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ON ORDERED GROUPS OF MORLEY O-RANK 1

V.V. VERBOVSKIY

Abstract. Given a cut s in an ordered structure M we can define
a localization of Morley rank—Morley o-rank, replacing each formula
in definition of Morley rank with the following partial types: the cut s
extended with this formula. We prove in the paper that any ordered group
of Morley o-rank 1 with boundedly many definable convex subgroups
is weakly o-minimal and construct an example of an ordered group of
Morley o-rank 1 and Morley o-degree at most 4.
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1. Introduction

Since A. Pillay and Ch. Steinhorn started investigating o-minimality in [4], or-
dered structures are in the focus of investigations in Model Theory. D. Macpherson,
D. Marker and Ch. Steinhorn considered in [3] a generalization of o-minimality—
weak o-minimality.

It is well-known that in o-minimal structures any cut in this structure defines
a complete type over the structure. In [2] B. Kulpeshov proved that any cut in a
weakly o-minimal structure has at most two extensions up to complete types over
the structure and the set of realizations of these types are convex.

So, it became clear, that the number of extensions of a cut plays an important role
in investigations of ordered structure, after that B. Baizhanov and V. Verbovskiy
suggested in [1] notion of o-stability—each cut has a few extensions up to complete
types over the considered structures. In this paper they considered basic properties
of o-stable theories and proved, in particular, that such theories do not have the
independence property.
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At the same time V. Verbovskiy in [6] applied o-stability to investigation of
such classical algebraic structures as ordered groups: he considered o-stable ordered
groups, proved that they are Abelian and gave some description of definable subsets.

It has been proved in [1] that the class of weakly o-minimal theories is a proper
subclass of the class of o-stable theories. The simplest example of an o-stable
ordered group which is not weakly o-minimal is (R, <,+, 0, Q), where the unary
predicate Q names the subgroup of rational numbers [6]. But since the index
|R : Q| is infinite, Morley o-rank of this structure is 2. So, it is an interesting
question whether there exists an o-stable ordered group of Morley o-rank 1, which
is not weakly o-minimal. We prove in Section 2 that any ordered group of Morley o-
rank 1 with boundedly many definable subgroups is weakly o-minimal and construct
in Section 3 an example of an ordered group of Morley o-rank 1 and Morley o-degree
at most 4. Below we give necessary definitions and facts.

Let M = (M,<, . . . ) be a totally ordered structure, a is an element of M and
A, B subsets. As usually we write

a < A, if a < b for any b ∈ A,

A < B, if a < b for any a ∈ A and b ∈ B.

A partition ⟨C,D⟩ of M is called a cut if C < D. Given a cut ⟨C,D⟩ one can
construct a partial type {c < x < d : c ∈ C, d ∈ D}, which we also call a cut and
use the same notation ⟨C,D⟩.

A subset A of a totally ordered set M is called convex if for any a and b ∈ A
the interval [a, b] is a subset of A. The length of a convex set A is defined as
sup{a − b : a, b ∈ A}. A convex component of a set A is a maximal convex subset
of A. The convex hull Ac of a set A is defined as

Ac =
{
b ∈M : ∃a1, a2 ∈ A (a1 ≤ b ≤ a2)

}
,

that is it is the least convex set containing the set A. An ordered structure is
called weakly o-minimal if any its definable subset consists of finitely many convex
components, and a theory is weakly o-minimal, if all its models are weakly o-
minimal [3].

Let P be some property. We say that the property P holds eventually in A
if there is an element a ∈ M such that a < supA and the property P holds on
the intersection (a,∞) ∩ A. If A = M , we just write that the property P holds
eventually. If the property P is equality of two sets B and C, then we say that the

sets B and C are eventually equal in A we denote this by B
∞
=A C. Let B ⊆ A ⊆M .

The set B is said to be dense in A if for any a1 < a2 from A there is b ∈ B with
a1 < b < a2. If A =M I omit A and write just B is dense. A dense component of
B in A is a maximal subset B0 of B which is dense in A ∩ (inf B0, supB0).

We say that an ordered group M contains boundedly many definable convex
subgroups if there is a cardinal λ, such that in any group which is elementary
equivalent to M the number of convex definable subgroups does not exceed λ.
Otherwise we say that M has unboundedly many definable convex subgroups.

We say that a convex set A is coset-infinite, if it is not a finite union of cosets of
definable subgroups.

Let s be a partial n-type, A a set. Then

Sn
s (A) ,

{
p ∈ Sn(A) : p ∪ s is consistent

}
.

Note, s need not to be a partial type over the set A.
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Definition 1 (B. Baizhanov, V. Verbovskiy [1]).
(1) An ordered structure M is o-stable in λ if for any A ⊆ M with |A| ≤ λ

and for any cut ⟨C,D⟩ in M there are at most λ 1-types over A which are
consistent with the cut ⟨C,D⟩, i.e.∣∣S1

⟨C,D⟩(A)
∣∣ ≤ λ.

