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Abstract. In this paper we focus on cubical distance-regular graphs and
for 10 of them we find eigenfunctions with the minimum number of non-
zero positions and provide the classification of their possible structures.
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1. Introduction

Let G = (V,E) be an undirected graph without loops and multiple edges with
a vertex set V = V (G) = {1, 2, . . . , n} and an edge set E = E(G). For u, v ∈ V , if
there is an edge between vertices u and v, we will call them adjacent (or neighbors)
and denote u ∼ v. The adjacency matrix A of order n is defined as follows:

Auv =

{
1, when u ∼ v
0, when u � v

G is regular if each vertex has the same number k of neighbors. This parameter
k is called the degree of a graph. For any vertices v, u ∈ V the distance d(v, u) is
the number of edges in a shortest path that connects them. The greatest distance
between any pairs of vertices is called the diameter D of a graph. By Gi(v) we
denote the set of vertices that are at distance i from v. A connected graph G is
called distance-regular if it is regular of degree k and for any two vertices v, u ∈ V at
distance i = d(v, u) there are precisely ci neighbors of u in Gi−1(v) and bi neighbors
of u in Gi+1(v); where ci and bi do not depend on the choice of vertices u, v but
depend only on d(u, v). Numbers bi, ci, ai = k − bi − ci are called the intersection
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numbers of G. A set {b0, . . . , bD−1; c1, . . . , cD} is called an intersection array of a
distance-regular graph G.

For an adjacency matrix A, let Λ = {λ(m1)
1 , . . . , λ

(mt)
t } be a set of its eigenvalues,

where mi is a multiplicity of an eigenvalue λi. A function f : V → R that is not
constantly zero and satisfies the equation

(1) λf(u) =
∑

v∈G1(u)

f(v) ∀u ∈ V

is called an eigenfunction of a graph G corresponding to the eigenvalue λ. A support
supp(f) of a function f is defined as follows supp(f) = {v ∈ V | f(v) 6= 0}.
Further we will refer to a support of an eigenfunction as an eigensupport. An
eigenfunction can be considered as a column-vector f̄ = (f(1), f(2), . . . , f(n))T.
Under this notation (1) can be rewritten in the following form:

(2) Af̄ = λf̄

in other words f̄ is an eigenfunction of the adjacency matrix of a graph.
We are interested in finding eigenfunctions with supports of minimum cardinality

for different families of distance-regular graphs. The motivation for this problem
comes from the deep connection between eigenfunctions and important combinatori-
al configurations, since many combinatorial objects can be represented as eigenfunc-
tions on graphs. Therefore, one of the crucial problem of finding the minimum
possible difference between two combinatorial objects is strongly related to the
study of minimum eigensupports. More details regarding these relations can be
found in [8], where also the minimum support for the smallest eigenvalue of the
Grassman graph is described. For the Hamming graphs H(n, q) the problem of
finding minimum eigensupports is completely solved for q = 2 and partially solved
in case of arbitrary q, see [6], [9]. Results for the Johnson graphs can be found
in [10]. In this work we focus on cubical distance-regular graphs. The goal of the
paper is to find the minimum cardinalities of the eigensupports and also classify its
possible structures.

The paper is organized as follows. In section 2 we provide the notation and several
simple statements. Sections 3, 4 are devoted to bipartite graphs and bipartite double
covering construction. In Section 5 we recall what a weight distribution is and how
it can be used to get the lower bound on the eigensupport cardinality. Sections 6,
7 describe the techniques that we use in our work. Main results are presented in
Section 8. Appendix contains the details of computer calculations performed.

2. Preliminaries

• S(λ) — an induced subgraph on the vertices from eigensupport supp(f)
corresponding to an eigenvalue λ. In other words it is a subgraph of G with
a vertex set supp(f) together with any edges from E whose endpoints are
in this set.

• |S(λ)| — the number of vertices in S(λ), i.e. the cardinality of the vertex
set V (S).

• O(S) = V (G) \ V (S).
Since the aim of this paper is not only to calculate the cardinalities of the

minimum eigensupports, but also to characterize their structures as the subgraphs
of the original graph, we introduce the following notation:
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• � t1 + . . . + ts � — any graph that consists of s connected components
that are of cardinalities t1, . . . , ts correspondingly. For example, � 1� —
an isolated vertex; � 2� — an edge; � 1 + 1� — two isolated vertices;
� 1 + 2� — an isolated vertex and an edge; � 3� — it can be either a
cycle C3 on three vertices, or two edges that share one vertex.

Now we provide several simple lemmas that will be useful further.

Lemma 1. S(λ) has an isolated vertex if and only if λ = 0. In other words,
�1�⊆ S(λ)⇔ λ = 0.

Proof. Let u ∈ S(λ) be an isolated vertex. Since all neighbors of u in G do not
belong to the support S(λ), we have λf(u) = 0. The left side of the equation can
be zero if and only if λ = 0.

Lemma 2. There does not exist a vertex from O(S) that has only one neighbor in
S(λ).

Proof. Suppose the opposite. Let there exist z ∈ O(S) such thatG1(z)∩S(λ) = {v}.
Then 0 = λf(z) =

∑
u∈G1(z)

f(u) = f(v) 6= 0. Contradiction.

Lemma 3. S(0) does not have a vertex with a degree equal to 1.

Proof. Obvious.

The following proposition contains the results for some simple families of graphs:

Proposition 1. (1) The complete graph Kn, whose eigenvalues are
{(n− 1)(1),−1(n−1)}, has the following minimum eigensupports:
• S(n− 1) = Kn

• S(−1) =� 2 � and any two vertices with opposite non-zero values
yield the minimum eigensupport �2�.

