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MIRROR SYMMETRIES OF HYPERBOLIC TETRAHEDRAL
MANIFOLDS

D.A. DEREVNIN, A.D. MEDNYKH

Abstract. Let Λ be the group generated by reflections in faces of a
Coxeter tetrahedron in the hyperbolic space H3. A tetrahedral manifold is
a hyperbolic manifold M = H3/Γ uniformized by a torsion free subgroup
Γ of the group Λ. By a mirror symmetry we mean an orientation reversing
isometry of the manifold acting by reflection. The aim of the paper to
investigate mirror symmetries of the tetrahedral manifolds.
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1. Introduction

One of the first examples of tetrahedral manifolds was constructed by
E. B. Vinberg [19] who proved that the well-known hyperbolic Seifert-Weber
manifold [7] is tetrahedral. Further examples were given by L. A. Best [18]. The first
non-orientable tetrahedral manifold appeared in the paper by N. K. Al-Jubouri [1].
The isometry group of the Al-Jubouri and the Seifert-Weber manifolds was found in
the papers [4] and [15] respectively. Further generalization of tetrahedral manifolds
known as Löbell type manifolds was done in series of papers ([20], [21], [3], [5],
[6], [16], [2]). The arithmetic properties of the tetrahedral manifolds investigated
in [14]. There also analogues of such manifolds in the high dimensional theory.
Here, the construction known as small coverings was proposed by M. W. Davis and
T. Januszkiewicz [8] and developed in [11]. In the present, the most effective way
to construct the manifolds under consideration comes from the toric geometry [9],
[10].
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2. Basic definitions and preliminary facts

Let H3 be the three dimensional hyperbolic space endowed by Riemannian
metric of the constant sectional curvature -1. Let I = Isom(H3) denote the group
of all isometries of H3 and let I+ = Isom+(H3) denote the subgroup of index
2 in I consisting of the orientation preserving isometries. By a non-Euclidean
crystallographic (NEC) group we shall mean a discrete subgroup Γ of I for which
H3/Γ is compact. If Γ ∩ (I − I+) ̸= ∅ then we shall call Γ a proper NEC group.

An important class of NEC groups is formed by the hyperbolic Coxeter groups
and their subgroups of finite index. There are exactly nine Coxeter groups generated
by reflections in the faces of a compact hyperbolic tetrahedron [17]. Following the
Best [18] we will denote these groups Λ1,Λ2, . . . ,Λ9. Also, let ∆1,∆2, . . . ,∆9 be
they corresponding orientation preserving subgroup of order two, respectively.

Consider the group
∆ = ∆[λ1, λ2, λ3;µ1, µ2, µ3]

= ⟨aλ1 = bλ2 = cλ3 = (bc−1)µ1 = (ca−1)µ2 = (ab−1)µ3 = 1⟩
generated by rotations in the edges of compact Lanner tetrahedron

T = T [λ1, λ2, λ3;µ1, µ2, µ3].

Let Γ be a torsion free normal subgroup of ∆. Then we shall call manifold
M = H3/Γ a T -tetrahedral manifold. Let also θ∗ be the canonical epimorphism
from N(Γ) onto a finite group G∗ = N(Γ)/Γ. The manifold M will be symmetric
if there exist τ ∈ (I − I+) such that T = θ∗(τ) has order two. We shall say the
symmetry T is a mirror symmetry if Fix(T ) contains a closed surface. The manifold
M = H3/Γ is called mirror symmetric in this case.

Let M be a closed three dimensional hyperbolic manifold. Then M can be
represented as H3/K, where K is a NEC group isomorphic to π1(M) and acting
without fixed points in H3. The later occurs if and only if K is torsion free. In this
case the group Isom(M) of all isometries of M is isomorphic to N(K)/K, where
is normalizer of K in I. By the Mostow rigidity theorem the group Isom(M) is
always finite and isomorphic to Out(K) = Aut(K)/Inn(K). The basic question
which we discuss in the paper is whether tetrahedral manifolds are symmetric.

