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CONSTRAINED FRACTAL INTERPOLATION FUNCTIONS
WITH VARIABLE SCALING

A.K.B.CHAND, K.M. REDDY

Abstract. Fractal interpolant function (FIF) constructed through ite-
rated function systems is more general than classical spline interpolant.
In this paper, we introduce a family of rational cubic splines with variable
scaling, where the numerators and denominators of rational function
are cubic and linear polynomial respectively. FIFs with variable scaling
offer more flexibility in fitting and approximation of many complicated
phenomena than that of in FIF with constant scaling. The convergence
result of the proposed rational cubic interpolant to data generating func-
tion in C1 is proven. When interpolation data is constrained by piecewise
curves, we derive sufficient condition on the parameter of rational FIF
so that it lies between them.

Keywords: fractals, rational splines, constrained interpolation, rational
fractal interpolation function.

1. Introduction

The term fractal was coined by Mandelbrot [17] in 1975 to describe the geometry
of nature such as the shape of clouds, forests, coastlines, leaves, flowers, galaxies,
etc. Fractals are generally self-affine in nature and possess non-integer dimensions.
Iterated function system(IFS) is an ideal tool for construction of fractals [16]. Based
on IFS, Barnsley introduced the concept of FIF that has similarity with classical
splines [1, 2]. The main distinctions of FIF with the classical interpolants include
the construction by iteration of fractal interpolant instead of using an analytic
expression and the presence of scaling factors, which offer flexibility in the choice of
smooth or non-smooth interpolant in contrast to the unicity of a specific traditional
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interpolant. When the scaling factors are zero, a fractal interpolant reduces to the
corresponding classical nonrecursive spline. Barnsley and Harrington [3] introduced
the construction of a differentiable FIF or Cr-FIF f that interpolates prescribed
data if the values of f (k) , k = 1, 2, . . . , r are assigned at the initial end point of the
interpolation interval. Fractal polynomial splines with general boundary conditions
developed in constructive manner [4, 8, 20]. Using α-fractal functions, it is possible
to generalize some classical piecewise interpolants, see for instance [18, 19, 20]. A
data set under consideration for interpolation may have some fundamental shapes
like irregularity, positivity, monotonicity, convexity (concavity). The notion of shape
refers to the geometrical behavior of a function or approximant. The processes of
evaluating interpolant that mimic the shape properties associated with a data set
is called shape preserving or iso-geometric interpolation, and the corresponding
interpolant is referred to as shape preserving interpolant [5, 10, 11, 15, 21, 23, 24].
Using fractal methodology, our group has initiated the shape preserving fractal
splines in literature by restricting the scaling factors and shape parameters suitably
[6, 7]. The shape preserving α-fractal function with constant scaling are developed
recently in [26]. Constrained control of interpolating curve is a fundamental task
and is an important subject that we face in applications including computer aided
geometric design [13], data visualization, image analysis [14]. On the other hand,
there are practical situations wherein interpolating curves that lie completely above
or below a prefixed curve, for instance, a polygonal (piecewise linear and quadratic
function) are sought-after. To provide additional flexibility and diversity, and to
match intricate curves that show less self-similarity, FIF with variable scaling
functions has been introduced by Wang and Fan [27]. Later Wang and Shan [28]
studied analytical properties such as smoothness, stability and sensitivity of FIF
with function vertical scaling factors. In this paper, we introduce a novel class of
rational cubic FIFs with function vertical scaling factors and study its convergence,
and constrained aspects when data set satisfies the same constraints.

The paper is organized as follows, In section 2, we discuss the construction
of rational cubic FIF with variable scaling. In section 3, we derive an uniform
error bound between the rational cubic FIF and the original function in C1 for
convergence result. In section 4, we deduce the sufficient conditions for the proposed
rational cubic spline with variable scaling so that it stays above or below of a
piecewise spline. The theoretical results of previous section are implemented in
section 5 to construct the desired constrained rational cubic spline FIFs with variable
scaling.

2. Preliminaries

First, we discuss the construction of FIFs from a given data set which is generated
from a complex function, and the details can be found in [1, 2, 3]. For a fixed
N ∈ N, we denote NN as the set of first N natural numbers. Let the prescribed set
of interpolation data be {(xi, yi) ∈ I × R : i ∈ NN}, where I = [x1, xN ], N > 2.
For i ∈ NN−1, let Li : I → Ii = [xi, xi+1] be contraction homeomorphisms that
obey

Li(x1) = xi, Li(xN ) = xi+1. (1)
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Let Fi : I × R → R be continuous maps such that

Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1, i ∈ NN−1,

|Fi(x, y)− Fi(x, y
′)| ≤ αi|y − y′|, x ∈ I; y, y′ ∈ R; 0 ≤ αi < 1.