(2) The complete bipartite graph Km,h, with eigenvalues {±
√
mh

(1)
, 0(m+h−2)},

has the following minimum eigensupports
• S(±

√
mh) = Km,h

• S(0) =� 1 + 1�, where any two non-adjacent vertices with opposite
non-zero values yield the minimum eigensupport �1 + 1�

Proof. Obvious. �

3. Bipartite graphs

Well known is the following lemma about eigenvalues of a bipartite graph (see
[4], for example)

Lemma 4. If G is a bipartite graph, then its spectrum is symmetric with respect
to zero, in other words if λ is an eigenvalue of G then −λ is also its eigenvalue.

Vertices V of a bipartite graph G can be partioned into two disjoint sets X and
Y (called parts) in such a way that any edge connects a vertex from X to some
vertex in Y . Let v ∈ X. Consider the distance partition {Gi(v) | 0 ≤ i ≤ D} with
respect to the vertex v. It is clear that Gi(v) consists only of vertices from the same
part, which is X if i is even and Y if i is odd.

The following lemma is true:
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Lemma 5. Let G be a connected bipartite graph and let fλ be an eigenfunction
corresponding to the eigenvalue λ. Suppose g−λ is constructed in the following way:

(1) g(x) = f(x) for all vertices x ∈ X
(2) g(y) = −f(y) for all vertices y ∈ Y

Then g−λ is an eigenfunction for the eigenvalue −λ.

Proof. For any x ∈ X we have λf(x) =
∑

y∈G1(x)

f(y), where y ∈ Y . For any y ∈ Y

we have λf(y) =
∑

x∈G1(y)

f(x), where x ∈ X. Now consider the eigenvalue −λ

and function g constructed as described above. For all x ∈ X we have −λg(x) =
−λf(x) = −

∑
y∈G1(x)

f(y) =
∑

y∈G1(x)

g(y) and for all y ∈ Y we have −λg(y) =

−λ(−f(y)) =
∑

x∈G1(y)

f(x) =
∑

x∈G1(y)

g(x). Therefore, g is an eigenfunction for the

eigenvalue −λ.

Corollary 1. For a bipartite graph G, minimum eigensupports for eigenvalues λ
and −λ have the same cardinalities.

Proposition 2. Let G be a bipartite graph with parts X and Y . The following
statements are true:

(1) Eigensupport for λ 6= 0 has vertices in both parts.
(2) Under the condition that both parts are of the same cardinality, the minimum

eigensupport for λ = 0 is fully contained in one of the parts, therefore it
consists of vertices no two of which are adjacent.

Proof. (1) Suppose the opposite, let all vertices from S lie in X. Then for
a vertex x ∈ X we have λf(x) =

∑
y∈G1(x)

f(y) = 0 since G1(x) ⊆ Y .

Contradiction.
(2) Without loss of generality we can assume that vertices are labeled in such

an order that: X = {1, . . . , n/2} and Y = {n/2 + 1, . . . , n}. Hence, the
adjacency matrix A will have the following form

A =

(
0 B
BT 0

)
,

where B is a square matrix of order n/2. Consider any eigenfunction f and
denote

f̄x = (f(1), f(2), . . . , f(n/2))T

f̄y = (f(n/2 + 1), . . . , f(n))T

Thus, we obtain:

Af̄ =

(
0 B
BT 0

)(
f̄x
f̄y

)
=

(
Bf̄y
BT f̄x

)
= 0̄n,

where 0̄n is an all-zero column-vector of length n. Consequently, f̄y and f̄x
are eigenfunctions of B and BT correspondingly for eigenvalue λ = 0. It is
clear that if (f̄x, f̄y) is the eigenfunction for A then (0, f̄y) and (f̄x, 0) are
also eigenfunctions for the same eigenvalue λ = 0. So the minimum support
is totally contained in one of the parts and, hence, consists of vertices non-
adjacent to each other.
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4. Bipartite Double Cover

Before we proceed to bipartite double covers of graphs we need to introduce
the concept of graphs tensor product, which is also called the Kronecker product of
graphs. Suppose we have graphsG andG′ with vertex sets V and V ′, correspondingly.
Their adjacency matrices are A and A′. Then the tensor product G ⊗ G′ of these
graphs is defined as follows:

(1) The vertex set of G⊗G′ is the Cartesian product V × V ′, i.e. V (G⊗ V ) =
{(v, v′) | ∀v ∈ V,∀v′ ∈ V ′}

(2) Any two vertices (u, u′) and (v, v′) are adjacent in G ⊗ G′ if and only if
u ∼ v in graph G and u′ ∼ v′ in graph G′.

The adjacency matrix B of the obtained graph will be the Kronecker product of the
adjacency matrices of original graphs, i.e. B = A⊗ A′ (see [2]). Well known is the
following fact: if matrices A and A′ have eigenvalues {λ1, . . . , λn} and {µ1, . . . , µm}
then their Kronecker product will have eigenvalues {λiµj | i = 1 . . . n; j = 1, . . .m}
(for example, [3]).

The bipartite double cover BDC(G) of some graph G is the tensor product
G⊗K2 = BDC(G), where K2 is a complete graph on 2 vertices (edge), and can be
presented as follows: for each vertex i of G we build two vertices ia and ib of the
new graph BDC(G). If i ∼ j in the original graph G then ia ∼ jb and ib ∼ ja in
the new graph. If a graph G has eigenvalues Λ = {λ1, . . . , λn} then BDC(G) has
eigenvalues {±λ1, . . . ,±λn}.

Let f̄ = (f(1), . . . , f(n))T be an eigenfunction of G. Now we define f̄BDC =
(fBDC(1a), fBDC(1b), . . . , fBDC(na), fBDC(nb))T as follows: fBDC(ia) = fBDC(ib) =
f(i).