3. Basic lemma

Let M be a closed three dimensional hyperbolic manifold and G be an
automorphism group of M. Then M = H3/K, where K is a NEC group acting
without fixed points in H3. Denote by Γ the lifting of the group G to the universal
covering H3. Note that Γ < N(K), where N(K) is the normalizer of K in Isom(H3).
Here, K ▹ Γ and Γ/K ∼= G.

Following traditions in the Riemann surface theory (see, for example, [13], [22])
we refer to the pair (Γ,H3) as the universal covering transformation group of the
transformation group (G,M).

The following statement is a three-dimensional version of Lemma 4.1 in [22].

Lemma 1. Let M be a closed orientable three dimensional hyperbolic manifold
and G be an automorphism group of M. Denote by (Γ,H3) the universal covering
transformation group of (G,M). Assume that M = H3/K, where K is a NEC
group acting without fixed points in H3 and θ : Γ → Γ/K = G be the canonical
homomorphism. Let there exist a proper NEC group Γ∗ such that (Γ∗)+ = Γ and
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element c ∈ (Γ∗−Γ) such that c2 ∈ K. Suppose G∗ is a group which contains G with
index 2 and θ∗ : Γ∗ → G∗ is an epimorphism with θ∗ |Γ= θ. Then M is symmetric.

Proof. Γ∗ contains an orientation reversing isometry c such that Γ∗ = Γ + cΓ.
θ∗(c) is not the identity otherwise G = G∗. Since c2 ∈ K and K = ker(θ) we
have θ∗(c)2 = θ∗(c2) = θ(c2) = 1. So θ∗(c) is an involution. As θ∗ |Γ= θ, we
have ker(θ∗) ⊇ K. Moreover, if g ∈ ker(θ∗), g ̸∈ K then g = c t where t ∈ Γ.
Therefore θ∗(c) = θ∗(g t−1) = θ∗(t−1) ∈ G and again G = G∗. Hence g ∈ K and so
ker(θ∗) = K. Thus K ▹ Γ∗ and θ∗(c) is a symmetry of M.

�

3.1. Mirror symmetric tetrahedral manifold. Consider the group

Λ = ⟨k2 = l2 = m2 = n2 = (lk)λ1 = (mk)λ2 = (nk)λ3(1)
= (mn)µ1 = (nl)µ2 = (lm)µ3 = 1⟩

generated by reflections in the faces of compact Lanner tetrahedron

T = T [λ1, λ2, λ3;µ1, µ2, µ3].

Let
∆ = ∆[λ1, λ2, λ3;µ1, µ2, µ3]

= ⟨aλ1 = bλ2 = cλ3 = (bc−1)µ1 = (ca−1)µ2 = (ab−1)µ3 = 1⟩
be the subgroup of index two in Λ generated by rotations a = l k, b = mk and
c = nk in edges of the tetrahedron T (see, for example [14]). In what follows, we
consider Λ = ∆∗ = ⟨k,∆⟩ is a natural proper Z2-extension of the NEC group ∆.
A three dimensional hyperbolic manifold M is said to be T -tetrahedral manifold
if there exist an epimorphism θ : ∆ → G onto a finite group G with torsion free
kernel such that M = H3/Ker(θ).

Theorem 1. Let G be a group of automorphisms of a T -tetrahedral manifold M
generated by A, B and C obeying

Aλ1 = Bλ2 = Cλ3 = (BC−1)µ1 = (CA−1)µ2 = (AB−1)µ3 = 1

(i.e. there is an epimorphism θ from ∆ to G defined by a → A, b → B, c → C and
M = H3/Ker(θ) is the quotient of the kernel). Then M is a mirror symmetric if
and only if there is an automorphism α : G → G obeying either

(i) α(A) = A−1, α(B) = B−1, α(C) = C−1 or
(ii) α(A) = BA−1, α(B) = B, α(C) = CB−1.