}
(2)

For i ∈ NN−1, define functions wi(x, y) =
(
Li(x), Fi(x, y)

)
. The collection {I ×

R;wi : i ∈ NN−1} is referred as an iterated function system (IFS). The following is
the most fundamental theorem in the field of fractal interpolation.

Theorem 2.1. [1] The IFS {I × R; wi, i ∈ NN−1} defined above admits a unique
attractor G, and G is the graph of a continuous function f : I → R which obeys
f(xi) = yi for i ∈ NN .

The above function f is called a FIF corresponding to the IFS and its construction
is based on the following:
Let F = {g | g : I → R is continuous, g(x1) = y1 and g(xN ) = yN}. Then F ,
endowed with the uniform metric in a complete metric space. The Read-Bajraktarević
operator T : F → F is defined by

(Tg)(x) = Fi(L
−1
i (x), g ◦ L−1

i (x)), x ∈ Ii, i ∈ NN−1.

T is a contract in map with contractivity factor |α|∞=max{|αi| : i = 1, 2, . . . , N −
1}. The fixed point of T is the FIF f whose functional equation is

f(x) = Fi(L
−1
i (x), f ◦ L−1

i (x)) for x ∈ Ii. (3)

The most extensively studied FIFs so far in the literature stem from the IFS:

{I × R; wi(x, f) = (Li(x), Fi(x, f)), i ∈ NN−1},
Li(x) = aix+ bi, Fi(x, f) = αif + qi(x),

}
(4)

where ai is a horizontal scaling factor, αi is a vertical scaling factor and α=(α1, α2,
. . . , αN−1) is the scaling factor of the IFS. The functions qi(x), i ∈ NN−1 are
suitable continuous functions such that the conditions prescribed in (2) are satisfied.
Bransley[1] introduced generalization of a FIF by IFS (4) with qi(x)=f ◦ Li(x) −
αib(x), where b is a continuous function satisfy b(x1) = f(x1), and b(xN ) = f(xN ).
The corresponding FIF is called α-fractal function of f with respect to α, base
function b and partition ∆={x1, . . . , xN}. The corresponding α−fractal function
fα
∆,b = fα satisfy the functional equation[19]:

fα
(
Li(x)

)
= αif

α(x) + f ◦ Li(x)− αib(x), x ∈ I, i ∈ NN−1, (5)

Viswanathan and Chand [26], developed α-fractal function fα with family of base
functions {bi : i ∈ NN−1} to introduce shape parameters in the structure of FIF as

fα(x) = f(x) + αi

(
fα − bi

)
(L−1

i (x)), x ∈ Ii, i ∈ NN−1, (6)

If in order to accommodate variable scaling and shape parameters in α-FIF, we
modify (6) as

fα(Li(x)) = αi(x)f
α(x) + f(Li(x))−αi(x)bi(x), x ∈ I, i ∈ NN−1, (7)

where αi(x) is a Lipschitz function. An upper bound for the uniform error between
f and its perturbation fractal function fα is calculated in the following:

(fα − f)(x) = αi(L
−1
i (x))

(
fα)(L−1

i (x))− bi(L
−1
i (x))

)
, x ∈ Ii, i ∈ NN−1,

= αi(L
−1
i (x))

(
fα − bi

)
(L−1

i (x)), x ∈ Ii, i ∈ NN−1.
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From above expression, we have

|(fα − f)(x)| ≤ ||αi||∞ ||fα − bi||∞, x ∈ Ii, i ∈ NN−1.

Hence, we obtain

||fα − f ||∞ ≤ max{||αi||∞ : i ∈ NN−1} max{||fα − bi||∞ : i ∈ NN−1},
≤ max{||αi||∞ : i ∈ NN−1}{||fα − f ||∞ +max{||f − bi||∞ : i ∈ NN−1}.

||fα − f ||∞ ≤ ||α||∞
1− ||α||∞

max{||f − bi||∞ : i ∈ NN−1},

(8)

where ||α||∞ = max{||αi||∞ : i ∈ NN−1}.