Lemma 6. (Bipartite Double Cover) For a graph G let λ be such an eigenvalue
that G does not have −λ as its eigenvalue. Under the notation above f is an
eigenfunction of G corresponding to the eigenvalue λ ⇐⇒ fBDC is an eigenfunction
of BDC(G).

Proof. ⇒ Obvious.
⇐ For BDC(G) let ḡ+ be an eigenfunction corresponding to λ. According to Lemma
5 we build an eigenfunction ḡ− corresponding to−λ. Thus we can write the following
equalities:

g+(ia) = g−(ia) = g(ia) ∀ia

g+(ib) = −g−(ib) = g(ib) ∀ib

Now we build functions f̄+ and f̄−in the following way:

f+(i) = g+(ia) + g−(ib) = g(ia) + g(ib)

f−(i) = g−(ia) + g−(ib) = g(ia)− g(ib)

Since ḡ+ is an eigenfunction, we have

λg(ia) =
∑

j∈N(i)

g(jb) ∀ia

λg(ib) =
∑

j∈N(i)

g(ja) ∀ib
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Which gives us

λf+(i) = λg(ia) + λg(ib) =
∑

j∈N(i)

g(jb) +
∑

j∈N(i)

g(ja)

=
∑

j∈N(i)

(g(ja) + g(jb)) =
∑

j∈N(i)

f+(j)

According to 1 this proofs that f̄+ is an eigenfunction of G. Similarly we get

−λf−(i) =
∑

j∈N(i)

f−(j)

But −λ is not an eigenvalue of G. Hence, f−(i) = 0 for all i, in other words we
have g(ia) = g(ib). Therefore, f+(i) 6= 0 ⇐⇒ g(ia) 6= 0. As a result we obtain the
following: if g+ is an eigenfunction of BDC(G) then f+, constructed as described
above, is an eigenfunction of G. �

Directly obtained from the proof is the following

Corollary 2. Suppose we have a graph G with an eigenfunction λ, provided that
−λ is not an eigenvalue of G. Let S(λ) and SBDC(λ) be the minimum eigensupports
of G and BDC(G) correspondingly. Then |S(λ)| = 1

2 |SBDC(λ)|

5. Weight Distribution Bound

Let fλ be an eigenfunction of a distance-regular graph G corresponding to an
eigenvalue λ. By definition of an eigenfunction we can choose a vertex v such that
fλ(v) 6= 0. Without loss of generality, suppose that fλ(v) = 1. Let

W v
i (fλ) =

∑
u∈Gi(v)

f(u)

For distance-regular graphs the value W v
i (fλ) does not depend on the choice of a

vertex v or an eigenfunction f , therefore

W v
i (fλ) = Wi(λ) ∀v ∈ V, ∀fλ

The recurrence takes place:
W0(λ) = 1

W1(λ) = λ

Wi(λ) =
λWi−1(λ)− bi−2Wi−2(λ)− ai−1Wi−1(λ)

ci
, где i = 2, . . . , ..D

The set {W0(λ),W1(λ), . . . ,WD(λ)} is called the weight distribution, corresponding
to the eigenvalue λ. Well known is the following fact (see [7], for example):

Lemma 7. For the cardinality of a support S(λ) the following estimation is true:

|S(λ)| ≥
D∑
i=0

|Wi(λ)|.

If some of Wi(λ) values are not integral the bound can be improved:

Lemma 8. For the cardinality of a support S(λ) the following estimation is true:

|S(λ)| ≥
D∑
i=0

d|Wi(λ)|e.

We will refer to this bound as WDB. To avoid lengthy expressions further we will
write Wi instead of Wi(λ) if the corresponding eigenvalue is clear from the context.
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6. Method

This paper is based on two techniques.
For graphs with a small number of vertices we are using a manual one that

consists of the following steps:
(1) Fix an eigenvalue λ for a considered graph G
(2) Calculate λ-conditions:

(a) Consider an eigensupport S(λ) as a subgraph of G with its own eigen-
values {ν1, ν2, . . . , νs} (multiplicities are omitted) where λ = νi for
some i.

(b) If the minimum eigensupport S(λ) is of cardinality k, then all possible
support structures can be represented with different compositions of
k: �1 + 1 + . . .+ 1�, �1 + . . .+ 2�,. . .,�k�

(c) Let S(λ) =�m1 + m2 + . . . + mt�. This implies that each �mi�
has λ as its eigenvalue. Thus we can state the following:

Necessary λ-conditions. Each �mi�⊆ S must have λ among its
eigenvalues and there must exist a corresponding eigenfunction that is
non-zero on all vertices of �mi�.

(3) Count Weight Distribution Bound.
(4) Considering λ-conditions and WDB, list all structures that possibly can be

a support S(λ) of some eigenfunction.
(5) Choose one of the possible structures of S(λ). For all v ∈ V check the

eigenfunction equality (1). Here we have 2 cases:
• Case v ∈ S(λ): the equality holds since Step 2.(c) gives us necessary
λ-conditions. All we need to do is to calculate the eigenfunction values.

• Case v ∈ O(S): the equality needs to be verified. If it holds for all
v ∈ O(S), the minimum eigensupport is found.

(6) Repeat Step 5 for the remaining structures.
(7) If no eigensupports are found, increase k and go to Step 2.(b)

For graphs with a big number of vertices the manual technique produces too
many cases to be considered, so the problem of finding minimum eigensupports
for them was solved with the help of computer calculations. For the details of the
algorithm the reader is referred to the Appendix at the end of the paper.

7. λ-conditions: Subgraphs

From all graphs with the number of vertices n ≤ 6 (the full list of small graphs can
be found in [11]) we choose connected graphs that are feasible as induced subgraphs
of cubical distance-regular graphs and calculate their eigenvalues. Because of the
properties of cubical distance-regular graphs we do not consider subgraphs with
cycles of length less or equal to 4 and with the maximal degree greater than 3.
Listed below are the possible candidates.

