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THE THIRD BOUNDARY VALUE PROBLEM FOR THE
SYSTEM OF EQUATIONS OF NON-EQUILIBRIUM SORPTION

I.A. KALIEV, G.S. SABITOVA

Abstract. In this paper, we investigate the system of equations mode-
ling the process of non-equilibrium sorption. In particular, such systems
are used in mathematical modeling of the production process of the
useful component by the method of borehole underground leaching. The
theorem of existence and uniqueness of the solution of the third boundary
value problem in the multidimensional case in Hölder classes of functions
is proved. The obtained maximum principle plays an important role in
the proof of the theorem. The uniqueness of the solution is a consequence
of this principle. The existence of a solution to the problem is shown
by Schauder’s fixed point theorem of a completely continuous operator.
The description of the corresponding operator is given. Estimates are
obtained to ensure the continuity of the constructed operator, and it is
shown that the operator maps the original set of functions into itself at a
small period of time. Then the estimates are given, allowing to continue
the solution to any finite value of time.

Keywords: process of non-equilibrium sorption, third boundary value
problem, global single-valued solvability.

Introduction
Almost all liquids existing in nature are solutions, i.e. mixtures of two or more

substances (components). Filtration in porous media of liquids and gases containing
associated (dissolved, suspended) solids is accompanied by diffusion of these substan-
ces and mass transfer between liquid (gas) and solid phases. The most common
types of mass transfer are sorption and desorption, ion exchange, dissolution and
crystallization, colmatation, sulfation and suffusion, paraffinization. The problems
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of equilibrium and non-equilibrium sorption are considered taking into account the
peculiarities of physical and chemical interaction of solutions with formation rocks.

Let m(x, t) be the porosity of the medium, 0 < m(x, t) ≤ 1; pore space is filled
with the solution and solid phase precipitated from the solution; c(x, t) is a mass
concentration of a certain substance in liquid phase (per unit volume of solution);
s(x, t) is a mass concentration of the solid phase of the substance precipitated (per
unit of pore volume).

Under equilibrium conditions, when the contact between the solution and the
solid phase is maintained for a sufficiently long time, the ratio between the concent-
rations c(x, t) in solution and s(x, t) on the sorbent is determined by sorption
isotherm. At low concentrations of the solution, the amount of absorption is deter-
mined by the linear relationship – Henry isotherm s = Γc, where Γ > 0 is a certain
constant depending on the physical and chemical properties of the medium (the
Henry constant).

Equilibrium sorption equations can not always fully characterize the features
of absorption and metabolism in a two-phase solution – solid phase system. In
works [1]-[3] were proposed mathematical models for describing the processes of
non-equilibrium sorption. The concentration of the solid phase s(x, t) is associated
with the concentration c(x, t) in the liquid phase with the equation

(1)
∂s

∂t
=

1

τ
(Γc− s),

where the positive constant τ is the characteristic relaxation time, Γ is the Henry’s
constant. The concentration c(x, t) of the substance in solution satisfies the equation

(2) m
∂c

∂t
= D∆c− v · ∇c− ∂s

∂t
,

where D(x, t) > 0 is the diffusion coefficient, v (x, t) is the vector of the filtration
rate, which are considered known functions of these arguments; ∆ is the Laplace
operator, ∇ is the gradient, v · ∇c denotes the scalar product of the vectors v and
∇c.

In [4] a system of the type (1)–(2) is used in modeling the uranium mining process
by the method of underground leaching. This method is one of the most promising
methods of uranium mining, as well as gold and a number of other rare and non-
ferrous metals. With this method, the developers work on the deposit at the site of
its occurrence with the purpose of transferring useful components to the solution
and subsequently extracting them, usually through wells drilled from the surface
to the location of the deposit. Underground leaching is more attractive, safer and
more efficient than traditional mining methods, when developing poor deposits, as
well as deep-lying deposits. Currently, about thirty percent of all uranium in Russia
is extracted by underground leaching. This method is widely used in Kazakhstan,
Uzbekistan and the United States, where almost all uranium is extracted in this
way.

Analytical solutions in multi-dimensional case of the third boundary value prob-
lem for non-equilibrium solute transport were studied in [5].