3. Construction of rational cubic FIF with variable scalings

A C1-continuous rational cubic spline with linear denominator was introduced
in [12], where each piece is defined over a subinterval. With a suitable change of
variable, we can rewrite this interpolant as

f
(
Li(x)

)
=

(1− θ)3riyi + θ(1− θ)2Vi + θ2(1− θ)Wi + θ3tiyi+1

(1− θ)ri + θti
, i ∈ NN−1, (9)

where θ = x−x1

xN−x1
, x ∈ I, ri, ti are non-negative shape parameters and

Vi = (2ri + ti)yi + rihidi, Wi = (ri + 2ti)yi+1 − tihidi+1.

The fractal perturbation fα to be C1- continuous, it suffices to choose the variable
scaling αi(x) such that ||αi||C1(I) <

ai

2 where ||α||C1(I) = {||αr||∞, r = 0, 1} [25].
In order to construct α-FIF with variable scaling of f , we need the base functions
{bi : i ∈ NN−1} so that each bi agrees with f at the extremes of the interpolation
interval up to the first derivative [26]. We choose

bi(x) =
B1i(1− θ)3 +B2iθ(1− θ)2 +B3iθ

2(1− θ) +B4iθ
3

(1− θ)ri + θti
, (10)

where the coefficients B1i, B2i, B3i, and B4i are prescribed as

B1i = riy1, B2i = (2ri + ti)y1 + rid1(xN − x1),

B3i = (ri + 2ti)yN − tidN (xN − x1), B4i = tiyN .

Therefore, in view of (7), (9) and (10), the desired C1- continuous rational cubic
fractal spline with variable scaling is

fα
(
Li(x)

)
= αi(x)f

α(x) +
Ei(x)

Fi(x)
, (11)

Ei(x) = (yi −αi(x)y1)ri(1− θ)3 + (yi+1 −αi(x)yN )tiθ
3 +

{
(2ri + ti)yi

+rihidi −αi(x)[(2ri + ti)y1 + ri(xN − x1)d1]
}
θ(1− θ)2

+
{
(ri + 2ti)yi+1

−tihidi+1 −αi(x)[(ri + 2ti)yN − ti(xN − x1)dN ]
}
θ2(1− θ),

Fi(x) = (1− θ)ri + θti, θ =
x− x1

xN − x1
, ||αi||C1(I) <

ai
2
, i ∈ NN−1.
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Remark 3.1. If shape parameters ri = ti for all i ∈ NN−1, then the α-fractal
rational cubic spline reduces to the C1-cubic Hermite FIF Sα

1 with variable scaling
vectors:

Sα
1

(
Li(x)

)
= αi(x)S

α
1 (x) + ri{(yi −αi(x)y1)(1− θ)3 + (yi+1 −αi(x)yN )θ3

+
{
(3yi + hidi −αi(x)[3y1 + (xN − x1)d1]

}
θ(1− θ)2

+
{
3yi+1 − tihidi+1 −αi(x)[3yN − ti(xN − x1)dN ]

}
θ2(1− θ)},

θ =
x− x1

xN − x1
, ||αi||C1(I) <

ai
2
, i ∈ NN−1.

Remark 3.2. If variable scaling vectors αi(x) = 0 and shape parameters ri = ti
for all i ∈ NN−1, the α-fractal rational cubic spline is same as the classical cubic
Hermite spline S2, where

S2(x) = ri{yi(1− ρ)3 + yi+1ρ
3 + (3yi + hidi)ρ(1− ρ)2

+ (3yi+1 − hidi+1)ρ
2(1− ρ)},

where ρ = x−xi

xi+1−xi
, x ∈ Ii, i ∈ NN−1.

From (11), the derivative of fα satisfies the functional equation

(fα)′
(
Li(x)

)
=

αi(x)(f
α)′(x)

ai
+

α′
i(x)f

α(x)

ai
− (xN − x1)α

′
i(x)Ai(x)−Di(x)

hi(Fi(x))2
,

(12)

Ai(x) = r2i yi(1− θ)4 + t2i yi+1θ
4 +

{
r2i [2y1 + (xN − x1)d1] + 2ritiy1

}
θ(1− θ)3

+
{
r2i yN + riti[2(y1 + yN ) + (x1 − xN )(d1 − dN )] + t2i y1

}
θ2(1− θ)2

+{2ritiyN + t2i [2yN − (xN − x1)dN ]}θ3(1− θ),

Di(x) = r2i [hidi −αi(x)(xN − x1)d1](1− θ)3 + t2i [hidi+1 −αi(x)(xN − x1)dN ]