(2) A theory T is o-stable in λ if every model of T is. Sometimes I write T is
o-λ-stable.

(3) A theory T is o-stable if there exists an infinite cardinal λ in which T is
o-stable.

(4) A theory T is o-superstable if there exists a cardinal λ such that T is o-
stable in all µ ≥ λ.

(5) A theory T is strongly o-stable if in addition to its o-stability any definable
cut in any model M of T is definable in the language of pure ordering, or,
equivalently, if supA ∈M for any definable subset A of M.

Definition 2 (V. Verbovskiy, [6]).
(1) We say that Morley o-rank of a formula ϕ(x) inside a cut ⟨C,D⟩ in M is

equal to or greater than 1 and write RM⟨C,D⟩,M(ϕ)≥1 for this, if
{
ϕ(x)

}
∪

⟨C,D⟩ is consistent.
(2) RM⟨C,D⟩,M(ϕ) ≥ α + 1 if there are infinitely many pairwise inconsistent

formulae ψi(x) such that RM⟨C,D⟩,M
(
ϕ(x) ∧ ψi(x)

)
≥ α.

(3) If α is a limit ordinal, then RM⟨C,D⟩,M(ϕ) ≥ α if RM⟨C,D⟩,M(ϕ) ≥ β for
all β < α.

(4) RM⟨C,D⟩,M(ϕ) = α if RM⟨C,D⟩,M(ϕ) ≥ α and RM⟨C,D⟩,M(ϕ) ̸≥ α+ 1.

In a similar way one can define Morley o-degree of a formula inside a cut. As
usual one can define Morley o-rank of a type.

In the previous definition we have given Morley o-rank for a fixed model. In
the next one we consider Morley o-rank of a formula in an arbitrary elementary
extension of a given model.

Definition 3.
(1) We say that Morley o-rank of a formula ϕ(x) inside a cut ⟨C,D⟩ is equal to

or greater than 1 and write RM⟨C,D⟩(ϕ)≥1 for this, if
{
ϕ(x)

}
∪ ⟨C,D⟩ is

consistent.
(2) RM⟨C,D⟩(ϕ) ≥ α + 1 if there is an elementary extension N of M, a cut

⟨C1, D1⟩ in N containing the cut ⟨C,D⟩ and there are infinitely many pair-
wise inconsistent formulae ψi(x) with parameters in N such that the in-
equality RM⟨C1,D1⟩,N

(
ϕ(x) ∧ ψi(x)

)
≥ α holds.

(3) If α is a limit ordinal, then RM⟨C,D⟩(ϕ) ≥ α if RM⟨C,D⟩(ϕ) ≥ β for all
β < α.

(4) RM⟨C,D⟩(ϕ) = α if RM⟨C,D⟩(ϕ) ≥ α and RM⟨C,D⟩(ϕ) ̸≥ α+ 1.

Let T be a theory of a language L, and M ≺ N two models of T such that N
is |M |+-saturated. For any formula ϕ(x̄, ᾱ) with parameters ᾱ in N I add a new
relational symbol Pϕ(x̄,ᾱ)(x̄) interpreted by Pϕ(x̄,ᾱ)(M) = ϕ(N, ᾱ)∩Mk in order to
form language L∗. The set Pϕ(x̄,ᾱ)(M) is called externally definable.

Theorem 1. [6] Let T be an o-stable theory of a language L, and M ≺ N two
models of T such that N is |M |+-saturated. Then the elementary theory T ∗ of the
expansion M∗ of M is o-stable.
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Theorem 2. [6] Let G be densely ordered. Then for any infinite definable set there
is an interval where this set is dense. By other words, no infinite nowhere dense
subset is definable.

Theorem 3. [6] Let G be an ordered group with boundedly many definable convex
subgroups whose elementary theory is o-stable. Assume that G is not weakly o-
minimal, that is there is a definable subset A consisting of infinitely many convex
components, and a non-rational cut ⟨C,D⟩ such that both A and the complement
of A are consistent with this cut. Then there is an externally definable unbounded
proper subgroup K of the group H+

C (where H+
C is the stabilizer of the set C). If in

addition the cut ⟨C,D⟩ is definable then the group K is definable.

2. The main result

Throughout the paper M = (M,<,+, 0, . . . ) is an ordered group whose elemen-
tary theory is o-stable. Moreover, we assume that M is sufficiently saturated.

By Theorem 2.8 from [6] we know that this group is Abelian, that is why we use
the additive notation for the group operation.

The main result in this paper is the following theorem.

