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MAXIMAL METRICALLY REGULAR SETS

A.K. OBLAUKHOV

Abstract. Metrically regular sets form an interesting subclass of all
subsets of an arbitrary finite discrete metric space M . Let us denote Ŝ the
set of points which are at maximal possible distance from the subset S
of the space M . Then S is called metrically regular, if the set of vectors
which are at maximal possible distance from Ŝ coincides with S. The
problem of investigating metrically regular sets appears when studying
bent functions, set of which is metrically regular in the Boolean cube with
the Hamming metric. In this paper the method of obtaining metrically
regular sets from an arbitrary subset of the metric space is presented.
Smallest metrically regular sets in the Boolean cube are described, and
it is proven that metrically regular sets of maximal cardinality in the
Boolean cube have covering radius 1 and are complements of minimal
covering codes of radius 1. Lower bound on the sum of cardinalities of
a pair of metrically regular sets, each being metric complement of the
other, is given.

Keywords: metrically regular set, metric complement, Boolean cube,
minimal covering code, bent function.

1. Introduction

Metrically regular sets were first introduced in the book [3] as a part of the
Boolean cube Fn

2 = {0, 1}n with the Hamming metric. However, metrically regular
sets can be well-defined in any finite discrete space M with a metric d admitting
values from the set D. Metrically regular sets form an interesting subclass of all
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subsets of such metric space. Because the metric d is bounded, we can define the
notion of a metric complement of a set — set of points which are at maximal possible
distance from a given set. The metric complement of a set A is denoted by Â. And,
unlike with the case of the regular complementation operation, obtaining metric
complement of the set Â will not necessarily yield us the set A again. But if it does,
such set A is called a metrically regular set.

Note that metrically regular sets always come in pairs, i.e. if A is a metrically
regular set, its metric complement Â is also a metrically regular set. In this work a
pair consisting of a metrically regular set A and its metric complement B = Â will
often be referred to as “a pair of metrically regular sets A, B”.

It is straightforward from Neumaier’s definition [8] of completely regular codes
that they are metrically regular (but the converse is not true). Metric regularity of
linear subspaces of the Boolean cube is also investigated in the paper [1].

The problem of investigating metrically regular sets appeared when studying
bent functions [4]. A Boolean function f in even number of variables is called bent
function if it is at maximal possible distance from the set of affine functions. Thus,
the set of bent functions Bn is a metric complement of the set of affine functions An

in the Boolean cube F2n

2 It is known that the set of affine functions is also a metric
complement of the set of bent functions and therefore both sets are metrically
regular [2].

Bent functions are often used in cryptography due to their high nonlinearity [9].
Many problems related to bent functions are still unsolved; in particular, the gap
between the best known lower and upper bound on the number of bent functions
is extremely large. In the search for better upper and lower bounds it is natural to
investigate metrically regular sets with maximal or minimal cardinality.

In this work a method of obtaining a pair of metrically regular sets from an
arbitrary subset of the metric space is presented.

Proposition. Let X be an arbitrary subset of a finite metric space M . Let us
denote X0 = X, Xk+1 = X̂k for k > 0. Then there exists a number M ≤ |D| − 1
such that Xm is a metrically regular set for any m > M .

Smallest metrically regular sets in the Boolean cube are discovered to contain
only one vector. It is proven that for any metrically regular set in the Boolean cube
there exists a metrically regular superset with covering radius 1. It is proven that
any minimal covering code of radius 1 is a metrically regular set. Consequently,
the general problem of finding largest metrically regular sets is proven to be equal
to the problem of finding the smallest covering code of radius 1, which is a known
open problem of the coding theory.

Lower bound on the sum of sizes of two sets which form a pair of metrically
regular sets with covering radius r is obtained.

Theorem. Let A,B ⊆ M be a pair of metrically regular sets at distance r ∈ D
from each other of sizes N1 and N2 respectively, and let Ck be the size of the largest
sphere of radius k ∈ D in M . Then

N1 +N2 > 2|M |
1 +

∑
k∈D
k<r

Ck
.
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2. Definitions and examples

Let M be a finite discrete metric space with a metric d(·, ·) admitting values from
a set D. From now on every space mentioned in the paper will be a finite discrete
metric space. Let X ⊆ M be an arbitrary set and let y ∈ M be an arbitrary point.
The distance from the point y to the set X is defined as

d(y,X) = min
x∈X

d(y, x).