× θ3 +
{
r2i
{
2(yi+1 − yi)− hidi −αi(x)[2(yN − y1)− (xN − x1)d1]}

+ riti{4(yi+1 − yi)− 2hidi+1 −αi(x)[4(yN − y1)− 2(xN − x1)dN ]}
}
θ

× (1− θ)2 +
{
2riti{2(yi+1 − yi)− hidi −αi(x)[2(yN − y1)− (xN − x1)d1]}

+ t2i {2(yi+1 − yi)− hidi+1 −αi(x)[2(yN − y1)− (xN − x1)dN ]}
}
θ2(1− θ),

Fi(x) = (1− θ)ri + θti, θ =
x− x1

xN − x1
, ||αi||C1(I) <

ai
2
, i ∈ NN−1.

Suppose the interpolation data {(xi, yi) : i ∈ NN} is generated by an unknown
function Φ ∈ C1(I) such that Φ′(x) is very irregular in nature. Since the rational FIF
is not defined explicitly, it is difficult to get an error bound by direct procedures in
numerical analysis. But using the corresponding classical rational cubic spline, we
can estimate the error bound of fα with Φ that can be used to get its convergence
result. Now, we need the following result which proposed in [9].

Proposition 3.1 ([9]). Let f(x) be the classical rational cubic spline associated
with the data {(xi, yi) : i ∈ NN}. Assume that the derivatives at the knots are given
or estimated by some linear approximation methods. Then the point-wise error is
given by

|Φ(x)− f(x)| ≤ hi ci∥Φ′∥∞, x ∈ Ii,
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where ci =
riρ(1−ρ)2(1+2ρ)+tiρ

2(1−ρ)(3−2ρ)
ri(1−ρ)+tiρ

, ρ = x−xi

xi+1−xi
, x ∈ Ii, i ∈ NN−1.

Theorem 3.1. Let fα be the corresponding rational cubic spline FIF for data
{(xi, yi) : i ∈ NN}, which is generated from Φ ∈ C1(I). Then,

∥Φ− fα∥∞ ≤ ||α||∞
1− ||α||∞

[
|y|∞ +max{|y1|, |yN |}+ 1

4

(
h|d|∞+

|I|max{|d1|, |dN |}
)]

+ ch∥Φ′∥∞,

(13)

where c := max{ci : i ∈ NN−1}, |y|∞ = max{|yj | : j ∈ NN}, |d|∞ = max{|dj | : j ∈
NN}, h = max{hi : i ∈ NN−1} , and |I| = xN − x1.

Proof. From (9) and (10), it easy to compute the bounds for ||f ||∞ and ||bi||∞ as

∥f∥∞ ≤ |y|∞ +
h

4
|d|∞,

∥bi∥∞ ≤ max{|y1|, |yN |}+ |I|
4

max{|d1|, |dN |}.

Using these estimates in (8), we have

∥f−fα∥∞ ≤ ||α||∞
1− ||α||∞

(
|y|∞+

h

4
|d|∞+max{|y1|, |yN |}+ |I|

4
max{|d1|, |dN |}. (14)

Using Proposition 3.1 and (14) in

||Φ− fα||∞ ≤ ||Φ− f ||∞ + ||f − fα||∞,

we obtain the desired estimate (13) of Theorem 3.1. �

Convergence result: Since ||αi||∞ < ai

2 = hi

2(xN−x1)
, we have ||α||∞ < h

2|I|

and hence ||α||∞
1−||α||∞ < h

2|I|−h . From (13), we get

||Φ− fα||∞ = O(h) as h → 0.

Thus, fα converges uniformly to Φ as the norm of the partition tends to zero.

4. Constrained rational cubic fractal splines

In this section, we deal with the selection of parameters associated in the rational
cubic spline FIF such that it satisfies the constrained nature of data with respect
to a given piecewise curve. Given data set {(xi, yi) : i ∈ NN} and a function p
(piecewise linear or quadratic with joints at the knots xi) satisfying yi ≥ p(xi) (or
yi ≤ p(xi)), the problem is to construct a rational cubic spline FIF with variable
scaling fα such that fα(x) ≥ p(x) (or fα(x) ≤ p(x)) for all x ∈ I. Since fα

in defined implicitly, obtaining conditions for which fα lies above (or below) a
piecewise defined function is comparatively difficult than that in the corresponding
classical counterpart. But, this can be solved by connecting fα with its classical
counterpart f0 = f , and performing the analysis on f rather than on fα itself. Let
us commence by noting that

fα(x)− p(x) = fα(x)− f(x) + f(x)− p(x),

≥ ||α||∞
||α||∞ − 1

M + f(x)− p(x),
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where M = |y|∞ +max{|y1|, |yN |}+ 1
4

(
h|d|∞ + |I|max{|d1|, |dN |}

)
.