Theorem 4. Let M be an ordered group whose elementary theory is o-stable,
moreover, RMs(x = x) = 1 for any cut s = ⟨C,D⟩ in M. Assume that M
contains boundedly many definable convex subgroups. Then the elementary theory
of M is weakly o-minimal.

Proof. Clearly, that since RMs(x = x) = 1 for any cut s = ⟨C,D⟩ in M, so Th(M)
is o-ω-stable. Lemma 2.12 in [6] states that if the elementary theory of M is o-ω-
stable then M is elementary equivalent to the ordered group of rationals as a pure
ordered group, i.e., in the language {<,+, 0}. Thus, M is divisible.

Lemma 1.11 in [6] says that if T be o-λ-stable, M = (M,<, . . . ) is a model of
T , and A a definable subset of M, then the elementary theory of A with the full
induced structure is o-λ-stable. So, any definable subgroup of M is o-ω-stable and
is divisible.

Assume the contrary, that the elementary theory of M is not weakly o-minimal.
Since we have supposed that M is sufficiently saturated, so M is not weakly o-
minimal. By definition there exists a definable subset A of M, which consists of
infinitely many convex components.

Lemma 1. [6] If for some formula φ(x) the number of coset-infinite convex compo-
nents of the set φ(G) is infinite, then the group G has unboundedly many definable
convex subgroups.

Since any convex component of a definable set is definable, we may assume that
each convex components of A is not coset-infinite. So, each convex component of
A is a finite union of cosets of definable convex subgroups.

Let a convex component B of A be a finite union of cosets ai +Hi of definable
convex subgroups Hi, for i < n. Since these subgroups are convex, they are linearly
ordered by the relation ⊆. Then if two of these cosets have non-empty intersection,
one of them is a subset of the other one. Thus we may assume that any pair of
these cosets have an empty intersection.

Let a1 < a2 < · · · < an. Since the group is divisible, there exists an element b
such that b+ b = a1 + a2. Note that b ̸∈ a1 +H1, because otherwise a2 = b+ b− a1
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belongs to a1 +H1, and (a1 +H1) ∩ (a2 +H2) ̸= ∅. Similar arguments show that
b ̸∈ a2 +H2. But then B is not convex.

Consequently, any convex component of A is a coset of some definable convex
subgroup. Since the group M has boundedly many definable convex subgroups, the
number of convex subgroups, whose cosets form convex components of A is finite,
that is why we may assume that each convex component of A is a coset of some
definable convex subgroup H.

Now we consider the quotient-group M/H with the full induced structure. As
it was shown in [6] this structure is ordered and o-ω-stable. It is easy to see that
RMs(x = x) = 1 for any cut s = ⟨C,D⟩ in M/H, that is why we may assume that
H = {0}.

By Theorem 2 for any infinite definable set there exists an infinite interval, where
this set is dense. Since A contains infinitely many convex component, there is an
interval (a, b) in which both A and its complement are dense. Then both A and its
complement are consistent with each cut in the interval (a, b).

Then there exists a cut ⟨C,D⟩ such that both A and the complement of A are
consistent with this cut and the sets of all realizations of A and the complement of
A in the cut ⟨C,D⟩ are not convex. Moreover, both A and its complement are not
bounded above in C.

Since we may consider M to be sufficiently saturated, we can find such a cut
⟨C,D⟩, that HC ̸= {0}.

Now we recall Theorem 3 from [6], where it has been proved that the stabilizer
of a set X inside the cut ⟨C,D⟩, which is the following subgroup: HX = {g ∈ G |
g +X

∞
=C X}, is not bounded in HC .

Case 1. HC is a non-zero definable subgroup. Then K is a proper unbounded
in HC subgroup of HC . Since K is definable, it is divisible, as well as HC . Then
the index |HC : K| = ∞, so infinitely many cosets of K are consistent with the cut
⟨C,D⟩, which implies that the Morley o-rank of x = x in ⟨C,D⟩ is at least 2, for a
contradiction.

Case 2. HC is a non-zero undefinable subgroup. Since HC is convex it is exter-
nally definable. Indeed, let α realize the cut supHC . Then HC = (−α, α) ∩M .

We know by Theorem 1 that expansion by externally definable subsets preserves
o-stability.

In order to define the group K we need just to define HC , which can be done by
the formula P−α<x<α. Let us consider the elementary extension N of M and in
the formula of the language L∗ we replace P−α<x<α with −α < x < α and obtain
the formula K1(x) of the language L.

Note that K1(N ) ∩M = K. Since infinitely many cosets of K are consistent
with the cut ⟨C,D⟩ in M, so there exist infinitely many a ∈M such that K1(x−a)
is consistent with the cut defined by supC in the model N , contradicting the fact
that Morley o-rank of x = x is equal to 1.

Hence, our assumption that M is not weakly o-minimal is wrong. �

3. An example

In this section we give an example of an ordered group, which is not weakly
o-minimal, but which has Morley o-rank of the formula x = x to be equal 1, and
Morley degree at most 4.
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First, we need some fact from [5].