Remark. The second possibility in the theorem is realized for tetrahedron
T1 = T [2, 2, 3; 3, 5, 2] only. In this case, the rotation group ∆1 has two proper NEC
Z2-extensions (see [12], Theorem 1). One is the canonical reflection group Λ3, while
the second is the group

(2) R = ⟨t,∆1⟩ = ⟨t2 = a2 = c3 = (at)4 = (ca−1)5 = [t, ca−1] = 1⟩,

where t is the reflection in the hyperbolic plane divided the tetrahedron T1 in two
pieces each is congruent to tetrahedron T3.
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Proof. Suppose that an automorphism α exists obeying (i). Assume that it is an
outer automorphism. Then there exists a Z2-extension G∗ of G and an element
T ∈ G∗ obeying

T 2 = 1, TAT−1 = A−1, TBT−1 = B−1, TCT−1 = C−1.

i.e.
T 2 = (AT )2 = (BT )2 = (CT )2 = Aλ1 = Bλ2 = Cλ3

= (BC−1)µ1 = (CA−1)µ2 = (AB−1)µ3 = 1.
Then there is an epimorphism θ∗ : ∆∗ = Λ → G∗ defined by

θ(k) = T, θ(l) = AT, θ(m) = BT, θ(n) = CT

and
θ((∆∗)+) = θ((∆) = G.

By Lemma 1, M is symmetric.
If α is an outer automorphism obeying (ii) then there is a Z2-extension G∗ of G

and an element T ∈ G∗ which satisfies

T 2 = 1, TAT−1 = BA−1, TCT−1 = CB−1.

In this case tetrahedron T = T [2, 2, 3; 3, 5, 2].
Since T 2 = 1, it implies

T 2 = 1, (AT )
2
= BA−1, TCT−1 = CB−1.

Hence
T 2 = A2 = C3 = (AT )4 = (CA−1)5 = [T,CA−1] = 1

Let ∆∗ be an NEC group

R = ⟨t,∆1⟩ = ⟨t2 = a2 = c3 = (at)4 = (ca−1)5 = [t, ca−1] = 1⟩.

Then there exists an epimorphism θ∗ : ∆∗ = Λ → G∗ defined by θ(t) = T, θ(a) =
A, θ(c) = C.

By Lemma 1, M is symmetric.
If α is an inner automorphism then the element T above lies in G. Let G∗ =

Z2 × G, where Z2 = {V | V 2 = 1}. Then G∗ = {(V,W ), (1,W ) : W ∈ G} and G
can be identified with {(1,W ) : W ∈ G}. Suppose that α obeys (i). Then if we let

T1 = (V, T ), A1 = (1, A), B1 = (1, B), C1 = (1, C)

then
T1

2 = (A1T1)
2 = (B1T1)

2 = (C1T1)
2

= A1
λ1 = B1

λ2 = C1
λ3

= (B1C1
−1)µ1 = (C1A1

−1)µ2 = (A1B1
−1)µ3 = 1.

Here T1 ̸∈ G, and we have reduced this case to the proceeding case. If α is an
inner automorphism obeying (ii) then we proceed similarly.

Converse. As M is symmetric, G is contained in G∗ with index 2 and there
is a proper NEC group ∆∗ and an epimorphism θ∗ : ∆∗ → G∗ such that
H3/kerθ∗ = M. Then ∆∗ contains ∆[λ1, λ2, λ3;µ1, µ2, µ3] with index 2 and
(∆∗)+ = ∆[λ1, λ2, λ3;µ1, µ2, µ3]. By Theorem 1 from [12] the group ∆∗ has
presentation (1) or (2). If it has presentation (1) then θ∗(k) induces the required
automorphism by conjugation and if it has presentation (2), θ∗(t) does.