Remark: in the table of subgraphs by X we denote an eigenvalue of some
complicated form that is out of our interest since the graphs considered in the
current work do not have it as an eigenvalue.
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8. Graphs

8.1. Cubical distance-regular graphs. It is known [1] that up to isomorphism
there are only 13 cubical distance-regular graphs: K4, K3,3, the Petersen graph,
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the cube, the Heawood graph, the Pappus graph, the Coxeter graph, the Tutte-
Coxeter graph, the dodecahedron, the Desargues graph, the Foster graph, the
Tutte 12-cage, the Biggs-Smith graph. In this section we find the cardinalities of
minimum eigensupports and describe their possible structures for first 10 graphs.
For any regular graph of degree k the maximum eigenvalue λ1 is equal to k and
its corresponding eigenfunction is an all-one vector 1n of weight n. For bipartite
regular graphs an eigenfunction for λ = −k is also of weight n. So here and further
we study only eigenvalues |λ| < 3.

The summary table of the results.

Graph Eigenvalues Minimum support
K4 {−1(3), 3(1)} {2, 4}
K3,3 {0(4),±3(1)} {2, 6}
Cube {±1(3),±3(1)} {4, 8}

Petersen {−2(4), 1(5), 3(1)} {6, 4, 10}
Heawood {±

√
2
(6)
,±3(1)} {6, 14}

Pappus {0(4),±
√

3
(6)
,±3(1)} {6, 8, 18}

Dodecahedral {−2(4), 0(4), 1(5),±
√

5
(3)
, 3(1)} {12, 8, 8, 16, 20}

Desargues {±1(5),±2(4),±3(1)} {8, 12, 20}
Coxeter {(−1±

√
2)(6),−1(7), 2(8), 3(1)} {16, 12, 14, 28}

Tutte-Coxeter {0(10),±2(9),±3(1)} {6, 14, 30}

8.2. Complete graph on 4 verices. K4 graph has eigenvalues Λ = {3(1),−1(3)}.
According to Proposition 1 we have S(−1) =�2� as the minimum eigensupport
and any two vertices with opposite non-zero values yield the minimum support.

8.3. Complete bipartite graph on 6 vertices. K3,3 graph has eigenvalues Λ =

{±3(1), 0(4)}. According to Proposition 1 we have that S(0) =� 1 + 1� is the
minimum eigensupport. Any two non-adjacent vertices with opposite non-zero values
yield the minimum support.

8.4. Cube graph. The eigenvalues of Cube are Λ = {±3(1),±1(3)}. It is known
that Cube graph is the bipartite double cover of K4 graph. So according to Lemma
6 we have S(1) =� 2 + 2�= {u ∼ v, x ∼ y}, where u, v are not adjacent to x, y
with f(u) = f(v) = −f(x) = −f(y).

Using Lemma 5 we obtain the minimum eigensupport S(−1) =�2+2�= {u ∼
v, x ∼ y}.

8.5. The Petersen graph. The Petersen graph G has D = 2; eigenvalues Λ =
{3(1), 1(5),−2(4)}; and its intersection array is (3, 2; 1, 1). Calculating WD, we get
the following: W(λ) = {W0 = 1,W1 = λ,W2 = λ2 − 3}. Consider the following
cases:

• λ = 1. We have WDB(1) = 4 and λ-conditions give us � 1�, � 3�,
� 4�* S. So the only option to examine is � 2 + 2�. Let u ∼ v and
x ∼ y with the condition u, v � x, y. We have f(u) = f(v) and f(x) = f(y).
Since G is a strongly regular graph with parameters (10, 3, 0, 1), each pair of
nonadjacent vertices (u, x),(u, y),(v, x),(v, y) has only one common neighbor
and all these neighbors are different because adjacent vertices do not have a
shared neighbor. From this we obtain f(x) = f(y) = −f(u) = −f(v). Note
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that degrees of u, v, x, y are already equal to 3, so the remaining 2 vertices
are adjacent to some vertices from O. Result: the minimum eigensupport
is S(1) =� 2 + 2� with the structure described above. An example is
presented below, see Fig. 1:

• λ = −2. For this eigenvelue we have WDB(−2) = 4. According to λ-
conditions � 1 �,� 2 �,� 3 �,� 4 �,� 5 �* S, therefore we have
|S(−2)| ≥ 6. Suppose the equality holds. From the above it follows that
the only possible case is S(−2) =�6�, where S can have a form of C6 or
H-graph (see S6.1 and S6.4 in the table). We will now prove that both of
them are feasible as minimum eigensupports.

Case C6: The cycle C6 is a regular bipartite graph with a degree 2. So
for an eigenvalue λ = −2 there exists a corresponding eigenfunction with
6 non-zero values. Let C6 = {u0, . . . , u5}, where ui ∼ ui+1 ∀i ∈ {0, . . . 5}.
Note, that all calculations of indices here are considered as mod 6. It is easy
to show that (f(u0), . . . , f(u5)) = (1,−1, 1,−1, 1,−1) up to multiplication
by a constant. Because of the Petersen graph being strongly regular with
parameters (10, 3, 0, 1), we have the following:
– ui and ui+1 do not have a common neighbor
– ui and ui+2 have only one common neighbor that is ui+1

– ui and ui+3 have one common neigbour vi, besides two different pairs
have different shared neighbors, otherwise there would be a vertex with
a degree more than 3. Note that vi = vi+3.

So we have six vertices ui that are adjacent to ui−1,ui+1,vi; and three
vertices vi that are adjacent to ui and ui+3. We have the last remaining
vertex w that is obviously adjacent to all vi vertices. It is easy to see that
an eigenfunction equality (1) holds, so C6 can be a minimum eigensupport
for λ = −2.