It follows that for fα(x)− p(x) ≥ 0, it is sufficient to take

f(x) ≥ p(x)−K, where K =
||α||∞

||α||∞ − 1
M.

If we replace Li(x) by x in (9), the classical C1-rational cubic spline can be written
as f(x) = Ri(x)

Si(x)
, where

Ri(x) = (1− ρ)3riyi + ρ(1− ρ)2[(2ri + ti)yi + rihidi] + ρ2(1− ρ)[(ri + 2ti)yi+1

−tihidi+1] + ρ3tiyi+1,

Si(x) = (1− ρ)ri + ρti, ρ =
x− xi

hi
.

Case - I Suppose the data set is constrained by a piecewise straight line p(x) with
joints at xi, i ∈ NN . If pi = p(xi) and pi+1 = p(xi+1), then we have

p(x) = pi(1− ρ) + pi+1ρ, x ∈ Ii = [xi, xi+1].

Therefore f(x) ≥ p(x)−K for all x ∈ I is satisfied if

Ri(x)− [pi(1− ρ) + pi+1ρ−K]Si(x) ≥ 0, x ∈ Ii, i ∈ NN−1.

⇒ Ri(x)[pi(1− ρ) + pi+1ρ]Si(x) +KSi(x) ≥ 0, x ∈ Ii, i ∈ NN−1. (15)

By using the technique of degree elevation, we are able to write

[pi(1− ρ) + pi+1ρ]Si(x)

= [pi(1− ρ) + pi+1ρ][ri(1− ρ)2 + (ri + ti)ρ(1− ρ) + tiρ
2],

= ripi(1− ρ)3 + [ri(pi + pi+1) + piti]ρ(1− ρ)2

+ [ripi+1 + ti(pi + pi+1)]ρ
2(1− ρ) + ρ3tipi+1,

Si(x) = (1− ρ)ri + ρti

= ri(1− ρ)3 + (2ri + ti)(1− ρ)2ρ+ (ri + 2ti)ρ
2(1− ρ) + ρ3ti.

Using the above expressions, the condition (15) reduces to

ri(yi − pi +K)(1− ρ)3 +
[
ri(2yi + hidi − pi − pi+1 + 2K)

+ti(yi − pi +K)
]
ρ(1− ρ)2

+
[
ri(yi+1 − pi+1 +K) + ti(2yi+1 − hidi+1 − pi − pi+1 + 2K)

]
ρ2(1− ρ)

+ti(yi+1 − pi+1 +K)ρ3 ≥ 0, for all i ∈ NN−1. (16)

Since the canonical basis elements (1−ρ)3, ρ(1−ρ)2, ρ2(1−ρ), ρ3 are non-negative,
we need to impose conditions on parameters of IFS so that each coefficient of the
cubic polynomial appearing in (16) is nonnegative. Given that yi ≥ pi for all i ∈ NN

and M ≥ 0. Thus, we need

yj − pj +K ≥ 0 ⇐⇒ ||α||∞ ≤ yj − pj
yj − pj +M

, j = i, i+ 1,

for nonnegativity of the coefficients of (1 − ρ)3 and ρ3. Additionally, we need to
choose the shape parameters ri and ti such that the coefficients of ρ(1 − ρ)2 and
ρ2(1− ρ) are to be nonnegative. The discussion we had until now is summarized in
the following theorem.
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Theorem 4.1. Suppose that a data set {(xi, yi) : i ∈ NN} lies above a piecewise
linear function p with joints at knots xi such that yi ≥ pi = p(xi). Then the
rational cubic spline FIF fα stays above p, it is sufficient to choose the rational
IFS parameters as

(i) ||α||C1(I) <
ai

2 for i ∈ NN−1, and ||α||∞ ≤ min
{ yi − pi
yi − pi +M

: i ∈ NN

}
,

(ii) ri(2yi − pi+1 − pi + hidi + 2K) + ti(yi − pi +K) ≥ 0, i ∈ NN−1,

(iii) ri(yi+1 − pi+1 +K) + ti(2yi+1 − pi+1 − pi − hidi+1 + 2K) ≥ 0, i ∈ NN−1,
where M = |y|∞ + max{|y1|, |yN |} + 1

4

(
h|d|∞ + |I|max{|d1|, |dN |}

)
and K =

||α||∞
||α||∞−1M.