In [6] the global unique solvability of the first initial-boundary value problem for
system (1)–(2) is proved. In [7, 8], a difference approximation of the differential
problem was formulated using an implicit scheme, a solution of the difference
problem was constructed using the sweep method, and the results of numerical
experiments were presented.
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In the present paper we consider the third boundary-value problem for the system
of equations (1)–(2), describing the process of non-equilibrium sorption.

Statement of the problem. Let Ω be a bounded domain of n-dimensional
space Rn with a sufficiently smooth boundary S = ∂Ω, QT = Ω × (0, T ), T > 0;
ST = S × (0, T ) be the lateral surface of a cylinder QT . It is required to find the
functions c(x, t), s(x, t), defined in domain QT satisfying in QT the equations (1),
(2), when the initial conditions

(3) c(x, 0) = c0(x), x ∈ Ω,

(4) s(x, 0) = s0(x), x ∈ Ω,

and the third boundary value condition are fulfilled:

(5)
∂c(x, t)

∂n
+ p(x, t)c(x, t) = 0, (x, t) ∈ ST ,

where n(x) is the unit vector of the internal normal to boundary S at the point x.

Formulation of main result.
The main result of the paper is the following
Theorem. Let 0 < α < 1 be a certain number. The boundary S of the domain Ω

belongs to the Hölder class C2+α, the coefficients m, D, v of the equation (2) belong
to the Hölder class Cα,α/2

(
Q̄T

)
, functions c0(x) ∈ C2+α

(
Ω̄
)
, s0(x) ∈ Cα

(
Ω̄
)
,

p(x, t) ∈ C1+α,(1+α)/2
(
S̄T

)
, p(x, t) ≤ 0 ∀(x, t) ∈ ST , the compatibility conditions

of the zero order are satisfied:
∂c0(x)

∂n
+ p(x, 0)c0(x) = 0, x ∈ S,

and the conditions 0 ≤ c0(x) ≤ M, 0 ≤ s0(x) ≤ ΓM, x ∈ Ω are fulfilled. Then the
problem (1)–(5) has a unique classical solution c(x, t) ∈ C2+α,1+α/2

(
Q̄T

)
, s(x, t) ∈

Cα,1+α/2
(
Q̄T

)
and estimates 0 ≤ c(x, t) ≤ M, 0 ≤ s(x, t) ≤ ΓM, (x, t) ∈ QT are

valid.
Proof. First, estimates are obtained that represent the maximum principle

(6) 0 ≤ c(x, t) ≤ M, (x, t) ∈ QT ,

(7) 0 ≤ s(x, t) ≤ ΓM, (x, t) ∈ QT .

From (1) and (3) we obtain the representation

(8) s(x, t) = s0(x)e
−t/τ +

Γ

τ
e−t/τ

∫ t

0

c(x, θ)eθ/τ dθ.

Substituting (8) into (2), we obtain

(9) m
∂c

∂t
−D∆c+ v · ∇c+

Γ

τ
c =

1

τ
s0(x)e

−t/τ +
Γ

τ2
e−t/τ

∫ t

0

c(x, θ)eθ/τdθ.

Suppose that the negative minimum cmin < 0 of the function c(x, t) is attained
at some point (x0, t0) inside the domain QT . Then at this point ct ≤ 0, −∆c ≤ 0,
∇c = 0 and from (9) we obtain

Γ

τ
cmin ≥ 1

τ
s0(x0)e

−t0/τ +
Γ

τ2
cmine

−t0/τ

∫ t0

0

eθ/τdθ,

Γcmin ≥ s0(x0)e
−t0/τ + Γcmine

−t0/τ (et0/τ − 1),
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0 ≥ s0(x0)e
−t0/τ − Γcmine

−t0/τ ,

that is, they got a contradiction, because s0(x) ≥ 0 and cmin < 0. Consequently, the
negative minimum of the function c(x, t) can not be achieved within the domain
QT .

On the boundary ST the minimum can not be achieved by condition (5) and the
Zaremba-Giraud lemma.