Case of H-graph: Let S(−2) has a vertex set {u1, u2, u3, u4, u5, u6},
where u1, u2 ∼ u3; u3 ∼ u4; u4 ∼ u5, u6. Denote fi = f(ui). We have the
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following system: 

λf1 = f3

λf2 = f3

λf3 = f1 + f2 + f4

λf4 = f3 + f5 + f6

λf5 = f4

λf6 = f4

From the above we easily get the solution

(f1, f2, f3, f4, f5, f6) = (f1, f1,−2f1, 2f1,−f1,−f1).

Now we will prove that this support is feasible in the graph. The vertices u3
and u4 are of full degree 3. Consider other four vertices from the support:
u1, u2, u5, u6. Each pair (ui, uj) that consists of the vertices with the values
of different sign has one common neighbor and all of this neighbors are
different. As there are four such neighbors, they fully construct the set O.
If we consider a pair of different vertices (ui, uj) with the values of the same
sign, they obviously have one common neighbor which is u3 or u4. So for
any vertex v ∈ O it has two neighbors ui and uj from S with the condition
that fi + fj = 0. So S6.4 is feasible as the minimum support.

Result: The minimum support S(−2) =�6� with two possible structu-
res described above. Examples are presented below, see Fig. 2, 3:

8.6. The Heawood graph. The Heawood graphG hasD = 3; Λ = {±3(1),±
√

2
(6)};

and its intersection array is (3, 2, 2; 1, 1, 3). Consider the following cases:
• λ =

√
2. Calculating WD we get: W(λ) = {W0 = 1,W1 = λ,W2 = λ2 −

3,W3 = λ3−5λ
3 }. For λ = ±

√
2 we have W(±

√
2) = {1,±

√
2,−1,

±
√

2}; that gives WDB = 6.
According to λ-conditions � 1�,� 2�,� 4�,� 5�,� 6�* S(

√
2).

Therefore, if WDB is achievable the minimum support can only be of the
following form S(

√
2) =�3 + 3�.
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Suppose � 3 + 3�= {u1 ∼ u2 ∼ u3; v1 ∼ v2 ∼ v3}; where ui and vj
being not adjacent. As the Heawood graph is bipartite, we may color all
vertices in red and blue colors with the condition that vertices of the same
color are not adjacent. Let u1, u3 be of red color and u2 of blue color. As
the graph is of degree 3 we have u1 ∼ x1, x2 (blue), and u2 ∼ x3, (red) and
u3 ∼ x4, x5 (blue). So by now we have 3 red vertices and 5 blue vertices.
Since the Heawood graph has 14 vertices in total, there remain only 2 blue
vertices y1, y2; it is easy to see that x3 ∼ y1, y2. Because of non-existence
of C4 in the Heawood graph, y1 and y2 cannot belong to S simultaneously
and also they are not adjacent to u1, u2. Granting this, y1 ∼ w1, w2 and
y2 ∼ w3, w4, where all vertices w1, w2, w3, w4 are different. Without loss of
generality suppose x1 ∼ w1. Therefore, x1 � w2 and x2 � w1 (otherwise
there would be C4 in the graph). Consequently, x1 is adjacent to w3 or w4

and w.l.o.g. we can assume that x1 ∼ w3. In the same manner we obtain
x1 � w4 and x2 � w3. Hence, x2 ∼ w2, w4. By a parallel argument x4 and
x5 are adjacent to only one neighbor of y1 and y2 and all these neighbors
are different. Thus we can denote that x4 ∼ w1, w3 and x5 ∼ w2, w4.

We will now prove that either {y1, w1, w2} or {y2, w3, w4} can be taken
as vertices {v1, v2, v3} from the support S(

√
2). To show that S6 =�3+3�

is feasible, we need to verify the eigenfunction equality for all vertices. First
we consider vertices from the support. The following equalities hold for ui:

λf(u1) = f(u2)

λf(u2) = f(u1) + f(u3)

λf(u3) = f(u2)

For λ =
√

2 we get f(u1) = f(u3) = f(u2)/
√

2. Replacing ui by vi
and carrying out the similar arguments, we show that f(v1) = f(v3) =

f(v2)/
√

2.
Now consider vertices from O(S). For x3 we get λf(x3) = f(u2)+f(y1)+

f(y2). Equations for remaining vertices have the following form:
λf(x1) = f(u1) + f(w1) + f(w3)

λf(x2) = f(u1) + f(w2) + f(w4)

λf(x4) = f(u1) + f(w1) + f(w3)

λf(x5) = f(u1) + f(w2) + f(w4)

It is easy to see that �3�= {y1, w1, w2} satisfies the system. The same is
also true for � 3�= {y2, w3, w4}. Therefore, the eigenfunction equality
holds. By construction, the minimum support can only be of the form
described above.
• λ = −

√
2. The minimum support for this case can be built according to

Lemma 5 and Corollary 1, it has the same cardinality, the same form and
differs only in signs.

Result: The minimum support S(±
√

2) =� 3 + 3 � and has a structure
described above. Fig. 4 presents an example.

