197-215. MR2276020
[7] M. Forester, Deformation and rigidity of simplicial group actions on trees, Geometry \& Topology, 6 (2002), 219-267. MR1914569
[8] G. Baumslag, D. Solitar, Some two-generator one-relator non-hopfian groups, Bull. AMS, 68 (1962), 199-201. MR0142635
[9] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, V. 2, Berlin: Springer-Verlag, 2001. MR1812024
[10] O. Bogopolski, Introduction to group theory, European Mathematical Society, 2008. MR2396717
[11] F. A. Dudkin, The centralizer dimension of generalized Baumslag-Solitar groups, Algebra and Logic, 55:5 (2016), 403-406. MR3716957
[12] F. A. Dudkin, On the centralizer dimension and lattice of generalized Baumslag-Solitar groups, Siberian Mathematical Journal, 59:3 (2018), 403-414.
[13] G. Levitt, Generalized Baumslag-Solitar groups: Rank and finite index subgroups, Annales Institut Fourier, 65:2 (2015), 725-762. MR3449166
[14] I. Chiswell, Introduction to Λ-trees, Singapore: World Scientific Inc., 2001. MR1851337
Fedor Anatol'evich Dudkin
Sobolev Institute of Mathematics,
pr. Koptyuga, 4;
Novosibirsk State University,
Pirogova St., 2,
630090, Novosibirsk, Russia
E-mail address: DudkinF@math.nsc.ru

[^0]: Dudkin, F.A., Computation of the centralizer dimension of GBS groups
 (C) 2018 Dudikin F.A.

 The work was supported by Russian Science Foundation (project 14-21-00065).
 Received July, 22, 2018, published December, 30, 2018.