Lemma. Let Lu =
n∑

i,j=1

ai,j(x)uxixj (x) +
n∑

i=1

bi(x)uxi(x) be an elliptic operator

in a bounded domain Ω, with a sufficiently smooth boundary, u ∈ C2(Ω) ∩ C1(Ω̄),
Lu ≤ 0 in Ω and let the function u(x) reach a strict global minimum at the boundary
point x0 ∈ ∂Ω. Then ∂u

∂n

∣∣
x0

> 0, where n is the internal normal to ∂Ω at the point
x0.

This lemma for harmonic functions was proved by Zaremba [9], and in a more
general formulation by Giraud [10].

In our case, we consider

Lc = D∆c−v ·∇c = F (x, t) =
∂c

∂t
+

Γ

τ
c− 1

τ
s0(x)e

−t/τ − Γ

τ2
e−t/τ

∫ t

0

c(x, θ)eθ/τdθ.

Suppose that the negative minimum cmin < 0 of the function c(x, t) is attained at
some point (x0, t0) on the boundary ST . Then

F (x0, t0) =
∂c

∂t
(x0, t0) +

Γ

τ
cmin − 1

τ
s0(x0)e

−t0/τ − Γ

τ2
e−t0/τ

∫ t0

0

c(x0, θ)e
θ/τdθ ≤

≤ ∂c

∂t
(x0, t0) +

Γ

τ
cmin − 1

τ
s0(x0)e

−t0/τ − Γ

τ2
cmine

−t0/τ

∫ t0

0

eθ/τdθ =

=
∂c

∂t
(x0, t0) +

Γ

τ
cmin − 1

τ
s0(x0)e

−t0/τ − Γ

τ
cmine

−t0/τ (et0/τ − 1) =

=
∂c

∂t
(x0, t0)−

1

τ
s0(x0)e

−t0/τ +
Γ

τ
cmine

−t0/τ < 0.

Hence F (x, t0) < 0 in a neighborhood of a point x0 and the Zaremba-Giraud lemma
can be applied, that is ∂c

∂n

∣∣
(x0,t0)

> 0. But this contradicts the corollary of boundary
condition (5):

∂c

∂n

∣∣∣∣
(x0,t0)

= −p(x0, t0)cmin ≤ 0.

Thus, the minimum of the function c(x, t) is achieved at the lower boundary of
the domain QT , that is at the initial time. At the initial time, the function c0(x) is
nonnegative. Thus, we have proved that c(x, t) ≥ 0, (x, t) ∈ QT .

Suppose now that within the domain QT a positive maximum cmax > M of the
function c(x, t) is attained, that is there exists a point (x1, t1) ∈ QT : c(x1, t1) =
cmax > M. At this point ct ≥ 0, −∆c ≥ 0, ∇c = 0, and from (9) we obtain the
inequalities

Γ

τ
cmax ≤ 1

τ
s0(x1)e

−t1/τ +
Γ

τ2
cmaxe

−t1/τ

∫ t1

0

eθ/τdθ,

Γcmax ≤ s0(x1)e
−t1/τ + Γcmaxe

−t1/τ (et1/τ − 1),

0 ≤ s0(x1)e
−t1/τ − Γcmaxe

−t1/τ = (s0(x1)− Γcmax) e
−t1/τ .

Again we have a contradiction, because s0(x) ≤ ΓM, and cmax > M.
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The maximum of the function c(x, t) can not be reached on the boundary ST

because of condition (5) and the Zaremba-Giraud lemma. Let’s consider

Lc = D∆c−v ·∇c = F (x, t) =
∂c

∂t
+

Γ

τ
c− 1

τ
s0(x)e

−t/τ − Γ

τ2
e−t/τ

∫ t

0

c(x, θ)eθ/τdθ.

Suppose that the positive maximum cmax > M of the function c(x, t) is reached at
some point (x1, t1) on the boundary of the domain ST . Then

F (x1, t1) =
∂c

∂t
(x1, t1) +

Γ

τ
cmax −

1

τ
s0(x1)e

−t1/τ − Γ

τ2
e−t1/τ

∫ t1

0

c(x1, θ)e
θ/τdθ ≥

≥ Γ

τ
cmax −

1

τ
s0(x1)e

−t1/τ − Γ

τ2
cmaxe

−t1/τ

∫ t1

0

eθ/τdθ =

=
Γ

τ
cmax −

1

τ
s0(x1)e

−t1/τ − Γ

τ
cmaxe

−t1/τ (et1/τ − 1) =

= −1

τ
s0(x1)e

−t1/τ +
Γ

τ
cmaxe

−t1/τ =

=
1

τ
(Γcmax − s0(x1)) e

−t1/τ >
1

τ
(ΓM − ΓM) e−t1/τ = 0.