8.7. The Pappus graph. The Pappus graph G has

D = 4, Λ = {±3(1),±
√

3
(6)
, 0(4)};
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and its intersection array is (3, 2, 2, 1; 1, 1, 2, 3). Calculations of WD give us:W(λ) =

{1, λ, λ2 − 3, λ
3−5λ
2 , λ

4−9λ2+12
6 }. We have the following cases:

• λ = 0. The Pappus graph is bipartite. Let us denote its parts as X and
Y . According to Proposition 2 the minimum support has the form � 1 +
. . . + 1� and consists of vertices from the same part. We will prove that
S(0) =�1 + 1 + 1 + 1 + 1 + 1� is feasible as a support of an eigenfunction.
Since WDB = 6, it would be the minimum support we are looking for. Let
S consist of vertices {x1, x2, x3, x4, x5, x6}, where xi ∈ X. Without loss of
generality suppose that f(x1) = 1. Consider the distance partition with
respect to x1. It is clear that G1(x1) = {v1, v2, v3}, where all vertices vi are
different and vi ∈ Y . Each vi has two other neighbors ui1, ui2 ∈ X. The
girth of the Pappus graph is 6, therefore ui1 6= ui2. As the result, we get
G2(x1) = {u11, u12, . . . , u32}. It is clear that G3(x1) consists of 6 different
vertices yi from Y and G4(x1) consists of 2 remaining vertices w1 and w2

from X, where w1 and w2 do not have common neighbors (otherwise there
would more than 6 edges coming from G3(x1) to G4(x1)). So w.l.o.g we can
consider G1(w1) = {y1, y2, y3} as neighbors of w1. Note that for any j it is
true that uj1 is adjacent to some vertex from G(w1) and some vertex from
G1(w2), otherwise there would be a too short cycle. The same is true for
uj2.

It is easy to show that up to enumeration we can take {x2, x3, x4} =
{u1i, u2i, u3i} and {x5, x6} = {w1, w2} to get the feasible structure; only
these structures are possible as minimum supports for λ = 0. The correspon-
ding eigenfunction has the following non-zero elements:

{f(x1), f(x2), . . . , f(x6)} = {1,−1,−, 1,−1, 1, 1}.

Result: The minimum support S(0) =�1 + 1 + 1 + 1 + 1 + 1�
• λ =

√
3. Here we have W(λ) = {1,

√
3, 0,−

√
3,−1} and WDB = 6. Our

λ-conditions show that � 1�,� 2�,� 3�,� 6�* S(
√

3). With the
help of computer calculations we found that � 7� and � 8� cannot be
the minimum supports, while S =� 4 + 4�, where each � 4� has the
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form S4.2, is feasible. Let S =�4 + 4�= {x1, x2, x3, x4} ∪ {z1, z2, z3, z4},
where x1 ∼ x2, x3, x4; and x2, x3, x4 are not adjacent to each other; and
the similar conditions hold for zi. Hence, up to multiplication we have
(f(x1), f(x2), f(x3), f(x4)) = (

√
3, 1, 1, 1) and (f(z1), f(z2), f(z3), f(z4)) =

(−
√

3,−1,−1,−1).
• λ = −

√
3. The minimum support is obtained with the help of Lemma 5

and Corollary 1.
Result: The minimum support S(±

√
3) =�4 + 4�, where each �4�

is of type S4.2. Examples are presented below, see Fig. 5, 6:

8.8. The Desargues graph. The Desargues graph G has D = 5; the set of
eigenvalues Λ = {±3(1),±2(4),±1(5)}; its intersection array is (3, 2, 2, 1, 1; 1, 1, 2, 2, 3).
Since the Desargues graph can be considered as BDC of Petersen graph (see [5]),
we get the following results:

• λ = 1. The minimum support for this case has the structure�2+2+2+2�.
• λ = −2. In this case there are two possible structures for the minimum

support. So S(−2) =� 6 + 6� is either a pair of cycles C6, or a pair of
H-graphs.
• The minimum supports for λ = −1 and λ = 2 is obtained with the help of

Lemma 5 and Corollary 1.
Result: The minimum support S(±1) =�2+2+2+2�. An example is shown

on Fig. 7:
Result: The minimum support S(±2) =� 6 + 6�. Examples are shown on

Fig. 8, 9:

8.9. The dodecahedral graph. The Dodecahedral graph G has D = 5; Λ =

{3(1),±
√

5
(3)
, 1(5), 0(4),−2(4)}; and its intersection array is (3, 2, 1, 1, 1; 1, 1, 1, 2, 3).

We obtain:
W(λ) = {1, λ, λ2−3, λ3−λ2−5λ+3, λ

4−2λ3−5λ2+8λ
2 , λ

5−2λ4−7λ3+10λ2+10λ−6
6 }. The

cases of interest are:
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• λ = 0. Here we have W(λ) = {1, 0,−3, 3, 0,−1} and WDB = 8. Suppose
that s1 ∈ S and f(s1) = 1. Consider the distance partition of the Dodecahed-
ral graph with respect to s1. Then we have G1(s1) = {v1, v2, v3} and
G2(s1) = {u11, u12, u21, u22, u31, u32}. Without loss of generality suppose
that u11 ∼ u21, u22 ∼ u31 and u32 ∼ u12 (note that a2 = 1); then
we have G3(s1) = {w11, w12, w21, w22, w31, w32}, where uij ∼ wij and
wi1 ∼ wi2 for any suitable i and j. G4(s1) = {x1, x2, x3} and w11, w21 ∼ x1;
w22, w31 ∼ x2; w12, w32 ∼ x3. And finally, G5(s1) = {y1}, where xi ∼ y1
for each suitable i.

We will show that � 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1� is the minimum
support. For WDB to be achieved, there should be three −1 values in
G3(s1), three 1 values in G4(s1) and y1 ∈ S. We also need each vertex vi
to have a non-zero neighbor in G2(s1). This implies that without loss of
generality we can suppose that u11, u22, u32 ∈ S. This automatically leads
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to w12, w21, w31 ∈ S. Thus, we constructed � 1 + .. + 1� with f(s1) =
f(wij) = 1 and f(umk) = f(y1) for suitable indices. It is easy to check
that the eigenfunction equality holds for zero vertices. With additional
calculations it can be shown that this is the only possible structure for
the minimum support.