The covering radius of the set X is defined as

ρ(X) = max
z∈M

d(z,X).

Set X with the covering radius r is also sometimes called a covering code [5] of
radius r.

Consider the set Y = {y ∈ M |d(y,X) = ρ(X)} of all vectors at maximal possible
distance from the set X. This set is called the metric complement [1] of X and is

denoted by X̂. If ̂̂
X = X then the set X is said to be metrically regular [3].

Throughout the paper we will consider a specific metric space Fn
2 = {0, 1}n

of binary vectors of length n with the Hamming metric. The Hamming distance
between two vectors in this space is defined as the number of coordinates in which
these vectors differ.

Let us consider some simple examples in the space Fn
2 :

(1) Let X = {x} be the set consisting of one binary vector. It has covering
radius n and its metric complement is the set X̂ = {x⊕1}, consisting only
of the opposite vector (here ⊕ denotes coordinate-wise XOR operation on

vectors, and 1 is the vector consisting of all ones). It follows that ̂̂
X = X,

so X is a metrically regular set.
(2) Consider a ball of radius r centered at x; i.e., X = {y ∈ Fn

2 |d(x, y) 6 r}.
Then the vector x ⊕ 1 will be at distance n − r from this set, while any
other vector will be closer than that. So in this case, the covering radius
of X is equal to n − r and its metric complement is the set X̂ = {x ⊕ 1}
and ̂̂

X = {x}. This shows us that unless r = 0, ball of radius r is not a
metrically regular set.

(3) An (n−k)-face is a set of all vectors with fixed values at chosen k coordinates.
Let X be an (n− k)-face with values a1, a2, . . . , ak at coordinates i1, . . . , ik
respectively, where 1 6 i1 < i2 < · · · < ik 6 n. For every vector y ∈ Fn

2 ,
there exists a vector x in the face X coinciding with y in all coordinates
which are not fixed. Therefore, the distance from y to X is determined
only by those coordinates of y that are fixed in the face. It is easy to see
that ρ(X) = k and X̂ is an (n − k)-face with opposite values in the same

coordinates which are fixed in X. It follows that ̂̂
X = X, so any face is a

metrically regular set.
Note that if A, B is a pair of metrically regular sets at distance r from each other,

an arbitrary point x at distance k from the set A is not necessarily at distance r−k
from the set B. If, for example, A is the set of linear Boolean functions in even
number of variables n, while B is the set of inverted linear functions, then these
sets are metrical complements of each other at distance 2n−1 (thus they form a pair
of metrically regular sets), but any bent function in n variables is at distance of at
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least 2n−1 − 2
n
2 −1 from either of these sets. This implies that the union of a pair

of metrically regular sets with covering radii r is not necessarily a covering code of
radius

⌊
r
2

⌋
.

3. Convergence to metrically regular sets

As we could see from examples, not every set is metrically regular, which means
that we can apply the procedure of taking metric complement more than twice and
obtain new sets. Does this process stabilize? If so, how and when? Proposition 1
answers these question.

Proposition 1. Let X be an arbitrary subset of the space M . Let us denote
X0 = X, Xk+1 = X̂k for k > 0. Then there exists a number M ≤ |D| − 1 such that
Xm is a metrically regular set for any m > M .

Proof. Let ρ(X) be equal to r. It is obvious that any point from the set X is at
distance at least r from the set X̂. This means that ρ(X̂) ≥ r = ρ(X). Therefore,

(1) ρ(X0) ≤ ρ(X1) ≤ . . . ≤ ρ(Xk) ≤ . . .

Because ρ(Xk) admits not more than |D|−1 nonzero values, there exists a number N
such that ρ(XN ) = ρ(XN+1). Let us choose the smallest N satisfying this condition.
Then, as was pointed out at the beginning of the proof, points of the set XN are
at distance of at least ρ(XN ) from the set XN+1. But we know that ρ(XN+1) is
equal to ρ(XN ), hence all vectors of XN are exactly at distance ρ(XN ) from the
set XN+1, which means that XN ⊆ X̂N+1 = XN+2.

Note that XN ⊆ XN+2 implies ρ(XN+2) ≤ ρ(XN ). Combining this with inequality
1, we can see that ρ(XN+2) is in fact equal to ρ(XN ). Using similar reasoning, we
can prove that every ρ(XN+k), k > 0 is equal to ρ(XN ). So, if ρ(XN+1) = ρ(XN )
for some N , then ρ(XN+k) = ρ(XN ) for any k > 0. It follows that the smallest N
at which such chain of equalities starts is not greater than |D| − 2.