Fact 1. [5] Let TE be a theory in the language LE = {<,E,+,−, 0} with the
following set of axioms:

(1) the axioms for a linearly ordered Abelian divisible group;
(2) E is an equivalence relation with convex classes;
(3) order induced on E-classes is dense without endpoints;
(4) E(x, nx), for any positive n < ω;
(5) E(x, y) ↔ E(−x,−y);
(6) E(x, 0) → x = 0.

Then TE admits quantifier elimination.

Fact 2. [5] TE is weakly o-minimal.

Let G be a countable model of TE and M = (M,<,L) be a countable densely
ordered structure without endpoints. Let f be an arbitrary isomorphism between
the structures (G+/E,<) and (M,<), and L+ = L∪{<,+,−, E, 0}. Define (G,L+)
by the following: for any R ∈ L we put

G |= R(x1, . . . , xn) iff G |=
∧
i

0 < xi and M |= R(f([x1]E), . . . , f([xn]E)).

We may assume that the elementary theory of the restriction GL of G+ = (G,L+)
to the language LL = L∪{<,E, 0} admits quantifier elimination. Let TL = Th(GL).

Fact 3. [5] The theory T+ = Th(G+) admits quantifier elimination.

Theorem 5. There exists an ordered group, which is not weakly o-minimal, but
which has Morley o-rank of the formula x = x to be equal 1, and Morley degree at
most 4.

Proof. Consider the following group (G,<,+, 0, E, P ), where the set G consists of
all functions with a finite support from the set of real numbers R to itself (that is the
set {r ∈ R | f(r) ̸= 0} is finite for each function f), the addition is coordinate-wise
(that is (f + g)(r) = f(r) + g(r)), and the order is lexicographical. Let E be the
equivalence relation, whose classes are Archimedean classes, that is two elements
are equivalent if the most left non-zero coordinates are equal. So, the factor-set
(G/E,<) is isomorphic to the ordered set of reals. We denote this isomorphism by
τ . The predicate P is interpreted in the following way: |= P (f) iff τ([f ]) is rational,
where [f ] is the E-class of f ∈ G.

Since the elementary theory of an Abelian ordered divisible group admits quan-
tifier elimination as well as the elementary theory of the ordered set of reals with
the named subset of rationals, by the general construction, described in [5], the
elementary theory of the given ordered group (G,<,+, 0, E, P ) admits quantifier
elimination.

Hence, any formula in one free variable is a Boolean combination of intervals,
moved E-equivalence classes [h] + g, and P (G) + g, or G \P (G) + g for some g’s in
G.

It was proved in [5] that the elementary theory of (G,<,+, 0, E) is weakly o-mi-
nimal, so any cut has at most two completions up to complete types.

Consider a cut ⟨C,D⟩. It defines a convex subgroup H = {h ∈ G | h+ C = C}.
Obviously,

(P (G) + g) ∩ (sup[g],+∞) = P (G) ∩ (sup[g],+∞)
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as well as
(P (G) + g) ∩ (−∞, inf[−g]) = P (G) ∩ (−∞, inf[−g])

The set (P (G) + g)∩ (sup[−g], inf[g]) is either empty (if the first non-zero coor-
dinate is irrational), or equal to (sup[−g], inf[g]) (otherwise).

The last two cases are (P (G) + g) ∩ [g], and (P (G) + g) ∩ [−g].
If the first coordinate in g is irrational, then

(P (G) + g) ∩ [g] = A+ g,

and

(P (G) + g) ∩ [−g] = A+ (−g), where A = P (G) ∩ (sup[−g], inf[g])
If the first coordinate in g is rational, then

(P (G) + g) ∩ [g] = [g] and (P (G) + g) ∩ [−g] = [−g]
Consider two positive elements g1 < g2.
If these elements are not E-equivalent, then for any cut ⟨C,D⟩ either P (G) + g1

or P (G) + g2 is equal to P (G) in some interval (c, d) for some c ∈ C and d ∈ D.
If these elements are E-equivalent and the first non-zero coordinate is rational,

then
(P (G) + g1) ∩ [g1] = [g1] = [g2] = P (G) + g2 ∩ [g1]

If these elements are E-equivalent but the first non-zero coordinate is irrational,
then inside [g1] the sets P (G)+ g1 and P (G)+ g2 have an empty intersection if the
meanings of the first non-zero coordinate are different, and equal if the meaning of
the first non-zero coordinate are equal.

So, as we can see for any cut there are at most 4 extensions by h + [g] or the
complement of this set and by P (G) + g or the complement of this set. Thus in
this group the Morley o-rank of x = x is equal to 1 and Morley degree is at most 4
in any cut. �
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