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ON REFLECTED WAVES IN THE SOLUTIONS OF
DIFFERENCE PROBLEMS FOR THE WAVE EQUATION ON

NON-UNIFORM MESHES
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Abstract. The paper discusses the problem of numerical reflected waves
when using difference schemes on strongly nonuniform grids for solution
to the wave equation. The relationship between the amplitude of the
reflected wave and the order of approximation on the interface of the
transition from a coarse grid to a fine grid is shown. A simple modification
of the difference scheme on the interface is proposed, which increases the
order of approximation, and, as a consequence, reduces the amplitude of
the reflected wave.
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Introduction

In this paper, using the example of the simplest difference schemes for the wave
equation, the question of the effect of a jump of the spatial step to the amplitude
of the resulting computational artifacts, having the form of waves reflected from
the interface, is numerically investigated. The existence of such reflected waves has
long been known (see, for example, [1]), and there is an extensive literature devoted
to algorithms that minimize the impact of such artifacts. Let us note that the
schemes with jumps of spatial steps are equivalent to the difference problems with
discontinuous coefficients on the "physical interface" (unlike the "computational
interface") [2], [3], [4]. For one-dimensional problems, the problem of reflected waves
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caused by the jump of the spatial step is studied in detail in the work [5]. The article
[6] considers the method for arbitrarily large jump. Questions of the stability of
methods in the presence of computational artifacts are discussed in the review [7].
We note that in all the cited works the process of wave propagation is described as
a system of first-order differential equations. Without claiming for completeness of
the list of investigations of the computational reflected waves, we have cited only
a small part of the articles in which, in our opinion, the problem is most clearly
described.

Let us note, one more direction of the researches connected with refinement of a
spatial mesh, and, as consequence, with possibility of occurrence of computational
artifacts. We are talking about the refinement of the space-time mesh in explicit
difference schemes in such a way that the restriction on the local Courant number
ensures stability. The refinement of the space-time mesh was simultaneously, but
independently, presented in the works [8], [9], and almost immediately the method
from [9] was theoretically investigated in the article [10]. The method from [9]
is based on implicit schemes for parabolic and hyperbolic equations. In [11], an
analogous technique was theoretically investigated in the norm of the space of
continuous functions, and applied to the solution of the problem of the propagation
of a laminar flame wave. In the works [12], [13] such a multilevel approach was
developed on the basis of explicit schemes, and an exhaustive analysis of stability is
given. Let us note that in the algorithms from [8], [12], based on explicit schemes,
auxiliary values on the interface are calculated by linear interpolation in time. For
hyperbolic equations this way of conjugation can lead to instability. To eliminate
this drawback, the article [14] is proposed to provide energy conservation during
the transition through the interface. Earlier, in the article [13], the conjugation
is carried out on the basis of Neumann conditions, which actually means energy
conservation in the interface. Recently approach using space-time mesh refinement
was developed for simulation of elastic wave propagation [15]. Let us note that
among articles, dealing with the refinement of time-space mesh, computational
reflected waves are considered only in [15].

The work is organized as follows. In Section 1 we consider the grid Cauchy
problem approximating the problem for the wave equation on a non-uniform grid,
and the results of computational experiments that establish the characteristic values
of the amplitudes of the reflected waves appearing at the junction of the grids
with different steps are presented. In this case, a simple method of increasing the
accuracy on such an interface, which essentialy weakens the effect of the reflected
wave, is considered. In the second section we present analogous results for the
two-dimensional problem. The main attention is paid to the construction of the
compound scheme, which increases the order of approximation on the interface
and reduces the amplitude of the reflected waves. The results of computational
experiments demonstrating such a decrease are presented. In the third section, we
give a short resume to the results of numerical experiments.

1. 1D reflected waves

In this section we consider the Cauchy problem for a one-dimensional wave
equation

(1)
∂2u

∂t2
=

∂2u

∂x2
, t > 0, −∞ < x < ∞ ,
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with initial data

(2) u(0, x) = φ(x),
∂u

∂t
(0, x) = 0, −∞ < x < ∞ .

For this problem we have exact d’Alembert’s solution:

U(t, x) =
1

2
(φ(x− t) + φ(x+ t)) .

Further experiments will be carried out for sufficiently smooth finite initial data
with support in the interval I = (−h0, h0). In particular, let

(3) φ(x) =

{
cos4(πx/2h0) , −h0 < x < h0 ,

0 , −∞ < x ≤ −h0 , h0 ≤ x < ∞ .

This function has three continuous derivatives and a bounded fourth derivative that
is discontinuous at the points x = ±h0. In this case, instead of the problem (1), (2)
we consider the boundary value problem on the interval (−1, 1), on the temporal
interval during which the wave is within the spatial interval of consideration. Those,
we use the boundary conditions

(4) u(t,−1) = u(t, 1) = 0 .