Now we will use the following fact: if A ⊆ B and ρ(A) = ρ(B), then B̂ ⊆ Â. The
interested reader may prove this statement. Since ρ(XN+k) = ρ(XN ) for all k ≥ 0,
and ρ(XN ) = ρ(XN+1) implies XN ⊆ XN+2, we can also conclude that XN+1 ⊆
XN+3. But using aforementioned fact we obtain XN+3 = X̂N+2 ⊆ X̂N = XN+1.
Combining the two we see that the set XN+1 is equal to the set XN+3, so XN+1

is a metrically regular set. By similar reasoning it is easy to prove that all sets Xm

with m ≥ N + 1 are metrically regular. If we denote M := N + 1, the number M
fulfills the statement of the proposition. �

Proposition 1 tells us that if we take an arbitrary subset of the space M and
iteratively apply the operation of metric complementation to it, eventually (after
not more than |D| − 1 repetitions) we will stabilize on a pair of metrically regular
sets.

Using this proposition, we can split the set F(M) of all subsets of M into
equivalence classes, and call sets X,Y ⊆ M equivalent if and only if the pair
of metrically regular sets A, A∗ which we obtain from the set X by repeatedly
obtaining metric complement as in Proposition 1 coincides with the pair of metrically
regular sets B, B∗ which we obtain from the set Y (order of sets in the pair doesn’t
matter).

Proposition 1 can also be used for conducting experiments with metrically regular
sets using computers.



1846 A.K. OBLAUKHOV

4. Minimal and maximal metrically regular sets in the Boolean cube

Since affine and bent functions are subsets of the Boolean cube with the Hamming
metric, let us consider the problem of finding the smallest and the largest metrically
regular sets in this space. If x is a vector of Fn

2 , then the set {x} of size 1 is
metrically regular; therefore smallest metrically regular sets in the Boolean cube
have cardinality 1. For largest metrically regular sets the solution doesn’t come
so easily, but we can reduce the general problem to the problem with fixed small
covering radius.

Theorem 1. Let A, B be a pair of metrically regular sets, i.e. A = B̂, B = Â.
Then there exists a pair of metrically regular sets A∗, B∗ at distance 1 from each
other such that either A ⊆ A∗, B ⊆ B∗ or both A,B ⊆ A∗.

Proof. Denote the distance between A and B as r. Consider the layer representation
of Fn

2 with respect to A: denote Ak = {x ∈ Fn
2 |d(x,A) = k}, k from 0 to r. Then

A0 = A, Ar = B. Denote

(2) A∗ =
∪

06k6r,
k is even

Ak, B∗ =
∪

06k6r,
k is odd

Ak.

Note that A∗ and B∗ do not intersect and together cover the Boolean cube. Let us
prove that Â∗ = B∗, B̂∗ = A∗.

Let x be an arbitrary vector from B∗. Then there exists an odd number m > 1
such that x ∈ Am. By definition of sets Ak, vector x is at distance 1 from Am−1 ⊆
A∗. Thus, every vector of B∗ is at distance 1 from set A∗.

Let x be an arbitrary vector from A∗. Then there exists an even number m such
that x ∈ Am. If m is greater than 0, then by similar reasoning, vector x is at distance
1 from set B∗. Assume that m = 0, which means x ∈ A. Since A = B̂, there exists
a path x = x0, x1, . . . , xd−1, xd = y of length d from some vector y ∈ B = Ad to
vector x ∈ A = A0. By definition of layer representation, an edge between sets Ai

and Aj in case of |i− j| > 1 cannot exist. Therefore, each vector xk from the path
belongs to Ak, so the vector x1 lies in A1 ⊆ B∗. This means that d(x,B∗) = 1.
Since x was chosen arbitrarily, every vector from A∗ is also at distance 1 from set
B∗.

Thus, Â∗ = B∗, B̂∗ = A∗ (so A∗ and B∗ are metrically regular) and the covering
radius of both is equal to 1. If r is odd, then A ⊆ A∗ and B ⊆ B∗, and if r is even,
both A and B are contained in A∗. �

Theorem 1 tells us that for every metrically regular set in the Boolean cube there
exists a metrically regular superset with maximal distance 1. Therefore the largest
metrically regular set in the Boolean cube has maximal distance 1, and it is the
metric (and usual) complement of the smallest metrically regular set with maximal
distance 1.