Result: The minimum support S(0) =�1 + 1 + 1 + 1 + 1 + 1 + 1 + 1�.
See Fig. 10.
• λ = 1. For this eigenvalue W(λ) = {1, 1,−2,−2, 1, 1} and WDB = 8. The

minimum support in this case is � 2 + 2 + 2 + 2�; it is constructed as
follows. Using the notation above, we can choose any of s1 ∼ vi as the
first pair of adjacent vertices. Without loss of generality suppose s1, v1 ∈ S.
Since each vertex z of the Dodecahedral graph has exactly one vertex at
distance D from z and taking WD into the account, we can conclude that
x1, y2 ∈ S (as they are antipodes to s1 and v1 correspondingly). It is easy
to show that either u21,u32,w21,w32 ∈ S or u22,u31,w11,w12 ∈ S. Then up
to multiplication the eigenfunction with this support has values: f(s1) =
f(v1) = f(x1) = f(y2) = 1 and f(u21) = f(u32) = f(w21) = f(w32) = −1
(or f(u22) = f(u31) = f(w11) = f(w12) = −1).

Result: The minimum support S(1) =�2 + 2 + 2 + 2�. See Fig. 11

• λ = −2. In this case we get W(λ) = {1,−2, 1, 1,−2, 1} and WDB = 8. The
minimum support S(−2) has cardinality 12 and can have only one of the
following structures:
– S(−2) =�6 + 6�, where both �6� stand for H-graph, see Fig. 12.
– S(−2) =�12�, where �12� stands for a cycle C12, see Fig. 13.

• λ = ±
√

5. For this eigenvalue we have W(λ) = {1,±
√

5, 2,−2,∓
√

5,−1}
and WDB ≥ 12. The minimum support has cardinality 16 and can have
only one of the following structures:
– S(±

√
5) =� 16�, where � 16� stands for the graph from Fig. 14.

Let S consist of the vertices {s1, v1, uij , wij , y2, x1}. Then the correspon-
ding eigenfunction has values: f(s1) = −f(x1) = 1, f(v1) = −f(y2) =
λ, f(u11) = f(u12) = −f(w22) = −f(w31) = 2, f(u21) = f(u32) =
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−f(w21) = −f(w32) = λ−1
2 , f(u22) = f(u31) = −f(w11) = −f(w12) =

−λ−1
2 .

– S(
√

5) =�16�, where�16� stands for the graph from Fig. 15. Let
S has vertices {s1, v1, v2, u11, u12, u21, u22, u31, w11, w12, w22, w31,
w32, y2, y3, x1}. The corresponding eigenfuncnion will have the following
values {1,

√
5+1
2 ,

√
5−1
2 ,

√
5+1
2 , 1, 1, 1−

√
5

2 ,−1, 1,
√
5−1
2 ,−1, −1−

√
5

2 ,−1, −1−
√
5

2 ,
−1−

√
5

2 ,−1}.

8.10. The Coxeter graph. The Coxeter graph has D = 4; Λ = {3(1), 2(8),−1(7),

(−1±
√

2)(6)}; and its intersection array is (3, 2, 2, 1; 1, 1, 1, 2). Calculations of WD
give us the following: W(λ) = {1, λ, λ2 − 3, λ3 − 5, λ

4−λ3−7λ2+5λ+6
2 }.
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• λ = −1. For this eigenvalue we haveW(λ) = {1,−1,−2, 4,−2} and WDB =
10. Using computer calculations, we found that the minimum support has
cardinality 12 and can be one of the following structures:
– S(−1) =�2 + 2 + 2 + 2 + 2 + 2�.
– S(−1) =�6 + 6�, where both �6� stand for H-graph.

Examples of supports are presented below on Fig. 16, 17:

• λ = 2. In this case W(λ) = {1, 2, 1,−2,−2} and WDB = 8. Computer
calculations showed that the minimum support has cardinality 12 and can
have only the following structure:
– S(12) =�6 + 6�, where both �6� stand for H-graph.

• λ = −1 +
√

2. Here W(λ) = {1,
√

2 − 1,−2
√

2,−2,
√

2 + 2} and WDB =

4
√

2 + 4. The minimum support has cardinality 16 and can have only the
following structure:
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– S(−1 +
√

2) =� 16 �, where � 16 � stands for a spider-graph,
see Fig. 18. Let S consist of vertices {s1, . . . , s8, v1, . . . , v8} where
si ∼ vi for each i, v1 ∼ v2 ∼ . . . ∼ v8 ∼ v1 and there are no other
edges. In other words, vertices vi form the inner cycle C8. Then the
corresponding eigenfunction will have the values: f(s1) = f(s3) =
f(s5) = 1, f(s2) = f(s4) = f(s6) = −1, f(v1) = f(v3) = f(v6) =
f(v7) = λ, f(v2) = f(v4) = f(v5) = f(v8) = −λ.

• λ = −1 −
√

2. The minimum support has the same structure as in case of
λ = −1 +

√
2, but with different values.

8.11. The Tutte-Coxeter graph. The Tutte-Coxeter graph has D = 4; Λ =
{±3(1),±2(9), 0(10)}; its intersection array is (3, 2, 2, 2; 1, 1, 1, 3); and its weight distri-
bution is W(λ) = {1, λ, λ2 − 3, λ3 − 5λ, λ

4−7λ2+6
3 }.

• λ = 0. Here we have W(λ) = {1, 0,−3, 0, 2} and WDB = 6. This border is
achievable with the support �1 + 1 + 1 + 1 + 1 + 1�.

Result: The minimum support for S(0) =�1 + 1 + 1 + 1 + 1 + 1�, see
Fig. 19:
• λ = 2. WDB = 8. Computer calculations showed that the cardinality of the

minimum support is 14 and there are 3 possible structures:
– S(2) =�7 + 7�, where both �7� stand for Y-graph (see Fig. 20).