For numerical solution of the problem (1)–(4) we will use the simplest explicit
difference scheme on the non-uniform spatial mesh (see, [16], p.499):

(5)
un+1
i − 2un

i + un−1
i

τ2
= (Λ(3)un)i , n = 1, 2, ... , i = −L+ 1, ..., L− 1 ,

where Λ(3) is a standard three-point mesh operator:

(6) (Λ(3)v)i =
2

xi+1 − xi−1

(
vi+1 − vi
xi+1 − xi

− vi − vi−1

xi − xi−1

)
,

un and v are mesh functions with values un
i and vi, respectively. According to (2)

and (4) let the initial data and the boundary conditions be given by the following
equalities

(7) u0
i = φ(xi), u1

i = u0
i +

τ2

2
(Λ(3)u0)i , i = −L+ 1, ..., L− 1 ,

un
−L = un

L = 0 , n = 1, 2, ...

We comment on the second of the conditions (7). Integration of the equation (1) in
time on the interval (0, τ) with the second of the conditions (2) gives:

∂u

∂t
(τ, x) =

τ∫
0

∂2u

∂x2
(t, x) dt ≈ τ

∂2u

∂x2
(τ/2, x).

Then the second order of time approximation provides the following difference
relation:

u2
i − u0

i

2τ
= τ

(
Λ(3)u

0 + u1

2

)
i

.

Substitution u2
i from this equality into (5) at n = 1 lesds to the second condition

in (7).
Let us introduce the following non-uniform spatial mesh. Let l < L be the

integer and h1, h2 be the positive real numbers that xi = ih1 at −l ≤ i ≤ l, and
xi = xl + (i− l)h2 at i > l and xi = x−l + (i+ l)h at i < −l. Taking into account
the expression of initial data (3) we assume h1 ≤ h0. In the experiments, we will
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consider the transition of a wave from the domain with a coarse grid with the step
h1 to the domain with a fine grid with the step h2 ≤ h1. At the points of transition
from a coarse grid to a fine grid, the difference equations have the form:

(8)
un+1
l − 2un

l + un−1
l

τ2
= (Λ(3)un)l,

un+1
−l − 2un

−l + un−1
−l

τ2
= (Λ(3)un)−l.

The order of local approximation of the scheme (5) is O(τ2 + h2
1) in subdomains

with constant step, and the order decreases to O(τ2 + h1) in the points of step
jumps. A stability is provided by the Courant condition cour = τ/h2 ≤ 1.

Presented below computational results are obtained at h0 = 0.1 (the half-width
of the carrier of the initial pulse) and xl = 0.5. Figure 1 illustrates the dynamics
of the initial and reflected waves for the mesh parameters τ = 1/20480, h1 = 1/80,
h2 = 1/10240 (cour = 1/2, σ = h1/h2 = 128). For clarity, the amplitude of the
reflected wave is increased by 50 times.

Fig. 1. The dynamics of the initial and reflected waves

We give a simple 5-point modification of the equations (8), which provides
the order of approximation of O(τ2 + h2

1) at the points of step jumps, and, as
a consequence, essentially which reduces the amplitude of the reflected wave. In
what follows we will use the notation:

(9) (Λ(5)v)k =
1

2(h1 + h2)

(
−vk+2 + 8vk+1 − 7vk

hp
− 7vk − 8vk−1 + vk−2

hq

)
,

where p = 2, q = 1 at k = l, and p = 1, q = 2 at k = −l. Let us consuder the
following equations at the points xl and x−l:

(10)
un+1
k − 2un

k + un−1
k

τ2
= (Λ(5)un)k, k = l, −l.

Let us note that in the examples considered it is not necessary to modify the second
of equalities (7) for the case n = 0 because at the initial time instant the solution
at the points of step jumps is zero. As a result, a compound scheme is obtained
in which the calculations are carried out according to equalities (10) at k = l and
k = −l, respectively, and in other cases according to the equation (5). Figure 2
shows the errors for the 3-point and compound schemes at different time instants.
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At time t = 0.4, when the wave does not reach the points of the step jump, the

Fig. 2. Error of solution for 3-point (a) and compound (b) 1D schemes

solutions obtained for both schemes do not differ. At time t = 0.6, the wave passes
through the points of the step jump, and one can observe the difference associated
with the begining of the formation of reflection waves. At t = 0.8, reflection waves
were completely formed, and their amplitude for the compound scheme is much
smaller than the amplitude in the 3-point scheme. Figure 3 shows the dependences
of the reflected waves amplitudes on the magnitude of the mesh step jump for the
3-point scheme (red line) and for the compound scheme (green line). In this case,

Fig. 3. Amplitudes of 1D reflected waves for 3-point (red) and compound (green) schemes

the ratio h1/h2 was calculated for a fixed h2 = 1/10240, and h1 = 2kh2, k = 2, ..., 7.
Let us note that as the ratio h1/h2 decreases, the amplitudes of the reflected waves
decrease, since the calculations are realized on a more detailed grid. However, the
amplitude ratio does not decreases. The corresponding data are given in Table 1,
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where A(3) and A(3,5) denote the amplitudes of the reflected waves for the 3-point
and compound schemes, respectively.