5. Minimal covering codes

Recall that the covering code [5] of radius R is a subset of Fn
2 with covering

radius R.

Proposition 2. If C ⊆ Fn
2 is a minimal covering code of radius 1, then C is

metrically regular.
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Proof. Because C has covering radius 1, every vector of the Boolean cube is either
in C or in its metric complement: Fn

2 = C ∪ Ĉ. If d(Ĉ) = 1, then, similarly,

Fn
2 = Ĉ ∪ ̂̂

C, and therefore C =
̂̂
C, which means that C is metrically regular.

Assume that d(Ĉ) > 1, so there exists a vector y ∈ C such that d(y, Ĉ) > 1. This
means that all neighbours (vectors at distance 1) of y are in C. But then the code
C\{y} is also a covering code of radius 1, contradicting the minimality of C. �

It follows from the Proposition 2 that the smallest covering code of radius 1
is also the smallest metrically regular set with covering radius 1. Since a pair of
metrically regular sets at distance 1 from each other covers the Boolean cube, the
problem of finding the largest metrically regular set is equivalent to the problem of
finding smallest covering code of radius 1. This is an open problem of coding theory
[5].

But the set Bn has maximal distance 2n−1 − 2
n
2 −1. So let us now consider

metrically regular sets at a fixed distance r from each other. Then, if d ̸= 1, n,
the problem of finding the largest and the smallest metrically regular set stands.

Conjecture 1. If C ⊆ Fn
2 is a covering code of radius r of minimal size, then C

is metrically regular.

The conjecture was computationally checked for several minimal covering codes
with n = 2r + 3, n = 2r + 4, where r equals 2 or 3, constructions of which can be
found in [6, 7].

6. Bounds via sums

We see that the general problem of finding the smallest metrically regular set
in the Boolean cube is trivial, while the general problem of finding the largest
metrically regular set is reduced to the case when the covering radius of a set is
equal to 1. But what about sizes of metrically regular sets at fixed distance from
each other? We can estimate sizes of such sets nondirectly, by estimating the size of
the union of two metrically regular sets. Here we return to the general finite metric
space M with a metric d(·, ·) admitting values from the set D.

Theorem 2. Let A,B ⊆ M be a pair of metrically regular sets at distance r ∈ D
from each other of sizes N1 and N2 respectively, and let Ck be the size of the largest
sphere of radius k ∈ D in M . Then

N1 +N2 > 2|M |
1 +

∑
k∈D
k<r

Ck
.

Proof. Consider the layer representation of M with respect to A: denote
Ak = {x ∈ M |d(x,A) = k}, k ∈ D, k 6 r. Then A0 = A, Ar = B, and

(3) |M | =
∑
k∈D
k6r

|Ak| = N1 +N2 +
∑
k∈D

0<k<r

|Ak|.

Since every point of the space M has no more than Ck points at distance k from it,

|Ak| 6 Ck · |A0| 6 Ck ·N1.



1848 A.K. OBLAUKHOV

Using this bound with (3) we obtain

(4) N1 +N2 = |M | −
∑
k∈D

0<k<r

|Ak| > |M | −
∑
k∈D

0<k<r

Ck ·N1.

Similarly,

(5) N1 +N2 > |M | −
∑
k∈D

0<k<r

Ck ·N2.

Adding inequalities (4) and (5), we obtain

2(N1 +N2) > 2|M | − (N1 +N2)
∑
k∈D

0<k<r

Ck.

Grouping all terms with N1 + N2 and dividing by corresponding coefficient, we
obtain the desired inequality. �

In the case when M is Fn
2 with Hamming metric, we obtain the following bound.

Corollary 1. Let A,B ⊆ Fn
2 be a pair of metrically regular sets at distance r from

each other of sizes N1 and N2 respectively. Then

N1 +N2 > 2n+1

1 +
r−1∑
k=0

(
n
k

) .
7. Conclusion

We can see that the general problem of searching for the smallest metrically
regular set in the Boolean cube is trivial, while the problem of searching for the
largest one can be reduced to a long standing open problem. However, in both cases
the solution belongs to some (relatively) trivial class of metrically regular sets —
either one-vector sets or sets with covering radius equal to 1. Therefore, to obtain
more interesting results it is necessary to go from the general problem to the set
of restricted subproblems — searching for the smallest or largest metrically regular
set with fixed covering radius. Bound of the Theorem 2 provides first steps in this
direction.
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