Let�7+7� consist of {s, v1, v2, v3, u1, u2, u3}∪{t, x1, x2, x3, y1, y2, y3};
where s ∼ v1, v2, v3; vi ∼ ui and t ∼ y1, y2, y3; yi ∼ xi and there are
no other edges in this S. Then up to multiplication the eigenfunction
with this support has the following values: f(s) = 1, f(v1) = f(v2) =
f(v3) = 1

3 , f(u1) = f(u2) = f(u3) = 2
3 , f(x1) = f(x2) = f(x3) = − 2

3 ,
f(y1) = f(y2) = f(y3) = − 1

3 , f(t) = −1.
– S(14) =�7 + 7�, where both �7� stand for I-graph (see Fig. 21).

Let�7+7� consist of {s1, s2, s3, v1, v2, u1, u2}∪{t1, t2, t3, x1, x2, y1, y2};
where s1 ∼ v1, v2, s2; s2 ∼ s3; s3 ∼ y1, y2 and t1 ∼ x1, x2, t2; t2 ∼
t3; t3 ∼ y1, y2 and there are no other edges in this S. Then up to
multiplication the eigenfunction with this support has the following
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values: f(s1) = f(s2) = f(s3) = 1, f(v1) = f(v2) = f(u1) = f(u2) =
1
2 , f(t1) = f(t2) = f(t3) = −1, f(x1) = f(x2) = f(y1) = f(y2) = − 1

2
– S(2) =�6+8�, where�8� stands for a cycle C8 and�6� stands

for H-graph. Let �6 + 8� consist of vertices {s1, s2, u1, u2, u3, u4} ∪
{v1, v2, . . . , v8}; where s1 ∼ u1, u2, s2; s2 ∼ u3, u4 and v1 ∼ v2 ∼ v3 ∼
v4 ∼ v5 ∼ v6 ∼ v1; and there are no other edges in S. Then up to
multiplication the eigenfunction with this support has the following
values: f(s1) = f(s2) = 1, f(u1) = f(u2) = f(u3) = f(u4) = 1

2 ,
f(vi) = − 1

2 .
• The minimum support for λ = −2 is obtained from the above case with the

help of Lemma 5 and Corollary 1.
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Appendix. Algorithm

Suppose S(λ) with a vertex set {s1, . . . , st} to be a support for some eigenfunction
f . Without loss of generality we can take f(s1) = 1 and consider the distance
partition with respect to s1. Denote Li = |Gi(s1)| and

ti =
∑

sj∈Gi(s1)

1, for all i ∈ {1, . . . D}

Then we have
D∑
i=1

ti = t − 1, where ti ≤ Li for all i. In other words, at each

layer i there are ti non-zero elements. The idea of the algorithm is pretty simple:
we consider all compositions of an integer t − 1 into D parts and check if we can
build an eigenfunction with non-zeros corresponding to the considered composition.
Recall, that composition of an integer is its presentation as a sum of a sequence
of positive integers (note, that in some cases we also consider the sums of non-
zero integers). We are interested only in those that consist of D parts. Since the
weight disribution gives us a lower bound on the number of non-zeros in each layer
and the cardinality of the layer gives us an upper bound, we do not consider the
compositions that do not satisfy these bounds. Let Z be a total number of the
compositions that fulfil the condtions above.

So the algorithm can be described as follows:
(1) Initializing t = WDB(λ).
(2) Build all compositions T j = {tj1, . . . , t

j
D}, where

D∑
i=1

tji = t− 1

tji ≤ Li
tji ≥ |Wi(λ)|

for all j ∈ {1, . . . , Z} and i ∈ {1, . . . , D}.
(3) For each composition T j we consider all possible combinations of vertices

that construct our eigenfunction support. In other words, at each layer i
we choose the appropriate number ti of vertices. As a result we get S(λ)
consisting of vertices {s1, . . . , st}.

(4) Solving the system: consider a submatrix Sub of A that consists of the
columns of matrix A, that correspond to the vertices {s1, . . . , st}. Similarly,
let f̄ ′ be a column-vector that consists of non-zero elements of f̄ ′. In other
words, f̄ ′ = (f(s1), f(s2), . . . , f(st))

T. Therefore, we obtain the system
Sub ∗ f̄ ′ = 0. If there is a non-zero solution the minimum support is found.

(5) If the system does not have a non-zero solution then increase t and go to
Step 2.

For the purposes of this paper the described algorithm was implemented in
Matlab.
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[4] D. Cvetković, P. Rowlinson, S. Simić, Eigenspaces of graphs, Cambridge University Press,
Cambridge, 1997.

[5] W. Imrich, T. Pisanski. Multiple Kronecker covering graphs, European Journal of
Combinatorics, 29:5 (2008), 1116-–1122.

[6] V.N. Potapov, On perfect 2-colorings of the q-ary n-cube, Discrete Math., 312:6 (2012),
1269–1272.

[7] K.V. Vorob’ev, D.S. Krotov, Bounds for the size of a minimal 1-perfect bitrade in a Hamming
graph, J. Appl. Ind. Math., 9:1 (2015), 141–146. Translated from Diskretn. Anal. Issled. Oper.
21(6) (2014) 3–10.

[8] D.S. Krotov, I.Yu. Mogilnykh, V.N. Potapov, To the theory of q-ary Steiner and other-type
trades, Discrete Math., 339:3 (2016), 1150–1157.

[9] A.A. Valyuzhenich, Minimum supports of eigenfunctions of Hamming graphs, Discrete Math.,
340:5 (2017), 1064–1068.

[10] K. Vorob’ev, I. Mogilnykh, A. Valyuzhenich, Minimum supports of eigenfunctions of Johnson
graphs, accepted to Discrete Mathematics.

[11] http://www.graphclasses.org/smallgraphs.html

Eugenya Vadimovna Sotnikova
Sobolev Institute of Mathematics,
4 Acad. Koptyug avenue,
630090, Novosibirsk, Russia
E-mail address: lucernavesper@gmail.com