�
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4. Applications and Examples

Example 1
Consider the rotation group

∆1 = ⟨a2 = b2 = c3 = (bc−1)3 = (ca−1)5 = (ab−1)2 = 1⟩,
of Lanner tetrahedron T1 = T [2, 2, 3; 3, 5, 2]. The natural Z2-extension of ∆1 is the
reflection group

Λ1 = ⟨k2 = l2 = m2 = n2 = (lk)2 = (mk)2 = (nk)3

= (mn)3 = (nl)5 = (lm)2 = 1⟩.
The generators of the groups are related by a = l k, b = mk, c = nk.

In this example, we construct a symmetric tetrahedral manifold M = H3/Γ, Γ ▹
∆1 whose symmetry K is induced by action of the reflection k on the universal
covering H3.

To do this we consider the epimorphism θ∗ : Λ1→G∗ onto a finite group of
permutation G∗ generated by K,L,M,N defined by

k → K = (1 2)(3 4)(5 10)(6 9)(8 12)(7 11),

l → L = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12),

m → M = (1 2)(3 4)(5 10)(6 9)(8 11)(7 12),

n → N = (1 10)(2 3)(4 5)(6 7)(8 9)(11 12).

The order of the group G∗ is equal to 1920 = 27 · 31 · 51.
The restriction θ = θ∗|∆1

of the epimorphism θ∗ on the rotation group ∆1 is
given by

a = l k → A = (5 9)(6 10)(7 12)(8 11),
b = mk → B = (7 8)(11 12),
c = nk → C = (1 3 5)(2 10 4)(6 8 11)(7 12 9).

In this case the group G = ⟨A,B,C⟩ coincides with the group G∗ = ⟨K,L,M,N⟩.
Now we have to check the condition (i) in 1. In this case the action of

automorphism α on the group G is defined as follows.
α : A → KAK−1 = A−1,

B → KBK−1 = B−1,
C → K CK−1 = C−1.

The tetrahedral manifold M = H3/Γ, where Γ = Ker(θ) gives a suitable
example. The group G∗ is an automorphism group of M. Then the mirror symmetry
of M is given by the element K ∈ G∗.

Here we deal with the case (i) in theorem 1. In this case, the action of
automorphism α on the group G is given by the conjugation of element K.

Example 2 We have to show the example of symmetric tetrahedral manifold
obtained by use of condition (ii) in the theorem 1. Consider the rotation group

∆1 = ⟨a2 = b2 = c3 = (bc−1)3 = (ca−1)5 = (ab−1)2 = 1⟩,
of Lanner tetrahedron T1 = T [2, 2, 3; 3, 5, 2] as in previous example. Beside the Λ1

there is exactly one proper NEC Z2-extension of ∆1. Namely, the group

R = ⟨t,∆1⟩ = ⟨t2 = a2 = c3 = (at)4 = (ca−1)5 = [t, ca−1] = 1⟩,
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where t is the reflection in the hyperbolic plane divided the tetrahedron T1 on two
congruent pieces (see [12]). Here b = (at)2 and a, c are as above.

Denote by G = ⟨A,B,C⟩ the finite group generated by permutations
A = (1 7)(6 10)(8 11)(9 12),
B = (8 9)(11 12),
C = (1 5 3)(2 4 6)(7 9 12)(8 11 10).

Let
T = (1 6)(2 5)(3 4)(7 10)(8 9).

Direct calculation shows that

TAT−1 = AB, TBT−1 = B, TCT−1 = CB

and outer automorphism of G induced by T satisfies the condition (ii) in the
Theorem 1.

Let G∗ = ⟨T,G⟩ is Z2-extension of G by T. Note, that the orders of the group
G and G∗ are equal 1920 and 3840 respectively.

Consider the order preserving epimorphism θ∗ : R → G∗ defined by

t → T, a → A, b → B, c → C

and its restriction θ = (θ∗)
+
: ∆1 → G.

Hence, by Theorem 1, the tetrahedral manifold M = H3/Γ, where Γ = Ker(θ)
is symmetric. Its mirror symmetry is given by T.
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(1987), 731–734. MR0924975
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