Consequently, F (x, t1) > 0 in the neighborhood of the point x1 and one can apply
the Zaremba-Giraud lemma for the case of a maximum, that is ∂c

∂n

∣∣
(x1,t1)

< 0. But
this contradicts the corollary of boundary condition (5):

∂c

∂n

∣∣∣∣
(x1,t1)

= −p(x1, t1) cmax ≥ 0.

Thus, the maximum of the function c(x, t) is achieved at the lower boundary of the
domain QT , that is at the initial time. At the initial instant of time, the function
c0(x) ≤ M. Therefore, c(x, t) ≤ M, (x, t) ∈ QT . The estimate (6) is proved.

The estimate (7) follows from the representation (8) using (6). In fact, since
s0(x) ≥ 0, c(x, t) ≥ 0, it follows from (8) that s(x, t) ≥ 0, (x, t) ∈ QT .

Since s0(x) ≤ ΓM, c(x, t) ≤ M, then

s(x, t) ≤ s0(x)e
−t/τ +

ΓM

τ
e−t/τ

∫ t

0

eθ/τdθ ≤ ΓMe−t/τ +ΓMe−t/τ (et/τ −1) = ΓM.

The estimate (7) is proved.
The uniqueness of the solution of problem (1)–(5) is a consequence of the estimates

(6), (7).
The existence of a solution of problem (1)–(5) is proved with the help of Schauder’s

theorem on the fixed point of a completely continuous operator. Denote by VT1 the
next closed convex subset of C2+α,1+α/2(Q̄T1) :

VT1 =

{
c̃(x, t)| c̃(x, 0) = c0(x), x ∈ Ω;

∂c̃(x, t)

∂n
+ p(x, t)c̃(x, t) = 0, (x, t) ∈ ST1 ;

||c̃||C2+α,1+α/2(Q̄T1
) ≤ K

}
,

where K is some fixed positive number depending on the data of problem (1)–(5),
which we will define later. By a given function c̃ ∈ VT1 we find the function

(10) s̃(x, t) = s0(x)e
−t/τ +

Γ

τ
e−t/τ

∫ t

0

c̃(x, θ)eθ/τdθ.
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Now to each function c̃ ∈ VT1 we put the function c = Λ(c̃) as a solution of the
problem

(11) m
∂c

∂t
−D∆c+ v · ∇c+

Γ

τ
c =

1

τ
s̃,

(12) c(x, 0) = c0(x), x ∈ Ω;
∂c(x, t)

∂n
+ p(x, t)c(x, t) = 0, (x, t) ∈ ST1 .

Let us prove that the operator Λ is completely continuous and, for sufficiently
small T1, maps the set VT1 into itself.

Let us show that s̃ ∈ Cα,α/2
(
Q̄T1

)
. It follows from (10) that

|s̃|(0)QT1
≡ max

(x,t)∈Q̄T1

|s̃(x, t)| ≤ |s0|(0)Ω + Γ|c̃|(0)QT1
max

t∈[0,T1]
(1− e−t/τ ).

Hence, using the expansion of the function e−t/τ in the Maclaurin series, it is easy
to obtain (for T1 < τ) the estimate

(13) |s̃|(0)QT1
≤ |s0|(0)Ω + T1

Γ

τ
|c̃|(0)QT1

.

Similarly, from (10) follows the estimate

|s̃|(α)x,QT1
≡ sup

(x,t),(x′,t)∈Q̄T1

|s̃(x, t)− s̃(x′, t)|
|x− x′|α

≤

(14) ≤ |s0|(α)x,Ω + Γ|c̃|(α)x,QT1
max

t∈[0,T1]
(1− e−t/τ ) ≤ |s0|(α)x,Ω + T1

Γ

τ
|c̃|(α)x,QT1

,

that is the function s̃ satisfies the Hölder condition with respect to the space variable
with exponent α.