If the given data set lies below a piecewise linear function p∗(x), then we can
proceed in the same manner but with a reverse inequality to get the following result:

Theorem 4.2. Suppose that a data set {(xi, yi) : i ∈ NN} lies below a piecewise
linear function p∗ with joints at knots xi such that yi ≤ p∗i = p∗(xi). Then the
rational cubic spline FIF fα stays below p∗, it is sufficient to choose the rational
IFS parameters as

(i) ||α||C1(I) <
ai

2 for i ∈ NN−1, and ||α||∞ ≤ min
{ p∗

i −yi

p∗
i −yi+M : i ∈ NN

}
,

(ii) ri(p
∗
i+1 + p∗i − 2yi − hidi − 2K) + ti(p

∗
i − yi −K) ≥ 0, i ∈ NN−1,

(iii) ri(p
∗
i+1 − yi+1 −K) + ti(p

∗
i+1 + p∗i − 2yi+1 + hidi+1 − 2K) ≥ 0, i ∈ NN−1,

where M = |y|∞ + max{|y1|, |yN |} + 1
4

(
h|d|∞ + |I|max{|d1|, |dN |}

)
, and K =

||α||∞
||α||∞−1M.

Case II Now let us consider µ to be a piecewise quadratic polynomial with
joints at xi, i ∈ NN . If µ(xi) = µi, µ′(xi) = µ′

i and ρ = x−xi

hi
, then we have µ(x) =

µi(1−ρ)2+(2µi+µ′
ihi)ρ(1−ρ)+µi+1ρ

2, x ∈ [xi, xi+1]. Therefore f(x) ≥ µ(x)−K
for all x ∈ I is satisfied if

Ri(x)− [µi(1−ρ)2+(2µi+µ′
ihi)ρ(1−ρ)+µi+1ρ

2−K]Si(x) ≥ 0, x ∈ Ii, i ∈ NN−1,
(17)

[µi(1− ρ)2 + (2µi + µ′
ihi)ρ(1− ρ) + µi+1ρ

2 −K]Si(x)

= [µi(1− ρ)2 + (2µi + µ′
ihi)ρ(1− ρ) + µi+1ρ

2 −K][1− ρ)ri + ρti]

= riµi(1− ρ)3 + [ri(2µi + µ′
ihi) + µiti]ρ(1− ρ)2

+ [riµi+1 + ti(2µi + µ′
ihi)]ρ

2(1− ρ) + ρ3tiµi+1.

(18)

Using the above expression and the cubic degree elevation form of Si(x) in (17), we
will get following inequality for a cubic polynomial :

ri(yi−µi+K)(1−ρ)3+
[
ri(2yi+hidi−2µi−µ′hi+K)+ ti(yi−µi+K)

]
ρ(1−ρ)2

+
[
ri(yi+1 − µi+1 +K) + ti(2yi+1 − hidi+1 − 2µi − µ′

ihi +K)
]
ρ2(1− ρ)

+ ti(yi+1 − µi+1 +K)ρ3 ≥ 0, for all i ∈ NN−1.
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Now (17) is true for all values of x ∈ I, when the coefficients of (1− ρ)3, ρ(1− ρ)2,
ρ2(1− ρ), ρ3 are non-negative in the above expression. This leads to conditions on
the parameters of the rational IFS as described in the following:

Theorem 4.3. Suppose that a data set {(xi, yi) : i ∈ NN} lies above a a piecewise
quadratic function µ such that yi ≥ µi = µ(xi), i ∈ NN . Then the rational cubic
spline FIF fα stays above µ if the IFS parameters satisfy the following inequalities:

(i) ||αi||C1(I) <
ai

2 for i ∈ NN−1, and ||α||∞ ≤ min
{ yi − µi

yi − µi +M
: i ∈ NN

}
,

(ii) ri(2yi − 2µi + hidi − hiµ
′
i + 2K) + ti(yi − µi +K) ≥ 0, i ∈ NN−1,

(iii) ri(yi+1 − µi+1 +K) + ti(2yi+1 − 2µi − hidi+1 − hiµ
′
i + 2K) ≥ 0, i ∈ NN−1,

where M = |y|∞ + max{|y1|, |yN |} + 1
4

(
h|d|∞ + |I|max{|d1|, |dN |}

)
and K =

||α||∞
||α||∞−1M.

Similarly the following theorem gives the restrictions on rational IFS parameters
such that the fractal curve lies below the piecewise quadratic curve.