Tab. 1
h1 A(3) A(3,5) A(3)/A(3,5)

1/80 4.28е-3 5.09e-4 8.41
1/160 1.02е-3 1.78e-4 5.73
1/320 3.77е-4 5.89e-5 6.40
1/640 1.48е-4 2.38e-5 6.22
1/1280 8.71е-5 1.32e-5 6.60
1/2560 3.95е-5 4.30e-6 9.18
1/5120 6.34е-6 1.57e-7 40.4

2. 2D reflected waves

In this section the following two-dimensional problem is considered:

(11)
∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
, (t, x, y) ∈ (0, 1.5)× (−2, 2)2,

with initial data

(12) u(0, x, y) = φ(x, y),
∂u

∂t
(0, x, y) = 0, (x, y) ∈ [−2, 2]2,

where

φ(x,−2) = φ(x, 2) = 0, x ∈ [−2, 2], φ(−2, y) = φ(2, y) = 0, y ∈ [−2, 2],

and boundary conditions

(13) u(t, x,−2) = u(t, x, 2) = 0, (t, x) ∈ (0, 1.5]× [−2, 2],

u(t,−2, y) = u(t, 2, y) = 0, (t, y) ∈ (0, 1.5]× [−2, 2].

The numerical solution of this problem is carried out by a difference scheme
using a standard 5-point operator and a compound scheme using a combination of
a 5-point operator and a 9-point operator at nodes where the mesh steps jump. Let
us define the operators Λ

(α)
x and Λ

(α)
y where α takes the values 3 or 5 by formulars

(6) or (9), respectively, and Ix, Iy are identity operators. Then

(14) Λ(α,β) = Λ(α)
x ⊗ Iy + Ix ⊗ Λ(β)

y

The homogeneous scheme is defined by the оператор Λ(3,3). For the compound
scheme the operators Λ(5,3) or Λ(3,5) are used in points of jumps in x or y directions,
respectively, and the operator Λ(5,5) is used in the vertices where the jump of steps
occurs in both directions. These operators are defined on 5-point, 7-point (different
in directions) and 9-point mesh templates (see Figure 4). Thus, as a homogeneous
difference scheme we mean the equation

(15)
un+1
i,j − 2un

i,j + un−1
i,j

τ2
= (Λ(3,3)un)i,j ,

which holds at all points of the computational domain. As a compound difference
scheme we mean the equations

(16)
un+1
i,j − 2un

i,j + un−1
i,j

τ2
= (Λ(α,β)un)i,j ,
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Fig. 4. Mesh templates: (a) Λ(3,3), (b) Λ(5,3), (c) Λ(3,5), (d) Λ(5,5)

where α = β = 3 (scheme (15)) at points where steps in both directions do not
change, α = 5, β = 3 at points where only step hx changes, α = 3, β = 5 at points
where only step hy changes, and α = β = 5 at points where steps in both directions
change. For the problem with nonuniform mesh the order of local approximation of
the scheme (15) is O(τ2 + h), where h = maxhx, hy, but for compound scheme the
order of local approximation is O(τ2 + h2) in all mesh nodes.

In presented bellow computational experiments the initial function which is used
in inital data has the form

φ(x, y) =

{
cos4(πx/2h0) cos

4(πy/2h0) , (x, y) ∈ [−h0, h0]
2 ,

0 , (x, y) ∈ [−2, 2]2 \ [−h0, h0]
2.

All computational results are obtained at h0 = 0.1. Let us consider the following
grid in the domain [−2, 2]2: hx = hy = 1/80 in subdomain [−1, 1]2 (coarse grid), and
hx = hy = 1/640 in subdomain [−2, 2]2 \ [−1, 1]2 (fine grid). Time step τ = 1/1280
provides a stability of homogeneous and compound difference schemes.

Figure 5 shows the solutions obtained by schemes (15) and (16) at different time
instants. At time t = 1.1, when the reflected wave begins to form, the figures (a)
and (b) are practically indistinguishable. At moments t = 1.3 and t = 1.5, the
difference between the reflected waves is clearly visible. The wave amplitude for the
compound scheme is much smaller than when using a homogeneous scheme. Figure
6 shows the dependences of the reflected waves amplitudes on the magnitude of
the mesh step jump for the homogeneous scheme and for the compound scheme.
Magnitude of the mesh step jump is defyned as relation h1/h2, where h1 = hx = hy

in subdomayn [−1, 1]2, and h2 = hx = hy in subdomayn [−2, 2]2 \ [−1, 1]2.

3. Conclusion

The main result of this study is the obtaining of computational values of amplitudes
of reflected waves when the wave equation is approximated on a strongly nonuniform
grid, and establishing the connection of these values with the order of approximation
on the interface between the coarse and fine grids. Let us note that the amplitudes of
the reflected waves in the experiments performed are no more than 1% of the value
of the amplitude of the original wave. The modified scheme reduces this value by
an order of magnitude, and the problem of computational reflected waves becomes
practically not actual, although the urgency of the problem largely depends on the
applications under consideration.



766 A.S. ANISIMOVA, YU.M. LAEVSKY

Fig. 5. Solution for homogeneous (a) and compound (b) 2D schemes

Fig. 6. Amplitudes of 2D reflected waves for homogeneous (red)
and compound (green) schemes
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