The function s̃ satisfies the Hölder condition with respect to the variable t with
any exponent 0 < β ≤ 1 (even Lipschitz), since it has a bounded derivative with
respect to time

s̃t(x, t) = −1

τ
s0(x)e

−t/τ − Γ

τ2
e−t/τ

∫ t

0

c̃(x, θ)eθ/τdθ +
Γ

τ
c̃(x, t),

(15) |s̃t|(0)QT1
≤ 1

τ
|s0|(0)Ω +

Γ

τ
|c̃|(0)QT1

max
t∈[0,T1]

(1−e−t/τ )+
Γ

τ
|c̃|(0)QT1

≤ 1

τ
|s0|(0)Ω +

2Γ

τ
|c̃|(0)QT1

.

In particular, with β = 1 we have
|s̃(x, t)− s̃(x, t′)|

|t− t′|α/2|t− t′|1−α/2
≤ |s̃t|(0)QT1

.

This implies the inequality

(16) |s̃|(α/2)t,QT1
≡ sup

(x,t),(x,t′)∈Q̄T1

|s̃(x, t)− s̃(x, t′)|
|t− t′|α/2

≤ T
1−α/2
1 |s̃t|(0)QT1

.

Estimates (13)–(16) prove that s̃ ∈ Cα,α/2
(
Q̄T1

)
and under the condition T1 < 1

the next estimate holds

(17) ||s̃||Cα,α/2(Q̄T1)
≤ C1||s0||Cα(Ω̄) + T

1−α/2
1 C2||c̃||Cα,α/2(Q̄T1)

,

where C1, C2 are some positive constants that do not depend on s0, c̃. We will
assume that C1, C2 depends on T , but does not depend on T1 < min{T, 1, τ}.
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Since

s̃t =
1

τ
(Γc̃− s̃),

then s̃ ∈ Cα,1+α/2
(
Q̄T1

)
.

For a solution c(x, t) of the problem (11), (12), the estimate [11, p. 365] is valid

(18) ||c||C2+α,1+α/2(Q̄T1)
≤ C(||c0||C2+α(Ω̄) + ||s̃||Cα,α/2(Q̄T1)

),

where C is a positive constant independent of c0, s̃. We will assume that C depends
on T , but does not depend on T1 < T. Using (17), (18), we have

(19) ||c||C2+α,1+α/2(Q̄T1)
≤ C3(||c0||C2+α(Ω̄) + ||s0||Cα(Ω̄))+

+T
1−α/2
1 C4||c̃||Cα,α/2(Q̄T1)

.

This implies that the operator Λ : c̃ → c is completely continuous.
We choose the constant K, that appears in the definition of the set VT1 , as

outcome of the condition

K > C3(||c0||C2+α(Ω̄) + ||s0||Cα(Ω̄)).

For definiteness, we set

K = 2C3(||c0||C2+α(Ω̄) + ||s0||Cα(Ω̄)).

Then it follows from (19) that for sufficiently small T1 the operator Λ maps the set
VT1 into itself.

By Schauder’s theorem on the fixed point of a completely continuous operator,
the set VT1 contains a fixed point c̃, which together with its corresponding function
s̃ from (10) is a solution of problem (1)–(5) on the time interval [0, T1].

The solution can be continued in k steps to [Tk, Tk+1], k = 1, 2, ..., and Tk+1 −
Tk ≥ δ > 0 and δ does not depend on the number k. This can be seen from the
estimate (19)

C3(||c0||C2+α(Ω̄) + ||s0||Cα(Ω̄)) + T
1−α/2
1 C4||c̃||Cα,α/2(Q̄T1)

< K =

= 2C3(||c0||C2+α(Ω̄) + ||s0||Cα(Ω̄)).

Because ||c̃||Cα,α/2(Q̄T1)
≤ K, then it follows that as δ can be chosen

δ1−α/2 =
K

2C4K
=

1

2C4
,

not depending on the number k. Thus, the solution in a finite number of steps can
be continued to any 0 < T < +∞. �

Conclusion.

In this paper, a global unique solvability of the third boundary value problem
modeling the process of non-equilibrium sorption is proved.
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