Theorem 4.4. Suppose that a data set {(xi, yi) : i ∈ NN} lies above a a piecewise
quadratic function µ∗ such that yi ≤ µ∗

i = µ∗(xi). Then the rational cubic spline
FIF fα stays below µ∗ if the IFS parameters satisfy the following inequalities:

(i) ||αi||C1(I) <
ai

2 for i ∈ NN−1, and ||α||∞ ≤ min
{ µ∗

i −yi

µ∗
i −yi+M : i ∈ NN

}
,

(ii) ri(2µ
∗
i − 2yi − hidi + hi(µ

∗
i )

′ − 2K) + ti(µ
∗
i − yi −K) ≥ 0, i ∈ NN−1,

(iii) ri(µ
∗
i+1−yi+1−K)+ ti(2µ

∗
i −2yi+1+hidi+1+hi(µ

∗
i )

′−2K) ≥ 0, i ∈ NN−1,
where M = |y|∞ + max{|y1|, |yN |} + 1

4

(
h|d|∞ + |I|max{|d1|, |dN |}

)
and K =

||α||∞
||α||∞−1M.

5. Numerical Examples

In this section, we implement our rational cubic spline FIFs that are contained
by piecewise linear or quadratic curves. Consider the dataset {(xi, yi, di) : i =
1, 2, 3, 4, 5} = {(0, 11,−1.8889), (4, 7,−0.1111), (9, 12,−0.0417), (13, 8.5,−0.2711),
(20, 14, 1.8425)}. Note that the prescribed data set lies above the piecewise linear
function p with nodes at {(xi, pi)}5i=1={(0, 9), (4, 5), (9, 7), (13, 6), (20, 10} and data
set lies below the piecewise linear function p∗ with nodes at {(xi, p

∗
i )}5i=1={(0, 14),

(4, 10), (9, 15.5), (13, 9.5), (20, 15)} are given by

p(x) :=


−x+ 9 if 0 ≤ x ≤ 4,
2x+17

5 if 4 ≤ x ≤ 9,
−x+37

4 if 9 ≤ x ≤ 13,
4x−10

7 if 13 ≤ x ≤ 20.

, p∗(x) :=


14− x if 0 ≤ x ≤ 4,
11x+56

10 if 4 ≤ x ≤ 9,
58−3x

2 if 9 ≤ x ≤ 13,
13x−36

14 if 13 ≤ x ≤ 20.

respectively. By selecting the variable scaling and shape parameter according to the
conditions prescribed in Theorems 4.1-4.2 (See Tables 1-2), a rational cubic spline
FIF lying between p(x) and p∗(x) is generated in Fig. 1(a). To illustrate the effects
of scaling factors, only the variable scaling α2(x) is changed with respect to the
parameters of Fig.1 (a). The corresponding constrained rational cubic spline FIF
between the piecewise lies in plotted in Fig. 1(b). Next, we have taken a different
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(a) Rational cubic spline FIF.
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(b) Effect of change in α 2(x) in Fig.1
(a).
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(c) Effect of change in all α(x)in Fig.1
(a)
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(d) Classical rational cubic spline FIF.

Fig. 1. Rational cubic spline FIFs lying above a piecewise linear
functions p and p∗

variable scale vector to generate a constrained rational cubic FIF in Fig. 1(c).
Finally, we have retrieved the classical constrained rational cubic FIF in Fig. 1(d)
by taking αi(x) as a zero function. Due to ||α||C1(I) <

ai

2 < 1, the difference in the
graphs of rational cubic FIFs are not visible. Denoting fα

1 , fα
2 , fα

3 and fα
4 as rational

cubic FIFs in Figs. 1(a), 1(b), 1(c) and 1(d) respectively, we have calculated the
uniform norms ||fα

1 − fα
2 || = 0.0783 , ||fα

1 − fα
3 ||= 0.1412 and ||fα

1 − fα
4 ||=0.1426.

It is clear that if fα
1 is an original function for given data, then fα

2 is a better
approximant to it in compare with the classical interpolant fα

4 .

Next, we consider the same interpolation data set lies above the piecewise quadratic
function µ with nodes at {(xi, µi)}5i=1={(0, 8), (4, 6.25), (9, 12), (13, 8.5), (20, 11} and
interpolation data set lies below the piecewise quadratic function µ∗ with nodes at
{(xi, µ

∗
i )}5i=1={(0, 12.5), (4, 10.75), (9, 11.3), (13, 11), (20, 15)} defined as follows.
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Table 1. Variable Scaling factors used in the construction of
rational cubic FIFs.

Figures Variable scaling α(x)

Fig.1a, 2a
(

x
(20)2.9 ,

sin(x)
(40)1.6 , −1 + e(x/(20)

2.88), sin(x)
(28)1.534

)
Fig.1b, 2c

(
x

(20)2.9 ,
|log(1/(x+2))|

201.97 , −1 + e(x/(20)
2.88), sin(x)

(28)1.534

)
Fig.1c, 2d,

( cos(x+2)
400 , sech(x+2.222)

20 , sin(x+1)
201.59 , 1

x+64.9

)
Fig.1d, 2g

(
0, 0, 0, 0

)
Table 2. Shape parameters used in the construction of rational
cubic FIFs.

Shape parameters
Figures r t
Fig.1a-d 100(0.00002, 0.1, 1, 1) 40(0.0001, 1, 1, 2)
Fig. 2a-h (1, 1, 0.01, 11) (10, 2000 , 0.1, 8)

µ(x) :=



−7
64 x

2 + 8 if 0 ≤ x ≤ 4,

41
200 (x− 4)2 − 7

8 (x− 4) + 25
4 if 4 ≤ x ≤ 9,

−119
400 (x− 9)2 + 47

40 (x− 9) + 7 if 9 ≤ x ≤ 13,

51
200 (x− 13)2 − 241

200 (x− 13) + 347
50 if 13 ≤ x ≤ 20,

µ∗(x) :=



−7
64 x

2 + 25
2 if 0 ≤ x ≤ 4,

197
1000 (x− 4)2 − 7

8 (x− 4) + 43
4 if 4 ≤ x ≤ 9,

−117
400 (x− 9)2 + 219

200 (x− 9) + 113
10 if 9 ≤ x ≤ 13,

417
1607 (x− 13)2 − 249

200 (x− 13) + 11 if 13 ≤ x ≤ 20.

By selecting the variable scaling and shape parameter according to the conditions
prescribed in Theorems 4.3 and 4.4 the constrained rational cubic FIFs are constructed
in Figs. 2a, 2c, 2e lying below and above the quadratic splines µ and µ∗. The same
choice of scaling factors of previous examples are satisfying the requirement in
Theorems 4.3-4.4 (See Table 1). But the shape parameters are taken differently as
per our requirement (See Table 2). When the scale vector is null, i.e. α(x)=(0,0,0,0),
we retrieve the classical rational cubic spline plotted in Fig. 2g. The effects of scaling
parameters on the proposed rational cubic FIFs can be seen by comparing Fig 1a
vs Fig. 2a, Fig. 1b vs Fig. 2c and Fig. 1c vs Fig. 2e. Denoting the constrained
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(a) Rational cubic spline FIF.
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(b) Derivative of Rational cubic
spline FIF.
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(c) Effect of change in α 2(x) in
Fig.2(a).
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(d) Derivative of Fig.2(c).

rational cubic FIFs lying below and above the prescribed quadratic splines graphed
in Figs. 2a, 2c, 2e, 2g as fα

5 , fα
6 , fα

7 and fα
8 respectively, we have estimated the

uniform norms ||fα
5 − fα

6 || = 0.0019 , ||fα
5 − fα

7 ||= 0.0509 and ||fα
5 − fα

8 ||=0.0183
to show the difference between these fractal curves. In order to notice the difference
between the shapes of constrained rational cubic FIFs in fractality, we have plotted
the derivative of them in Figs. 2b, 2d, 2f, 2h. Note that the first derivatives of these
rational cubic FIFs are typical fractal functions which are very much different in
shapes.

6. Conclusions

In this paper, we have proposed a novel rational constrained fractal function
with variable scaling.The parameters of the FIF are chosen such a way that the
graph of fractal interpolant lies above or below associated with rational FIF can a
prescribed piecewise linear or quadratic curve. This may find potential applications
in various nonlinear and non-equilibrium phenomena where the derivative of the
associated variable is irregular in nature.
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(e) Effect of change in all α(x)in
Fig.2(a).

0 5 10 15 20
−5

−4

−3

−2

−1

0

1

2

3

(f) Derivative of Fig. 2(e).
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(g) Classical rational cubic spline
FIF.
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(h) Derivative of Classical rational
cubic spline FIF.

Fig. 2. Rational cubic spline FIFs lying between piecewise
quadratic curves µ and µ∗.
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